
Table of contents

Embedding generic monadic transformer into Scala 2
Ruslan Shevchenko

Towards a Language for Defining Reusable Programming Language Components 14
Cas van der Rest and Casper Bach Poulsen

Deep Embedding with Class 24
Mart Lubbers

First-Class Data Types in Shallow Embedded Domain Specific Languages
using Metaprogramming 42

Mart Lubbers, Pieter Koopman and Rinus Plasmeijer
Creating Interactive Visualizations of TopHat Programs 62

Mark Gerarts, Marc de Hoog, Tim Steenvoorden and Nico Naus
Sig-adLib: A Compilable Embedded Language for Synchronous Data-Flow

Programming on the Java Virtual Machine 84
Baltasar Trancón Y Widemann and Markus Lepper

Understanding Algebraic Effect Handlers via Delimited Control Operators 106
Youyou Cong and Kenichi Asai

Reducing the Power Consumption of IoT with Task-Oriented Programming 127
Sjoerd Crooijmans, Mart Lubbers and Pieter Koopman

Semantic equivalence of task-oriented programs in TopHat 139
Tosca Klijnsma and Tim Steenvoorden

Algorithm Design with the Selection Monad 164
Johannes Hartmann and Jeremy Gibbons

Towards the perfect union type 180
Michal Gajda and Mikhail Lazarev

Less arbitrary waiting time 200
Michal Gajda

Towards Incremental Language Definition with Reusable Components 220
Damian Frolich and L. Thomas van Binsbergen

Sound and Complete Type Inference for Closed Effect Rows 235
Kazuki Ikemori, Youyou Cong, Hidehiko Masuhara and Daan Leijen

Named Arguments as Records 260
Yaozhu Sun and Bruno C. D. S. Oliveira

Towards Efficient Adjustment of Effect Rows 274
Naoya Furudono, Youyou Cong, Hidehiko Masuhara and Daan Leijen

Abstract. Dotty-cps-async is an open-source package that consists of
scala macro, which implements generic async/await via monadic cps
transform and library, which provide monadic substitutions for high-
order functions from the standard library. It allows developers to use di-
rect control flow constructions of base language instead of monadic DSL
for various applications. Behind well-known async/await operations, the
package provides options for transforming high-order function applica-
tions, generating call-chain proxies, and automatic coloring

Project Paper: Embedding generic monadic
transformer into Scala

Can we return monadic programming into mainstream?

Ruslan Shevchenko[0000−0002−1554−2019]

ruslan@shevchenko.kiev.ua

1 Introduction

One of the barriers during industrial adoption of the Scala language is an un-
necessary high learning curve. The tradition of using embedded DSL instead of
base language leads to a situation when the ‘cognitive load’ of relatively simple
development tasks, such as querying an extra resource, is higher than in main-
stream languages. A programmer cannot use control flow constructions of base
language but should learn a specific DSL and use a suboptimal embedding of this
DSL, usually within monadic for comprehensions. Therefore, developers who are
proficient in java or typescript cannot be immediately proficient in scala without
additional training.

Can we provide a development environment that gives the programmer an ex-
perience comparable to the state-of-the-art mainstream back-end programming?
Dotty-cps-async intends to be an element of the possible answer. It provides the
way to embed monadic expressions into base scala language using well-known
async/await constructs, existing for nearly all mainstream programming lan-
guages. Although the main idea is not new, dotty-cps-async provides behind
well-known interfaces a set of novel features, such as support of the generic mon-
ads, transformation of high-order function applications, generation of call-chain
proxies, and automatic coloring.

The package is open-source and can be downloaded from github repository
https://github.com/rssh/dotty-cps-async.

2 Embedding generic monadic cps transform into Scala.

Dotty-cps-async implements a similar to scala-async[7] interface based on op-
timized monadic cps transform. It is implemented as scala macros and pro-
vides a simple generic interface with a well-known async/await signature, slightly
changed to support monad parametrization:

def async [F []] [T] (us ing m: CpsMonad [F]) (T) : F [T]

Where inside async block we can use an await macro:

def await [G[] ,T) (x :G[T]) (us ing CpsAwaitable [G]) :T

Note that F and G can be different; if the given instance of CpsMonadCon-
version morphism from F [] to G[] is defined in the current scope, then await[F]
can be used inside async[G].

Underlying source transformation is an optimized version of monadification
[4], similar to translating terms into continuations monad[8]. This translation is
limited to the code block inside an async argument.

monad type parameter is represented as typeclass with the next interface:

trait CpsMonad [F []] {
def pure [A] (v :A) : F [A]
def map [A,B] (f a :F [A]) (f : A=>B) : F [B]
def f latMap [A,B] (f a :F [A]) (f : A=>F[B]) : F [B]

}

Optionally extended by error generation and handling operations:

trait CpsTryMonad [F []] extends CpsMonad [F] {
def e r r o r [A] (e : Throwable) : F [A]
def flatMapTry [A,B] (f a :F [A]) (f : Try [A] => F[B]) : F [B]

}

We will use notations F.op as shortcut for appropriative operation over
monad typeclass for F . CF [code] is a translation of code code in the context
of F .

Let us recap the basic monadification transformations adopted to scala control-
flow construction:

– trivia: CF [t] = F.pure(t) if t ∈ Constant ∨ t ∈ Identifier

– sequential composition: CF [{a; b}] = F.flatMap(CF [a])(⇒ CF [b])

– variable definition: CF [vala = b; c] = F.flatMap(CF [a])(a
′ ⇒ CF [bx/x′])

– condition: CF [if a then b else c] =

F.flatMap(CF [a])(a
′ ⇒ if (a′) thenCF [b] elseCF [c])

– match: CF [amatch{ case r1 ⇒ v1 . . . rn ⇒ vn}] =

F.flatMap(CF [a]){a′ ⇒ match{case r1 ⇒ CF [v1] . . . rn ⇒ CF [vn]}}

– while: CF [while(a){b}] =

{
def tmpFun(x : F [Boolean]) : F [Unit] =
F.flatMap(x){c ⇒
if(c) thenF.flatMap(CF [b])(⇒ tmpFun(CF [a])) else F.pure(())
}

tmpFun(CF [a])

– try/catch: CF [try{a}{catch e ⇒ b}{finally c}] =

F.flatMap(
F.flatMapTry(CF [a]){
case Success(v) => F.pure(v)
case Failure(e) => CF [b]

}
){x ⇒ F.map(CF [c], x)}

– throw: CF [throw ex] = F.error(ex)

– lambda function: CF [a ⇒ b] = a ⇒ CF [b]. Note, that type of lamba function
is changed after this transformation.

– functional application: CF [f(a)] =

• F.flatMap(CF [a])(x => f(x)) if x is non-functional type

• F.flatMap(CF [a])(x => CF [f](x)) if x is a lamba-function which can
be transformed inline.

• F.flatMap(CF [a])(x => f ′(x)) where f ′ is an external-provided shifted
variant of f . The mechanism for definition and substitution of shifted
functions is described in 2.2.

– await: CF [awaitG(a)] =

• a if F == G and F is not context-depended.

• F.adoptContext(a) if F == G and F evaluation is context-depended.

• CpsMonadConversion[F,G](a) if F == G and F

Implementation is differ from basic transformation, by few optimizations:

– each translation is specializated for cases when transformations of some sub-
terms are trivial. For example rules for if taking into account optimizations
will looks like:

• CF [if a then b else c] =

• F.flatMap(CF [a])(v => if(v)thenCF [b] elseCF [c]) if CF [A] ̸= F.pure(a)∧
(CF [b] ̸= F.pure(b) ∨ CF [c] ̸= F.pure(c))

• if a thenCF [b] elseCF [c] if CF [a] = F.pure(a) ∧ (CF [b] ̸= F.pure(b) ∨
CF [c] ̸= F.pure(c))

• F.pure(if a then b else c) if CF [a] = F.pure(a) ∧ CF [b] = F.pure(b) ∧
CF [c] = F.pure(c)

– few sequential blocks with trivial CPS transformations are merged into one:

F.flatMap(F.pure(a))(x => F.pure(b(x)) = F.pure(b(a))

In the resulting code, the number of monad bounds is usually the same as
a number of awaits in the program, which made performance characteristics of
code, written in a direct style and then transformed to monadic, the same, as in
monadic style, writtend by hands.

2.1 Monads parametrization

Async expressions are parameterized by monads, which allows the CPS macro to
support behind the standard case of asynchronous processing other more exotic
applications, such as processing effects[16], [2], logical search[10], or probabilistic
programming[1].

Let’s look on the next example:

val prg = async [[X] =>> Resource [IO ,X]] {
val input = open (Paths . get (inputName) ,READ)
val output = open (outputName ,WRITE, CREATE, TRUNCATE EXISTING)
var nBytes = 0
while

val bu f f e r = await (read (input , BUF SIZE))
val cBytes = bu f f e r . p o s i t i o n ()
await (wr i t e (output , bu f f e r))
nBytes += cBytes
cBytes == BUF SIZE

do ()
nBytes

}

Here inside async, we construct an async expression for monad [X] =>> Resource[IO,X]

which represent an abstraction over computations with resources acquiring and
releasing logic.

Analogical expression without async/await will look as

(
for{
input <− open (Paths . get (inputName) ,READ)
output <− open (outputName ,WRITE, CREATE, TRUNCATE EXISTING)

} yield (input , output)
) . evalTap{ case (input , output) =>

var nBytes = 0
def s tep () : IO [Unit] = {

read (input , BUF SIZE) . f latMap{ bu f f e r =>
val cBytes = bu f f e r . p o s i t i o n ()
wr i t e (output , bu f f e r) . f latMap{ =>

nBytes += cBytes
i f (cBytes == BUFF SIZE)

step ()
else

IO . pure (())
}

}
}
s tep () .map{ => nBytes }

}

The next example illustrating a monadic representation of combinatorical
search. Monad [X] =>> ReadChannel[Future,X] represent a csp-like channel[9],

where monadic combinators applying the functions over the stream of a possible
states.

def putQueen (s t a t e : State) : ReadChannel [Future , State] =
val ch = makeChannel [State] ()
async [Future] {

val i = s t a t e . queens . l ength
i f i < N then

for{ j <− 0 un t i l N i f ! s t a t e . isBusy (i , j) }
ch . wr i t e (s t a t e . put (i , j))

ch . c l o s e ()
}
ch

def s o l u t i o n s (s t a t e : State) : ReadChannel [Future , State] =
async [[X] =>> ReadChannel [Future ,X]] {

i f (s t a t e . queens . s i z e < N) then
val nextState = await (putQueen (s t a t e))
await (s o l u t i o n s (nextState))

else
s t a t e

}

Here we see one async[Future] in putQueen which spawns a concurrent pro-
cess for enumerating the next possible steps in N-Queens solution, and solution
function recursivelly explore all possible steps.

The computation is directed by reading from the stream of solutions. The
process is switched to advance for each state after writing an element to the
channel (await is hidden inside ch.write inside for loop).

ch.write is defined in ReadChannel[F,A] as

t ransparent i n l i n e def wr i t e (i n l i n e a :A) : Unit =
await (awr i te (a)) (us ing CpsMonad [F])

transparent inline macros in scala are substituted in code at the same compiler
phase before enclosing macro, so async code transformer process this expression
in for loop instead ch.write.

In such way solutions (State.empty).take(2) will return the first two solutions
without performing a breadth-first search.

Note, that logical search can not be represented using async/await over one-
shot continuations semantics, since ReadChannel monad processing involve mul-
tiple values.

2.2 Translation of high-order functions

Support of cps-transformation of hight-order functions is important for func-
tional language, because it allows using await expression inside loops and in ar-
guments of common collection operators. As example, in previous section await
inside for loop was used for asynchronious channel write. Using await inside
hight-order function enable idiomatic functional style, such as

val v = cache . getOrElse (ur l , await f e t ch (u r l))

Local cps transform change the type of a lambda function. If the runtime
platform supports continuations, we can keep the shape of the arguments in
application unchanged by defining ’monad-escape’ function transformers, which
can restore the view of cps(f) : A ⇒ F [B] back to A → B.

But for platform whithout continuation support, high-order functions from
other module is a barrier for local async transformations. For those runtimes
and for cases when semantic of monad does not allow us to build such escape
function, doty-cps-async implements limited support of hight-order functions.
Macro performs a set of transformations, which allows developers to describe
the substitution for the origin high-order function in their code.

Let us have a first-order function: f : A ⇒ B which have form λx : codef (x)
and high-order method o.m : (A ⇒ B) ⇒ C. For simplicity, let’s assume that o
is reference to external symbol and not need cps-transformation itself, since we
want to show only function call transaltions here. Async transformation trans-
form code : X into cps(code) : F [X], where F is our monad.

Let us informally describe a set of transformations used to translate function
call:

– cps(codef) have form F.pure(codef). We can leave the call unchanged in such
a case because no cps transformation was needed: cps(o.m(f)) = F.pure(o.m(f))

– B have form G[B′], where G is compatible with F (i.e. exists monad conver-
sion G[] ⇒ F []). In such case it is possible to reshape function arguments,
to keep the same signature to receive cps(o.m(f)) =

F.pure(o.m(λx : A ⇒ CpsMonad[F].flatMap(cps(codef (x)))(identity)))

– Exists given instance of marker typeclass AsyncShift[O], which provide a sub-
stitution methods in one of the forms:

• m[F](f: CpsMonad[F], o:O)(f: A=>F[B]) Then we can substitute o.m(f)
to the call of

summon[AsyncShift[O]].m[F](summon[CpsMonad[F]], o)(x => cps(codef (x))

• m(o:O, f: A=>F[B]) - substitute to

summon[AsyncShift[O]].m(o)(x => cps(codef (x))

Such substitutors for the most of high-order functions from Scala standard
library is supplied with dotty-cps-async runtime. Also developers can provide
their own substitution for third-party libraries. The return type of substi-
tuted function can be:

• C, the same as the origin
• F [C] origin return type wrapped into the monad.
• CalChainAsyncShiftSubst[F,C,F[C]]. This is a special marker interface for
call chain substitution, which wich will be described later.

– Exists method in O with name m async or mAsync which accept shifted
argument f : A ⇒ F [B]. The conventions for the return type are the same
as in the previous case. This case is helpful for the fluent development of
API, which is accessible in both synchronous and asynchronous forms.

– If none of the above is satisfied, the macro generates a compile-time error.

These rules are extended to multiple parameters and multiple parameters
list, assuming that if we have one high-order async parameter, then all other
parameters should also be transformed, having only one representation of the
asynchronous method.

2.3 Call-chain substitutions

As shown in previous section, one of the possible variant of return method of
substituted high-order function is
CallChainAsyncShiftSubst[F[],B,F[B]]. The developer can use this substitution
when he/she wants to delay applying F [] until the call of all the methods in the
call chain.

For example, let’s look on the next block of code:

for { u r l <− u r l s i f await (s co r e (u r l)) > l im i t)
yield await (fetchData)

wich is desugared as

u r l s . w i t hF i l t e r (
u r l => await (s co r e (u r l)) > l im i t

) .map(u r l => await (fetchData))

The programmer expects that list of URL-s will be iterated once. However, if
the result of withFilter has form F[List .WithFilter], two iterations are performed -
one for filtering list of URLs and the other over the filtered list to perform fetch-
ing data. User objects for call-chain substitution can accumulate the sequence
of high-order functions in one batch and perform iteration once. After transform
this block of code will be looks as:

summon [AsyncShi f t [L i s t [S t r ing]] . w i t hF i l t e r [F] (ur l s ,m) (
u r l => m.map(s co r e (u r l)) (x=>x>l im i t)

) // Ca l lCha inAsyncShi f tSubs t [F, WithFi l ter ,F[A]]
. mapAsync (u r l => fetchData) // func t i on added to b u i l d e r
. f i n i s h () // f i n a l l y e va l a l l .

2.4 Automatic coloring

Automatic coloring is the way to free the developer from writing boilerplate
await statements. Since most industrial code is built with some asynchronous
framework, await expressions often situated literally in each line. Those expres-
sions do not carry out business logic; in general, when writing code, we should
not care how an object is coming to code, synchronously or asynchronously, the

same as we do not care how memory to our objects should be allocated and
deallocated. Exists some relatively rare optimization points, where low-level in-
formation is valuable, but most of the time, we prefer to think in more high-level
terms than memory or concurrency management. I.e. if developer writing a core
of a web-server, than concurrency low-level details is important. During writ-
ing a business logic using some low-level system framework, we can expect that
framework give us a reasonable generic concurrency model and abstract from
manual coloring.

We can provide implicit conversion from F [T] to T . Can we make such con-
version safe and preserve semantics with automatic coloring? It is safe when
F [] is a cached monad with eager evaluation, such as Future. We can extend
such conversion to monads, which can provide memoization of execution, by
embedding the memoization into the transformation of val definitions.

Let we have block of code { val v =expr; tailv }, expr return value of type
F [T] and exists CpsMemoization[F] with method apply[T](F[T]):F[F[T]].

Cps transformer can check the variable type and rewrite this to.

summon[CpsMonad[F]].flatMap(CpsMemoization[F](expr))(v1 ⇒ cps(tailv1))

Implicit conversions often criticized as unsafe technique, which can be a
source of bugs and maintability problems. In our case, uncontrolled usage of
such conversion can broke semantics of building complex effects, where some
building parts can be automatically memoized. To prevent such situation, dotty-
cps-async implement preliminary analysis of automatically generated conversion,
which emit errors when detecting potentially unsafe usage.

To make transformation safe, we should check that developer cannot pass
memoized value to API, which expects a delayed effect. Preliminary analysis
ensures that all usages of memoized values are in synchronous contexti by forsing
the next rules:

– If some variable is used only in a synchronous context (i.e., via await), the
macro will color it as synchronous (i.e., cached if used more than once).

– If some variable is passed to other functions as effect - it is colored as asyn-
chronous (i.e., uncached).

– If the variable is simultaneously used in synchronous and asynchronous con-
texts, we cannot deduce the programmer’s intention, and the coloring macro
will report an error.

– If the variable, defined outside of the async block, is used in synchronous
context more than once - the macro also will report an error.

Behind providing implicit conversion, automatic coloring should also care
about value discarding: expressions that provide only side-effects are not an
assignment to some value but discarded. When we do automatic coloring, the
monad with side-effect generation becomes the value of an expression. So, we
should also transform statements with value discard to insert awaits there.
Dotty-cps-async interfaces has a ValueDiscard[T] typeclass. The statement in-
side async block can discard value of type T only if exists implementation

of ValueDiscard[T] interfaces: in such case macro transforms value discard into
summon[ValueDiscard[T]].discard(t). A special marker typeclass AwaitValueDiscard[F[T]]

is used when this value discard should be a call to await.

If we will apply automatic coloring to our example with copying file, we will
see that difference between synchronous and asynchronous code become invisible.

val prg = asyncScope [IO] {
val input = open (Paths . get (inputName) ,READ)
val output = open (outputName ,WRITE, CREATE, TRUNCATE EXISTING)
var nBytes = 0
while

val bu f f e r = read (input , BUF SIZE)
val cBytes = bu f f e r . p o s i t i o n ()
wr i t e (output , bu f f e r)
nBytes += cBytes
cBytes == BUF SIZE

do ()
l og . i n f o (s ” transformed ${nBytes} from ${ inputName} to ${outputName}”)
nBytes

}

3 Related work

The idea of ’virtual’ program flow encapsulated in a monad is tracked to[3],
which become a foundation for Haskell concurrent library. Later F# computa-
tion expressions were implemented as further development of do-notation. Fur-
thermore, C# moves async/await from virtual monadic control-flow to ’normal
control-flow,‘ which becomes a pattern for other languages[15]. [11] provides an
overview of computation expression usage in different areas.

Generic monadic operation pairs [reify/reflect] and links between monadic
and cps transformations described in [5].

In scala land, the first cps transformer was implemented as a compiler plu-
gin[14]. It provides quite a powerful but complex interface based on delimited
continuations. Scala-Async[7] provides a more familiar interface for developers
for organizing asynchronous processing by compling async control flow to state
machines. The main limitation is the absence of exception handling. Last year,
a Lightbend team moved implementation of scala-async from macro to compiler
plugin and extended one to support external ’Future systems’ such as IO or
Monix. In [6] scala-async model is extended to handle reactive streams. Scala
coroutines [12] provides a model which allows to build async/await interface on
top of coroutines. Scala Virtualized[13] devotes to solving a more general prob-
lem: provide deep embedding not only for monadic costructions but for arbitrary
language. Scala Effekt [2] allows interpretation of effect handlers inside control
monad whith delimited continuations.

4 Conclusion and further work

Ability to use direct control-flow on top of some library is a one half of program-
ming experience. The other part is the library itself. Currently, we have a set of
asynchronous scala runtimes with a different sets of capabilities and it would be
interesting to build some uniform facilities for concurrency programming. One
of the open questions is to extend eager Future runtime to support structured
concurrency; Problem from the other side – users of effect stacks, such as IO,
need to wrap impure API into effects. Can we automate this process? Also we
plan to extend integration with existing asynchronous streaming interfaces.

Another direction is the expressivity of internal language, which can be ex-
tended by building appropriative wrapper control monad.

References

1. Adam, Ghahramani, Z., Gordon, A.D.: Practical proba-
bilistic programming with monads. SIGPLAN Not. 50(12),
165–176 (Aug 2015). https://doi.org/10.1145/2887747.2804317,
https://doi.org/10.1145/2887747.2804317

2. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effekt: Capability-passing
style for type- and effect-safe, extensible effect handlers in scala. J.
Funct. Program. 30, e8 (2020). https://doi.org/10.1017/S0956796820000027,
https://doi.org/10.1017/S0956796820000027

3. Claessen, K.: A poor man’s concurrency monad. Journal of Functional Program-
ming 9(3), 313–323 (1999). https://doi.org/10.1017/S0956796899003342

4. Erwig, M., Ren, D.: Monadification of functional programs. Sci. Comput. Pro-
gram. 52(1–3), 101–129 (Aug 2004). https://doi.org/10.1016/j.scico.2004.03.004,
https://doi.org/10.1016/j.scico.2004.03.004

5. Filinski, A.: Representing monads. In: Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. p. 446–457.
POPL ’94, Association for Computing Machinery, New York, NY, USA (1994).
https://doi.org/10.1145/174675.178047, https://doi.org/10.1145/174675.178047

6. Haller, P., Miller, H.: A formal model for direct-style asynchronous observables.
CoRR abs/1511.00511 (2015), http://arxiv.org/abs/1511.00511

7. Haller, P., team, L.: scala-async (2013), https://github.com/scala-async/scala-
async

8. Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In:
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 458–471. POPL ’94, Association for Computing
Machinery, New York, NY, USA (1994). https://doi.org/10.1145/174675.178053,
https://doi.org/10.1145/174675.178053

9. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International Series
in Computer Science, Prentice Hall (1985), http://www.usingcsp.com/cspbook.pdf

10. Kiselyov, O., Shan, C.c., Friedman, D.P., Sabry, A.: Backtracking, inter-
leaving, and terminating monad transformers: (functional pearl). SIGPLAN
Not. 40(9), 192–203 (Sep 2005). https://doi.org/10.1145/1090189.1086390,
https://doi.org/10.1145/1090189.1086390

11. Petricek, T., Syme, D.: The f# computation expression zoo. In: Proceedings of
Practical Aspects of Declarative Languages. PADL 2014 (2014)

12. Prokopec, A., Liu, F.: Theory and Practice of Coroutines with Snapshots. In:
Millstein, T. (ed.) 32nd European Conference on Object-Oriented Programming
(ECOOP 2018). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 109, pp. 3:1–3:32. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ECOOP.2018.3,
http://drops.dagstuhl.de/opus/volltexte/2018/9208

13. Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-virtualized:
Linguistic reuse for deep embeddings. Higher Order Symbol. Comput.
25(1), 165–207 (Mar 2012). https://doi.org/10.1007/s10990-013-9096-9,
https://doi.org/10.1007/s10990-013-9096-9

14. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymor-
phic delimited continuations by a type-directed selective cps-transform.
In: Hutton, G., Tolmach, A.P. (eds.) Proceeding of the 14th ACM
SIGPLAN international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009.
pp. 317–328. ACM (2009). https://doi.org/10.1145/1596550.1596596,
https://doi.org/10.1145/1596550.1596596

15. Syme, D.: The early history of f#. Proc. ACM Program. Lang. 4(HOPL) (Jun
2020). https://doi.org/10.1145/3386325, https://doi.org/10.1145/3386325

16. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Trans.
Comput. Logic 4(1), 1–32 (Jan 2003). https://doi.org/10.1145/601775.601776,
https://doi.org/10.1145/601775.601776

Towards a Language for Defining Reusable
Programming Language Components

(Project Paper, Extended Abstract)

Cas van der Rest1 and Casper Bach Poulsen2

c.r.vanderrest@tudelft.nl1 c.b.poulsen@tudelft.nl2

Delft University of Technology, Delft, The Netherlands

1 Introduction

Our goal is to build reusable programming language components from algebraic
data types and pattern matching functions. Most functional programming lan-
guages, however, are less than ideal for this purpose, because they lack built-in
solutions for the Expression Problem [13]: while adding functionality to existing
data types is easily done by writing a new function, we cannot extend data def-
initions themselves without modifying existing code. For instance, consider the
following implementation of a small expression language in Haskell:

data Expr = Lit Int | Div Expr Expr

eval :: Expr → Maybe Int
eval (Lit x) = return x
eval (Div e1 e2) = do {x ← eval e1 ; y ← eval e2 ; safeDiv x y }

To extend this expression language with support for pretty-printing, we can
simply define a new function pretty :: Expr → String . But what if we want to
extend it with a new construct corresponding to, for example, addition? Such a
change would require us to go back and add a constructor Add to the definition of
Expr , and extend all functions that match on Expr with new clauses accordingly.

This problem is amplified if we want to extend Expr with constructs that
introduce new side-effects other than exceptions arising from division by zero. In
that case, we also have to modify eval ’s type signature, and potentially even the
implementation of clauses for existing constructors. Clearly, if we intend Expr
and eval as reusable components this is an undesirable situation.

We improve upon this state of affairs by introducing CS (working title),
a functional meta-language for defining reusable programming language compo-
nents. In CS, we can define components that describe part of a language’s syntax,
semantics or side effects, such that they can safely be composed into larger lan-
guages without requiring modification of existing code. The key features of CS
that make this possible are (1) built-in support for per-case definitions of data
types and pattern matching functions in the style of Data Types à la Carte [12],
and (2) an effect system based on Plotkin and Pretnar’s effect handlers [9] for
the modular definition of side-effects.

CS is work in progress. There is a prototype implementation of an interpreter
and interactive programming environment which we can us to define and run the
examples from this abstract. We are, however, still in the process of developing
and implementing a type system. In particular, we should statically prevent
errors resulting from missing implementations of function clauses.

The name CS is an abbreviation of “Compositional Semantics”. It is also
the initials of Christopher Strachey, whose pioneering work [10] initiated the de-
velopment of denotational semantics. In Fundamental Concepts in Programming
Languages [11], Strachey wrote that “the urgent task in programming languages
is to explore the field of semantic possibilities”, and that we need to “recognize
and isolate the central concepts” of programming languages. Today, five decades
later, the words still ring true. The CS language aims to address this urgent
task in programming languages, by supporting the definition of reusable (cen-
tral) programming language concepts, via compositional denotation functions
that map the syntax of programming languages to their meaning.

2 CS by Example

To showcase CS’s design, we consider how to define the previous example as a
reusable language component in CS.

Signatures and Modules The first step is to define a signature that announces
the existence of an extensible data type Expr , and extensible function eval :

signature Eval (FX : Effects) where
sort Expr : Set
alg eval : Expr → {[FX] Int }

end

The braces (‘{’ and ‘}’) in the type of eval indicate that it returns a suspended
computation. Effects in CS happen eagerly, meaning that the side-effects of an
expression occur then and there unless we suspend them. For eval , we do want
suspension, leaving it up to the caller to decide when its effects take place.

The Eval signature has an effect row parameter, FX , describing which side
effects may occur during evaluation. With the alg keyword, we allude to the
initial algebra semantics for data types [5] on which CS’s semantics for extensible
types and functions is based. Indeed, we will see shortly that function clauses
for eval are not implemented as regular functions, but as algebras instead.

We inhabit Expr and eval by defining modules that instantiate the Eval
signature. We do this for the Lit and Div constructors:

module Lit : Eval where
cons Lit : Int → Expr
case eval (Lit n) = {n }

end

module Div : Eval where
cons Div : Expr → Expr → Expr
case eval (Div m1 m2) = {x ← m1 ; y ← m2 ; safeDiv x y }

Let us take a closer look at the implementation of eval in the module Div .
There are two things worth noting here. First, we do not invoke eval recursively
on the sub-expressions m1 and m2 . This is because we define function clauses as
algebras, meaning that we assume that any recursive subtrees have already been
replaced with the result of evaluating those subtrees. Second, the implementation
uses the function safeDiv that guards against errors resulting from devision by
zero. We find its implementation later on in the same module:

fun safeDiv : Int → Int → [Abort] Int where
| x 0 = abort !
| x y = ...

end

The function safeDiv is annotated with the Abort effect, which supplies the abort
operation, signalling abrupt termination. By invoking safeDiv in the defintion
of eval , which from the definition of Eval has type Expr → [FX] Int , we are
implicitly imposing a constraint on the module parameter FX that it contains
at least the Abort effect. In other words, whenever we import the module Div
we better make sure that we instantiate FX with a row that has Abort in it.

We must say a few words about the braces (‘{’ and ‘}’) that surround the
implementation of eval for Div . Their purpose is to introduce a suspended com-
putation. The opposite of suspension is enactment, which is denoted by postfix-
ing with an exclamation mark (!). We see it in action in the definition of safeDiv
(indeed, we abort immediately). Our use of braces is inspired by the similar
language feature found in Frank [3].

Now, how do we use these modules to construct an interpreter for a language
with integer literals and division? In CS, it is not necessary to explicitly compose
constructors and clauses into data types and functions. Instead, the language
manages this for us by automatically merging constructors and clauses whenever
we import multiple instances of the same signature.

module Test where
import Abort

,Eval [Abort]
,Lit ,Div

fun run : Expr → [Abort] Int where
| e = eval e

- - Evaluates to 3
fun test : [Abort] Int

= run (Div (Lit 6) (Lit 2))
end

We are allowed to invoke eval in the body of run here, because the sole constraint
(imposed by importing Div) on its effect annotation of is that it contains Abort .

When importing the Eval signature we instantiated its effect row parameter with
the singleton row [Abort], which satisfies this constraint.

Effects and Handlers To use the run function, we must first invoke a handler
for the Abort effect. To understand handlers, let us look at the module that
implements the Abort effect together with its handler.

module Abort where
import Prelude

effect Abort where
| abort : [Abort] a

handler hAbort : [Abort | FX] a → [FX] (Maybe a) where
| abort k = Nothing
| return x = Just x

end

With the effect keyword we declare a new effect together with its operations. Ef-
fect declarations are much like data type declarations, but instead of constructors
they define the different ways in which we can construct effectful computations
containing a particular effect.

We use the handler keyword to declare a handler for the Abort effect, hAbort ,
which removes it from the annotation of an effectful computation. The type of
hAbort contains a free type variable (a) and a free row variable (FX), both of
which are implicitly universally quantified, as is any free type or row variable.
The result of handling the Abort effect is a Maybe value. Maybe, along with its
constructors Just and Nothing is defined in the Prelude module.

Handlers must have a branch for each operation of the handled effect, plus
a return branch that decorates pure values to match the handler’s co-domain
type. All branches corresponding to operations have an extra parameter that
binds the continuation, representing the computation that succeeds the operation
we are currently handling. By convention, we name this parameter k . In the
abort case of hAbort , however, we ignore this continuation altogether, because
the semantics of this operation should correspond to abrupt termination.

We use the continuation parameter in a more interesting way when defining
a handler for a State effect:

module State (s : Set) where
effect State where
| get : [State] s

| put : s → [State] ()

handler hState : [State | FX] a → s → [FX] (a×s) where
| get st k = k st st

| (put st ′) st k = k () st ′

| return x st = (x , st)
end

For both the get and put operations, we use the continuation parameter k to
implement the corresponding branch in hAbort . The continuation expects a value
whose type corresponds to the return type of the current operation, and produces
a computation with the same type as the co-domain type of the handler. For the
put operation, for example, this means that k is of type ()→ s → [FX] (a×s).
The implementation of hState for get and put then simply invokes k , using the
current state as both the value and input state (get), or giving a unit value and
using the given state st ′ as the input state (put).

2.1 Implementing Functions as a Reusable Effect

CS’s effect system can describe much more sophisticated effects than Abort and
State, as it permits fine-grained control over the semantics of operations that
affect a program’s control flow, even in the presence of other effects. To illus-
trate its expressiveness, we will now consider how to define function abstraction
as a reusable effect, and implement two different handlers for this effect corre-
sponding to a call-by-value and call-by-name semantics. We start by declaring
the Abstracting effect and its operations:

effect Abstracting where
| lam : String → [Abstracting] Value → [Abstracting] Value
| app : Value → Value → [Abstracting] Value

| var : String → [Abstracting] Value
| thunk : [Abstracting] Value → [Abstracting] Value

The Abstracting effect has four operations, of which three correspond to the usual
constructs of the λ-calculus. The thunk operation has no syntactical counterpart,
but will be used for implementing a call-by-value and call-by-name evaluation
strategy. Value is the type of values in our language; we will see shortly how it
is defined.

When looking at the lam and thunk operations, we find that they both
have parameters annotated with the Abstracting effect. This annotation indi-
cates that they construct effectful computations from effectful computations, a
pattern sometimes referred to as higher-order effects. Effectively, this means that
any effects belonging to a value we wrap in a closure or thunk are postponed,
leaving it up to the handler to decide when these take place.

Using the Abstracting effect To define a langue with function abstractions using
the Abstracting effect, we define constructors Abs, App, and Var for Expr , and
evaluate them by mapping onto the corresponding operation.

module Lambda : Eval where
cons Abs : String → Expr → Expr
| App : Expr → Expr → Expr
| Var : String → Expr

case eval (Abs x m) = {lam x m }
| eval (App m1 m2) = {t ← thunk m2 ; app m1! t }
| eval (Var x) = {var x }

end

Crucially, in the case for Abs we pass the effect-annotated body m, which has
type { [FX] Value }, to the lam operation directly without extracting a pure value
first. This prevents any effects in the body of a lambda from being enacted at the
definition site, and instead leaves the decision of when these effects should take
place to the used handler for the Abstracting effect. Similarly, in the case for App,
we pass the function argument m2 to the thunk operation directly, postponing
any side-effects until we force the constructed thunk. We do, however, enact the
side-effects of evaluating the function itself (i.e., m1), because the app operation
expects its arguments to be a pure value.

We define the call-by-value and call-by-name handlers for Abstracting in a
new module, that also defines the type of values for our language. Consequently,
we adapt the Eval signature to use this value type in the signature for eval . To
keep the exposition simple, we do not define Value as an extensible sort, but it
is possible to do this in CS.

The values in this language are either numbers (Num), functions (Clo), or
thunked computations (Thunk):

module HLambda (FX : Effect) where

import Abstracting

type Env = List (String×Value)
data Value = Num Int

| Clo String (Env → [Abort | FX] Value) Env
| Thunk ([Abort | FX] Value)

- - ... (handler for the Abstracting effect) ...
end

Call-by-value We are now ready to define a hander for the Abstracting effect
that implements a call-by-value evaluation strategy. Figure 1 shows its imple-
mentation.

The return case is unremarkable: we simply ignore the environment nv and
return the value v . The cases for lam and thunk are similar, as in both cases
we do not enact the side-effects associated with the stored computation f , but
instead wrap this computation in a Closure or Thunk which is passed to the
continuation k . For variables, we resolve the identifier x in the environment and
pass the result to the continuation.

A call-by-value semantics arises from the implementation of the app case. The

highlights (e.g., t!) indicate where the thunk we constructed for the function
argument in eval is forced. In this case, we force this argument thunk immedi-

handler hCBV : [Abstracting | FX] Value
→ Env → [Abort | FX] Value where

| (lam x f) nv k = k (Clo x f nv) nv

| (app (Clo x f nv ′) (Thunk t)) nv k = v ′ ← f ((x , t!) :: nv ′)

; k v ′ nv
| (app) = abort !

| (var x) nv k = k (lookup nv x) nv
| (thunk f) nv k = k (Thunk {f nv }) nv
| return v nv = v

Fig. 1. A Handler for the Abstracting effect, implementing a call-by-value semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

ately when encountering a function application, meaning that any side-effects of
the argument take place before we evaluate the function body.

Call-by-name The handler in Figure 2 shows an implementation of a call-by-
name semantics for the Abstracting effect. The only cases differences with the
call-by-value handler in Figure 1 are the app and var cases.

In the case for app, we now put the argument thunk in the environment
immediately, without forcing it first. Instead, in the case for var, we check if the
variable we look up in the environment is a Thunk . If so, we force it and pass
the resulting value to the continuation. In effect, this means that for a variable
that binds an effectful computation, the associated side-effects take place every
time we use that variable, but not until we reference it for the first time.

Example To illustrate the difference between hCBV (Figure 1) and hCBN (Fig-
ure 2), we combine the Lambda module with a module that uses the State effect.
It defines expressions for reading and incrementing a single memory cell contain-
ing an integer:

module Mem : Eval where

import State Int

cons Incr : Expr
| Recall : Expr

case eval Incr = {put (get ! +1); Num get!}
| eval Recall = get

end

When combining Mem and Lambda, we can observe the difference between a
call-by-value and call-by-name evaluation strategy. Figure 3 shows an example
of this.

handler hCBN : [Abstracting | FX] Value
→ Env → [Abort | FX] Value where

| (lam x f) nv k = k (Clo x f nv) nv
| (app (Clo x f nv ′) v) nv k = v ′ ← f ((x , v) :: nv ′)

; k v ′ nv
| (app) = abort !

| (var x) nv k = match lookup x nv with

| (Thunk t)→ k t! nv
| v → k v nv
end

| (thunk f) nv k = k (Thunk {f nv }) nv
| return v nv = v

Fig. 2. A Handler for the Abstracting effect, implementing a call-by-name semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

3 Outlook

CS is an ongoing research project. Here, we briefly summarize the current state,
and some of the challenges that still remain.

Current state There is a prototype implementation of CS, consisting of an im-
plementation of the operational semantics, a declarative type checker written in
Statix [1], and an interactive environment through which we can interact with
the language. The operational semantics is inspired by a recently-proposed fla-
vor of effect handlers called Latent Effects [2], which unlike plain effects and
handlers can describe many advanced control-flow mechanisms. The Abstracting
effect and its different evaluation strategies are an example of how we can benefit
from this extra expressivity. With this prototype, it is possible to define and run
the examples shown in this abstract.

Static Semantics We are still in the process of developing a type system for CS.
Our plan is to use row types for both effect annotations (e.g., à la Frank [3] and
Koka [6]), and for typing extensible data types and functions. The motivation
for the latter is that CS’s static semantics should prevent problems arising from
missing function clause declarations. Row types seem to be a good fit for this
requirement, since they allow pattern matching functions to reflect in their type
for which constructors they are defined. By assigning a row type to extensible
functions, we statically make the necessary information available to check that
they are not applied to an input for which there does not exist a corresponding
case declaration. We draw inspiration from the Rose [8] language, which applies
row types to type extensible data types and records.

module Test where
import Prelude

,Abstracting
,State Int

,HLambdaCBV [State]
,HLambdaCBN [State]

,Lambda
,Mem

fun execCBV : Expr → (Maybe Value×Int) where
| e = hState {hAbort {hCBV (eval e) []}} 0

fun execCBN : Expr → (Maybe Value×Int) where
| e = hState {hAbort {hCBN (eval e) []}} 0

fun expr : Expr = App (Abs “x” Recall) Incr

- - evaluates to (Just (Num 1) , 1)
fun result1 : (Maybe Value×Int) = execCBV expr

- - evaluates to (Just (Num 0) , 0)
fun result2 : (Maybe Value×Int) = execCBN expr

end

Fig. 3. Examples of different outcomes when using a call-by-value or call-by-name
evaluation strategy.

Core Language Parallel to developing CS, we are also working on developing
a row-typed core language, which is intended as a minimal calculus to which
we can desugar programs written in full CS. We base this core language on
Rose [8], adapting it where necessary to encode (extensible) recursive data types
and row-typed effects. Because the core language is much smaller than the sur-
face language, it becomes more feasible to give a full formal specification of its
semantics, and verify meta-theoretical properties such as type safety. The core
language is still under development, but we hope to use it as a well-understood
foundation for CS in the future. Of course, this will introduce additional chal-
lenges with respect to usability, such as how to provide decent error messages
when type checking CS by going through the core language.

Semantics of extensible functions The current semantics of extensible functions
is given by a catamorphism (fold) over the input type. This is a limiting factor
when we try to implement traversals with a more complex recursive structure as
an extensible function. To make CS’s extensible functions in more expressive, we
could switch to a richer model of extensible functions. For this we could explore,
for example, more expressive recursion schemes [7], or mixin algebras [4].

References

1. van Antwerpen, H., Poulsen, C.B., Rouvoet, A., Visser, E.: Scopes as
types. Proc. ACM Program. Lang. 2(OOPSLA), 114:1–114:30 (2018).
https://doi.org/10.1145/3276484, https://doi.org/10.1145/3276484

2. van den Berg, B., Schrijvers, T., Bach-Poulsen, C., Wu, N.: Latent effects for
reusable language components: Extended version. CoRR abs/2108.11155 (2021),
https://arxiv.org/abs/2108.11155

3. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo.
J. Funct. Program. 30, e9 (2020). https://doi.org/10.1017/S0956796820000039,
https://doi.org/10.1017/S0956796820000039

4. Delaware, B., d. S. Oliveira, B.C., Schrijvers, T.: Meta-theory à la carte. In: Gia-
cobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’13, Rome, Italy - January
23 - 25, 2013. pp. 207–218. ACM (2013). https://doi.org/10.1145/2429069.2429094,
https://doi.org/10.1145/2429069.2429094

5. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Rocca, S.R.D. (ed.)
Typed Lambda Calculi and Applications, 8th International Conference, TLCA
2007, Paris, France, June 26-28, 2007, Proceedings. Lecture Notes in Computer
Science, vol. 4583, pp. 207–222. Springer (2007). https://doi.org/10.1007/978-3-
540-73228-0 16, https://doi.org/10.1007/978-3-540-73228-0_16

6. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Castagna,
G., Gordon, A.D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. pp. 486–499. ACM (2017). https://doi.org/10.1145/3009837.3009872,
https://doi.org/10.1145/3009837.3009872

7. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) Functional Program-
ming Languages and Computer Architecture, 5th ACM Conference, Cambridge,
MA, USA, August 26-30, 1991, Proceedings. Lecture Notes in Computer Science,
vol. 523, pp. 124–144. Springer (1991). https://doi.org/10.1007/3540543961 7,
https://doi.org/10.1007/3540543961_7

8. Morris, J.G., McKinna, J.: Abstracting extensible data types: or, rows by
any other name. Proc. ACM Program. Lang. 3(POPL), 12:1–12:28 (2019).
https://doi.org/10.1145/3290325, https://doi.org/10.1145/3290325

9. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Comput.
Sci. 9(4) (2013). https://doi.org/10.2168/LMCS-9(4:23)2013, https://doi.org/

10.2168/LMCS-9(4:23)2013

10. Strachey, C.: Towards a formal semantics (1966)
11. Strachey, C.S.: Fundamental concepts in programming languages. High. Order

Symb. Comput. 13(1/2), 11–49 (2000). https://doi.org/10.1023/A:1010000313106,
https://doi.org/10.1023/A:1010000313106

12. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436
(2008). https://doi.org/10.1017/S0956796808006758, https://doi.org/10.1017/
S0956796808006758

13. Wadler, P.: The expression problem. http://homepages.inf.ed.ac.uk/wadler/

papers/expression/expression.txt (1998), accessed: 2020-07-01

https://doi.org/10.1145/3276484
https://doi.org/10.1145/3276484
https://arxiv.org/abs/2108.11155
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Deep Embedding with Class

Mart Lubbers[0000−0002−4015−4878]

Institute for Computing and Information Sciences,
Radboud University Nijmegen, Nijmegen, The Netherlands

mart@cs.ru.nl

Abstract The two flavours of DSL embedding are shallow and deep
embedding. In functional languages, shallow embedding models the lan-
guage constructs as functions in which the semantics are embedded.
Adding semantics is therefore cumbersome while adding constructs is
a breeze. Upgrading the functions to type classes lifts this limitation to
a certain extent.
Deeply embedded languages represent their language constructs as data
and the semantics are functions on it. As a result, the language constructs
are embedded in the semantics, hence adding new language constructs
is laborious where adding semantics is trouble free.
This paper shows that by abstracting the semantics functions in deep em-
bedding to type classes, it is possible to easily add language constructs
as well. So-called classy deep embedding results in DSLs that are exten-
sible both in language constructs and in semantics while maintaining a
concrete abstract syntax tree. Additionally, little type-level trickery or
complicated boilerplate code is required to achieve this.

Keywords: functional programming, embedded domain specific lan-
guages, Haskell

1 Introduction

The two flavours of DSL embedding are deep and shallow embedding [4]. In func-
tional programming languages, shallow embedding models language constructs
as functions in the host language. As a result, adding new language constructs—
extra functions—is easy. However, the semantics of the language is embedded in
the functions, thus it is troublesome to add semantics since it requires updating
all existing language constructs.

On the other hand, deep embedding models language constructs as data
in the host language. The semantics of the language are represented by func-
tions over the data. Consequently, adding new semantics, i.e. novel functions, is
straightforward. It can be stated that the language constructs are embedded in
the functions that form a semantics. If one wants to add a language construct,
all semantics functions must be revisited and revised to avoid ending up with
partial functions.

This juxtaposition has been known for many years [22] and discussed by many
others [14] but most famously dubbed the expression problem by Wadler [25]:

2 Mart Lubbers

The expression problem is a new name for an old problem. The goal is
to define a data type by cases, where one can add new cases to the data
type and new functions over the data type, without recompiling existing
code, and while retaining static type safety (e.g., no casts).

In shallow embedding, abstracting the functions to type classes disentangles
the language constructs from the semantics, allowing extension both ways. This
technique is dubbed tagless-final embedding [5], nonetheless it is no silver bullet.
Some semantics that require an intensional analysis of the syntax tree, such as
transformation or optimisations, are difficult to implement in shallow embedding
due to the lack of an explicit data structure representing the abstract syntax
tree. Thus, either the semantics of the DSL must be a state or context has to be
maintained so that structural information is not lost [13].

1.1 Research contribution

This paper shows how to apply the technique observed in tagless-final embedding
to deep embedding. The presented basic technique, christened classy deep em-
bedding, does not require advanced type system extensions to be used. However,
it is suitable for type system extensions such as generalised algebraic data types.
While the examples are written in Haskell [21] using some minor extensions
provided by GHC [9], the idea is applicable to other languages as well.

2 Deep embedding

Take a DSL, take any DSL, take the language of expressions in which literal
integers and addition can be expressed. In deep embedding, terms in the language
are represented by data in the host language. Hence, defining the constructs is
as simple as creating the following algebraic data type. The suffixed to indicate
the evolution.

data Expr0 = Lit0 Int
| Add0 Expr0 Expr0

Semantics are defined as functions on the Expr0 data type. For example, a
function transforming the term to an integer—an evaluator—is implemented as
follows.

eval0 :: Expr0 → Int
eval0 (Lit0 e) = e
eval0 (Add0 e1 e2) = eval0 e1 + eval0 e2

Adding semantics—e.g. a printer—just means adding another function and
the existing functions remain untouched. I.e. the key property of deep embed-
ding. The following function, transforming the Expr0 data type to a string,
defines a simple printer for our language.

Deep Embedding with Class 3

print0 :: Expr0 → String
print0 (Lit0 v) = show v
print0 (Add0 e1 e2) = "("++ print0 e1 ++ "-"++ print0 e2 ++ ")"

While the language is concise and elegant, it is not very expressive. Tradi-
tionally, extending the language is achieved by adding a case to the Expr0 data
type. However, this means that we have to touch, and thus recompile, the orig-
inal datatype. So, adding subtraction to the language results in the following
revised data type.

data Expr0 = Lit0 Int
| Add0 Expr0 Expr0
| Sub0 Expr0 Expr0

Extending the DSL with language constructs exposes the Achilles’ heel of
deep embedding. Adding a case to the data type means that all semantic func-
tions need to be updated to be able to handle this new case. This does not seem
like an insurmountable problem, but it does pose a problem if either the func-
tions or the data type itself are written by others or are contained in a closed
library.

3 Shallow embedding

Conversely, let us see how this would be done in shallow embedding. First,
the data type is represented by functions in the host language with embedded
semantics. Therefore, the evaluators for literals and addition both become a
function in the host language as follows.

type Sems = Int

lits :: Int → Sems

lits i = i

add s :: Sems → Sems → Sems

add s e1 e2 = e1 + e2

Adding subtraction to the language is as simple as adding a new function.

subs :: Sems → Sems → Sems

subs e1 e2 = e1 − e2

Adding semantics on the other hand—e.g. a printer—is not that simple be-
cause the semantics are part of the functions representing the language con-
structs. One way to add semantics is to change all functions to execute both
semantics at the same time. In our case this means changing the type of Sems

to be (Int ,String) so that all functions operate on a tuple containing the result
of the evaluator and the printed representation at the same time. Alternatively,
a single semantics can be defined that represents a fold over the language con-
structs [10], delaying the selection of semantics to the moment the fold is applied.

4 Mart Lubbers

3.1 Tagless-final embedding

Tagless-final embedding overcomes the limitations of standard shallow embed-
ding. To upgrade to this embedding technique, the language constructs are
changed from functions to type classes. For our language this results in the
following class definition.

class Expr t s where
lit t :: Int → s
add t :: s → s → s

Semantics become data types implementing these type classes, resulting in the
following instance for the evaluator.

newtype Eval t = Et Int

instance Expr t Eval t where
lit t v = Et v
add t (Et e1) (Et e2) = Et (e1 + e2)

Adding constructs—e.g. subtraction—just results in an extra type class and
corresponding instances.

class Subt s where
subt :: s → s → s

instance Subt Eval t where
subt (Et e1) (Et e2) = Et (e1 − e2)

Finally, adding semantics such as a printer over the language is achieved by
providing a data type representing the semantics accompanied by instances for
the language constructs.

newtype Printer t = Pt String

instance Expr t Printer t where
lit t i = Pt (show i)
add t (Pt e1) (Pt e2) = Pt ("("++ e1 ++ "+"++ e2 ++ ")")

instance Subt Printer t where
subt (Pt e1) (Pt e2) = Pt ("("++ e1 ++ "-"++ e2 ++ ")")

4 Lifting the backends

Let us rethink the deeply embedded DSL design. Remember that in shallow
embedding, the semantics are embedded in the language construct functions.
Obtaining extensibility both in constructs and semantics was accomplished by
abstracting the semantic functions to type classes, making the constructs over-
loaded in the semantics. In deep embedding, the constructs are embedded in the

Deep Embedding with Class 5

semantics functions instead. So, let us apply the same technique, i.e. make the
semantics overloaded in the language constructs by abstracting the semantics
functions to type classes. The same effect may be achieved when using simi-
lar techniques such as explicit dictionary passing or ML style modules. In our
language this results in the following type class.

class Eval1 v where
eval1 :: v → Int

data Expr1 = Lit1 Int
| Add1 Expr1 Expr1

Implementing the semantic type class instances for the Expr1 data type is
an elementary exercise. By a copy, paste and some modifications, we come to
the following implementation.

instance Eval1 Expr1 where
eval1 (Lit1 v) = v
eval1 (Add1 e1 e2) = eval1 e1 + eval1 e2

Subtraction can now be defined in a separate data type, leaving the original
data type intact. Instances for the additional semantics can now be implemented
separately as instances of the type classes.

data SubExpr1 = Sub1 Expr1 Expr1

instance Eval1 SubExpr1 where
eval1 (Sub1 e1 e2) = eval1 e1 − eval1 e2

5 Existential data types

The astute reader might have noticed that we have dissociated ourselves from the
original data type. It is only possible to create an expression with a subtraction
on the top level. The recursive knot is left untied and as a result, SubExpr1 can
never be reached from an Expr1.

Luckily, we can reconnect them by adding a special constructor to the Expr1
data type for housing extensions. To allow it to house not just subtraction but
any extension, it contains an existentially quantified [18] type with class con-
straints [15,16] for all semantics type classes [9, Chp. 6.4.6].

data Expr2 = Lit2 Int
| Add2 Expr2 Expr2
| ∀x .(Eval2 x ,Print2 x) ⇒ Ext2 x

6 Mart Lubbers

The implementation of the extension case in the semantics type classes is in
most cases just a matter of calling the function for the argument as can be seen
in the semantics instances shown below.

instance Eval2 Expr2 where
eval2 (Lit2 v) = v
eval2 (Add2 e1 e2) = eval2 e1 + eval2 e2
eval2 (Ext2 x) = eval2 x

Adding language construct extensions in different data types does mean that
an extra Ext tag is introduced when using the extension. This burden can be
relieved by creating a smart constructor for it that automatically wraps the
extension with the Ext constructor so that it is of the type of the main data
type.

sub2 :: Expr2 → Expr2 → Expr2
sub2 e1 e2 = Ext2 (Sub2 e1 e2)

In our example this means that the programmer can write:

e2 = sub2 (Lit2 42) (Lit2 1)

instead of having to write

e ′2 = Ext2 (Sub2 (Lit2 42) (Lit2 1))

5.1 Unbraiding the semantics from the data

This approach does reveal a minor problem. Namely that all semantics type-
classes are braided into our datatypes via the Ext2 constructor. Say if we add the
printer again, the Ext2 constructor has to be updated to —∀x .(Eval2 x ,Print2 x) ⇒
Ext2 x . Thus, if we add semantics, the main data type’s class constraints in the
Ext constructor need to be updated. To avoid this, the type classes can be bun-
dled in a class alias or class collection as follows.

class (Eval2 x ,Print2 x) ⇒ Semantics2 x

data Expr2 = Lit2 Int
| Add2 Expr2 Expr2
| ∀x .Semantics2 x ⇒ Ext2 x

The class alias removes the need for the programmer to visit the main data
type when adding an additional semantics. Unfortunately, the compiler does
need to visit the main data type again. Some may argue that adding semantics
happens less frequently than adding language constructs but in reality it means
that we have to concede that the language is not as easily extensible in semantics

Deep Embedding with Class 7

as in language constructs. More exotic type system extensions such as constraint
kinds [3,26] can mitigate this issue by making the data types parametrised by
the particular semantics. However, by adding some boilerplate, even without
this extension the language constructs can be parametrised by the semantics
by putting the semantics functions in a data type. First the data types for the
language constructs are parametrised by the type variable c as follows.

data Expr3 c = Lit3 Int
| Add3 (Expr3 c) (Expr3 c)
| ∀x .Ext3 (c x) x

data SubExpr3 c = Sub3 (Expr3 c) (Expr3 c)

The c type variable is inhabited by an explicit dictionary for the semantics.
Therefore, for all semantics type classes, a data type is made that contains
the semantics function for the given semantics. This means that for Eval3, a
dictionary with the function EvalDict3 is defined, a type class HasEval3 for
retrieving the function from the dictionary and an instance for HasEval3 for
EvalDict3.

data EvalDict3 v = EvalDict3 (v → Int)
class HasEval3 d where
hasEval3 :: d v → v → Int

instance HasEval3 EvalDict3 where
hasEval3 (EvalDict3 e) = e

The instances for the type classes change as well according to the change in
the datatype accordingly.

instance HasEval3 d ⇒ Eval3 (Expr3 d) where
eval3 (Lit3 v) = v
eval3 (Add3 e1 e2) = eval3 e1 + eval3 e2
eval3 (Ext3 d x) = hasEval3 d x

instance HasEval3 d ⇒ Eval3 (SubExpr3 d) where
eval3 (Sub3 e1 e2) = eval3 e1 − eval3 e2

Because the Ext3 constructor from Expr3 now contains a value of type c, the
smart constructor for Sub3 must somehow come up with this value. To achieve
this, a class is introduced that allows the generation of such a dictionary.

class GDict a where
gdict :: a

This class has instances for all semantics dictionaries.

instance Eval3 v ⇒ GDict (EvalDict3 v) where
gdict = EvalDict3 eval3

8 Mart Lubbers

With these instances, the semantics function can be retrieved from the Ext3
constructor and in the smart constructors they can be generated as follows:

sub3 ::GDict (c (SubExpr3 c)) ⇒ Expr3 c → Expr3 c → Expr3 c
sub3 e1 e2 = Ext3 gdict (Sub3 e1 e2)

Finally we reached the end goal, orthogonal extension of both language con-
structs as shown by adding subtraction to the language and in language seman-
tics. Adding the printer can now be done without touching the original code as
follows. First the printer class, dictionaries and instances for GDict are defined.

class Print3 v where
print3 :: v → String

data PrintDict3 v = PrintDict3 (v → String)

class HasPrint3 d where
hasPrint3 :: d v → v → String

instance HasPrint3 PrintDict3 where
hasPrint3 (PrintDict3 e) = e

instance Print3 v ⇒ GDict (PrintDict3 v) where
gdict = PrintDict3 print3

Then the instances for Print3 of all the language constructs can be defined.

instance HasPrint3 d ⇒ Print3 (Expr3 d) where
print3 (Lit3 v) = show v
print3 (Add3 e1 e2) = "("++ print3 e1 ++ "+"++ print3 e2 ++ ")"

print3 (Ext3 d x) = hasPrint3 d x

instance HasPrint3 d ⇒ Print3 (SubExpr3 d) where
print3 (Sub3 e1 e2) = "("++ print3 e1 ++ "-"++ print3 e2 ++ ")"

6 Transformation semantics

Most semantics convert a term to some final representation and can be expressed
just by functions on the cases. However, some semantics such as transformation
or optimisation require a so called intentional analysis of the abstract syntax tree.
In shallow embedding, the implementation for these type of semantics is difficult
because there is no tangible abstract syntax tree. In off-the-shelf deep embedding
this is effortless since the function can pattern match on the constructor or
structures of constructors.

To demonstrate intensional analyses in classy deep embedding we write an
optimizer that removes addition and subtraction by zero In classy deep embed-
ding, adding new semantics means first adding a new type class housing the
function including the machinery for the extension constructor.

Deep Embedding with Class 9

class Opt3 v where
opt3 :: v → v

data OptDict3 v = OptDict3 (v → v)
class HasOpt3 d where
hasOpt3 :: d v → v → v

instance HasOpt3 OptDict3 where
hasOpt3 (OptDict3 e) = e

instance Opt3 v ⇒ GDict (OptDict3 v) where
gdict = OptDict3 opt3

The implementation of the optimizer for the Expr3 data type is no compli-
cated task. The only interesting bit in occurs in the Add3 constructor, where we
pattern match on the optimised children to determine whether an addition with
zero is performed. If this is the case, the addition is removed.

instance HasOpt3 d ⇒ Opt3 (Expr3 d) where
opt3 (Lit3 v) = Lit3 v
opt3 (Add3 e1 e2) = case (opt3 e1, opt3 e2) of
(Lit3 0, e ′2) → e ′2
(e ′1,Lit3 0) → e ′1
(e ′1, e

′
2) → Add3 e ′1 e ′2

opt3 (Ext3 d x) = Ext3 d (hasOpt3 d x)

Replicating this for the Opt3 instance of SubExpr3 seems a clear-cut task at
first glance.

instance HasOpt3 d ⇒ Opt (SubExpr3 d) where
opt3 (Sub3 e1 e2) = case (opt3 e1, opt3 e2) of
(e ′1,Lit 0) → e ′1
(e ′1, e

′
2) → SubExpr3 e ′1 e ′2

Unsurprisingly, this code is rejected by the compiler. When a literal zero is
matched as the right-hand side of a subtraction, the left hand side of type Expr3
is returned. However, the type signature of the function dictates that it should be
of type SubExpr3. To overcome this problem we add a convolution constructor.

6.1 Convolution

Adding a loopback case or convolution constructor to the Sub3 allows the removal
of the Sub3 constructor while remaining the SubExpr3 type. It should be noted
that a loopback case is only required if the transformation actually removes tags.
This changes the SubExpr3 data type as follows.

data SubExpr3 c = Sub3 (Expr3 c) (Expr3 c)
| SubLoop3 (Expr3 c)

instance HasEval3 d ⇒ Eval3 (SubExpr3 d) where
eval3 (Sub3 e1 e2) = eval3 e1 − eval3 e2
eval3 (SubLoop3 e1) = eval3 e1

10 Mart Lubbers

With this loopback case in the toolbox, the following SubExpr instance op-
timises away subtraction with zero literals.

instance HasOpt3 d ⇒ Opt3 (SubExpr3 d) where
opt3 (Sub3 e1 e2) = case (opt3 e1, opt3 e2) of
(e ′1,Lit3 0) → SubLoop3 e ′1
(e ′1, e

′
2) → Sub3 e ′1 e ′2

opt3 (SubLoop3 e) = SubLoop3 (opt3 e)

6.2 Pattern matching

Pattern matching within datatypes and from an extension to the main data type
works out of the box. Pattern matching on values with an existential type is
not possible without leveraging dynamic typing [1,2]. To enable dynamic typing
support, the Typeable type class as provided by Data.Dynamic [8] is added to the
list of constraints in all places where we need to pattern match across extensions.
Cross-extensional pattern matching on the other hand—matching on a particular
extension—is something that requires a bit of extra care. Take for example the
optimisations negation propagation and double negation elimination. As a result,
the Typeable class constraints is added to the quantified type variable x of the
Ext4 constructor and to cs in the smart constructors.

data Expr4 c = Lit4 Int
| Add4 (Expr4 c) (Expr4 c)
| ∀x .Typeable x ⇒ Ext4 (c x) x

First let us add negation to the language by defining a datatype represent-
ing it. Negation elimination requires the removal of negation constructors so a
convolution constructor is defined as well.

data NegExpr4 c = Neg4 (Expr4 c)
| NegLoop4 (Expr4 c)

neg4 :: (Typeable c,GDict (c (NegExpr4 c))) ⇒ Expr4 c → Expr4 c
neg4 e = Ext4 gdict (Neg4 e)

The evaluation and printer instances for the NegExpr4 datatype are defined
as follows.

instance HasEval4 d ⇒ Eval4 (NegExpr4 d) where
eval4 (Neg4 e) = negate (eval4 e)
eval4 (NegLoop4 e) = eval4 e

instance HasPrint4 d ⇒ Print4 (NegExpr4 d) where
print4 (Neg4 e) = "(~"++ print4 e ++ ")"

print4 (NegLoop4 e) = print4 e

Deep Embedding with Class 11

The Opt4 contains the interesting bit. If the sub expression of a negation is
an addition, negation is propagated downwards. If the sub expression is again a
negation, something that can only be found out by

instance (Typeable d ,GDict (d (NegExpr4 d)),HasOpt4 d) ⇒
Opt4 (NegExpr4 d) where

opt4 (Neg4 (Add4 e1 e2))
= NegLoop4 (Add4 (opt4 (neg4 e1)) (opt4 (neg4 e2)))

opt4 (Neg4 (Ext4 d x))
= case fromDynamic (toDyn (hasOpt4 d x)) of
Just (Neg4 e) → NegLoop4 e

→ Neg4 (Ext4 d (hasOpt4 d x))
opt4 (Neg4 e) = Neg4 (opt4 e)
opt4 (NegLoop4 e) = NegLoop4 (opt4 e)

Loopback cases do make cross-extensional pattern matching less modular
in general. For example, Ext4 d (SubLoop4 (Lit4 0)) is equivalent to Lit4 0
in the optimisation semantics and would just require an extra pattern match.
Fortunately, this problem can be mitigated—if required—by just adding an ad-
ditional optimisation semantics that removes loopback cases. Moreover, one does
not need to resort to these arguably blunt matters a lot. Dependent language
functionality often does not need to span extensions, i.e. it is possible to group
them in the same data type.

6.3 Chaining semantics

Now that the data types are parametrised by the semantics a final problem needs
to be overcome. The data type is parametrised by the semantics, thus, using
multiple semantics, such as evaluation after optimising is not straightforwardly
possible. Luckily, a solution is readily at hand: introduce an ad-hoc combining
semantics.

data OptPrintDict4 v = OptPrintDict4 (OptDict4 v) (PrintDict4 v)
instance HasOpt4 OptPrintDict4 where
hasOpt4 (OptPrintDict4 v) = hasOpt4 v

instance HasPrint4 OptPrintDict4 where
hasPrint4 (OptPrintDict4 v) = hasPrint4 v

instance (Opt4 v ,Print4 v) ⇒ GDict (OptPrintDict4 v) where
gdict = OptPrintDict4 gdict gdict

And this allows us to write print4 (opt4 e1) resulting in ((∼42) + (∼38))
when e1 represents (∼ (42 + 38))− 0 and is thus defined as follows.

e1 :: Expr4 OptPrintDict4
e1 = sub4 (neg4 (Add4 (Lit4 42) (Lit4 38))) (Lit4 0)

12 Mart Lubbers

7 Generalised algebraic data types (GADTs)

GADTs are enriched data types that allow the type instantiation of the construc-
tor to be explicitly defined [7,11]. Leveraging GADTs, deeply embedded DSLs
can be made statically type safe even when different value types are supported.
Even when GADTs are not supported natively in the language, they can be sim-
ulated using embedding-projection pairs or equivalence types [6, Sec. 2.2]. Where
some solutions to the expression problem do not easily generalise to GADTs (see
Section 9), classy deep embedding does. Generalising the data structure of our
DSL results in the following GADTs. Note that to make the DSL more general,
the types of the constructors have been relaxed more. For example, operations
on integers now work on all numerals instead. Moreover, the Litg constructor
can be used to lift values of any type to the DSL domain as long as they can be
shown which is required for the printer. Since the optimisations on Negg remove
constructors and is a cross-extensional pattern match, Typeable constraints must
be added to a. Furthermore, because the optimisations for Addg and Subg are
now more general, they do not only work for Int but for any a for which an Num
instance is available, the Eq constraint is added to these constructors as well.

data Exprg c a where

Litg :: Show a ⇒ a → Exprg c a

Addg :: (Eq a,Num a) ⇒ Exprg c a → Exprg c a → Exprg c a

Extg :: (Typeable x) ⇒ c x → x a → Exprg c a

data SubExprg c a where

Subg :: (Eq a,Num a) ⇒ Exprg c a → Exprg c a → SubExprg c a

SubLoopg :: Exprg c a → SubExprg c a

data NegExprg c a where

Negg :: (Typeable a,Num a) ⇒ Exprg c a → NegExprg c a

NegLoopg :: Exprg c a → NegExprg c a

The smart constructors for the language extensions inherit the class con-
straints of their data types and include a Typeable constraint on the c type
variable for it to be usable in the Extg constructor

subg :: (Typeable c,GDict (c (SubExprg c)),Eq a,Num a) ⇒
Exprg c a → Exprg c a → Exprg c a

subg e1 e2 = Extg gdict (Subg e1 e2)

negg :: (Typeable c,GDict (c (NegExprg c)),Typeable a,Num a) ⇒
Exprg c a → Exprg c a

negg e = Extg gdict (Negg e)

Upgrading the semantics type classes to support GADTs is done by an easy
textual search and replace. All occurances of v are now parametrised by type
variable a.

Deep Embedding with Class 13

class Evalg v where
evalg :: v a → a

class Printg v where
printg :: v a → String

class Optg v where

optg :: v a → v a

Now that the shape of the classes has changed, the dictionary data types
and the classes need to be adapted as well. The introduced type variable a is no
argument to the class so it should not be an argument to the dictionary data
type. To represent this class function, a rank-2 polymorph function is needed [9,
Chp. 6.4.15][20].

data EvalDictg v = EvalDictg (∀a.v a → a)
class HasEvalg d where
hasEvalg :: d v → v a → a

instance HasEvalg EvalDictg where
hasEvalg (EvalDictg e) = e

data PrintDictg v = PrintDictg (∀a.v a → String)
class HasPrintg d where
hasPrintg :: d v → v a → String

instance HasPrintg PrintDictg where
hasPrintg (PrintDictg e) = e

data OptDictg v = OptDictg (∀a.v a → v a)

class HasOptg d where

hasOptg :: d v → v a → v a

instance HasOptg OptDictg where

hasOptg (OptDictg e) = e

The GDict class is general enough so the instances can remain the same.

instance Evalg v ⇒ GDict (EvalDictg v) where
gdict = EvalDictg evalg

instance Printg v ⇒ GDict (PrintDictg v) where
gdict = PrintDictg printg

instance Optg v ⇒ GDict (OptDictg v) where

gdict = OptDictg optg

Finally, the implementations for the instances can be ported without com-
plication.

instance HasEvalg d ⇒ Evalg (Exprg d) where

evalg (Litg v) = v
evalg (Addg e1 e2) = evalg e1 + evalg e2
evalg (Extg d x) = hasEvalg d x

instance HasEvalg d ⇒ Evalg (SubExprg d) where

14 Mart Lubbers

evalg (Subg e1 e2) = evalg e1 − evalg e2
evalg (SubLoopg e) = evalg e

instance HasPrintg d ⇒ Printg (Exprg d) where

printg (Litg v) = show v

printg (Addg e1 e2) = "("++ printg e1 ++ "+"++ printg e2 ++ ")"

printg (Extg d x) = hasPrintg d x

instance HasPrintg d ⇒ Printg (SubExprg d) where

printg (Subg e1 e2) = "("++ printg e1 ++ "-"++ printg e2 ++ ")"

printg (SubLoopg e) = printg e

instance HasOptg d ⇒ Optg (Exprg d) where

optg (Litg v) = Litg v

optg (Addg e1 e2) = case (optg e1, optg e2) of

(Litg 0, e ′2) → e ′2
(e ′1,Litg 0) → e ′1
(e ′1, e

′
2) → Addg e ′1 e ′2

optg (Extg d x) = Extg d (hasOptg d x)

instance HasOptg d ⇒ Optg (SubExprg d) where

optg (Subg e1 e2) = case (optg e1, optg e2) of

(e ′1,Litg 0) → SubLoopg e ′1
(e ′1, e

′
2) → Subg e ′1 e ′2

optg (SubLoopg e) = SubLoopg (optg e)

instance (Typeable d ,GDict (d (NegExprg d)),HasOptg d) ⇒
Optg (NegExprg d) where

optg (Negg (Addg e1 e2))

= NegLoopg (Addg (optg (negg e1)) (optg (negg e2)))

optg (Negg (Extg d x))

= case fromDynamic (toDyn (hasOptg d x)) of

Just (Negg e) → NegLoopg e

→ Negg (Extg d (hasOptg d x))

optg (Negg e) = Negg (optg e)

optg (NegLoopg e) = NegLoopg (optg e)

8 Conclusion

Classy deep embedding is a novel organically grown embedding technique that
alleviates deep embedding from the extensibility problem in most cases.

By abstracting the semantics functions to classes they become overloaded in
the language constructs. Thus, making it possible to add new language constructs

Deep Embedding with Class 15

in a separate type. These extensions are brought together in a special extension
constructor residing in the main data type. This extension case is overloaded by
the language construct using a data type containing the class dictionary. As a
result, orthogonal extension is possible for language constructs and semantics us-
ing only little syntactic overhead or type annotations. The basic technique only
requires—well established through history and relatively standard—existential
data types. However, if needed, the technique generalises to GADTs as well,
adding rank-2 types to the list of type system requirements as well.. Finally,
the abstract syntax tree remains observable which makes it suitable for inten-
sional analyses, albeit using occasional dynamic typing for truly cross-extensional
transformations.

9 Related work

Embedded DSL techniques in functional languages have been a topic of research
for many years and thus we do not claim a complete overview of related work.

Clearly, classy deep embedding bears most similarity to the Datatypes à la
Carte [24]. In Swierstra’s approach, semantics are lifted to type classes in a
similar fashion to classy deep embedding. Each language construct is their own
datatype parametrised by a type parameter. This parameter contains some type
level representation of language constructs that are in use. In classy deep em-
bedding, extensions do not have to be iterated at the type level but are captured
in the extension case. Because all the constructs are expressed in the type sys-
tem, nifty type system tricks need to be employed to convince the compiler that
everything is type safe and the class constraints can be solved. Furthermore, it
requires some boilerplate code such as functor instances for the data types. In
return, pattern matching is easier and does not require dynamic typing. Classy
deep embedding only strains the programmer with writing the extension case
for the main data type and the occasional loopback constructor.

Löh et al. proposed a language extension that allows open data types and
open functions, i.e. functions and data types that can be extended with more
cases later on [17]. They hinted at the possibility of using type classes for open
functions but had serious concerns that pattern matching would be crippled be-
cause constructors are becoming types, thus ultimately becoming impossible to
type. In contrast, this paper shows that pattern matching is easily attainable—
albeit using dynamic types—and that the terms can be typed without compli-
cated type system extensions.

A technique similar to classy deep embedding was proposed by Najd and
Peyton Jones to tackle a slightly different problem, namely that of reusing a
data type for multiple purposes in a slightly different form [19]. For example to
decorate the abstract syntax tree of a compiler differently for each phase of the
compiler. They propose to add an extension descriptor as a type variable to a
data type and a type family that can be used to decorate constructors with extra
information and add additional constructors to the data type using an extension
constructor. Classy deep embedding works similarly but uses existentially quan-

16 Mart Lubbers

tified type variables to describe possible extensions instead of type variables and
type families. In classy deep embedding, the extensions do not need to be en-
coded in the type system and less boilerplate is required. Furthermore, pattern
matching on extensions becomes a bit more complicated but in return it allows
for multiple extensions to be added orthogonally and avoids the necessity for
type system extensions.

Tagless embedding is the shallowly embedded counterpart of classy deep
embedding and was invented for the same purpose; overcoming the issues with
standard shallow embedding [5]. Classy deep embedding was organically grown
from observing the evolution of tagless embedding. The main difference between
tagless embedding and classy deep embedding—and in general between shallow
and deep embedding—is that intensional analyses of the abstract syntax tree is
very difficult because there is no tangible abstract syntax tree data structure.
In classy deep embedding, it is possible to define transformations even across
extensions. On the other hand, tagless embedding does allow partial semantics,
i.e. semantics that do not support every language construction. This restriction
on classy deep embedding may be lifted by using a data structure for the class
constraints [12] instead but this remains future work.

Hybrid approaches between deep and shallow embedding exist as well. For ex-
ample, Svenningson et al. show that by expressing the deeply embedded language
in a shallowly embedded core language, extensions can be made orthogonally as
well [23]. This paper differs from those approaches in the sense that it does not
require a core language in which all extensions need to be expressible.

Acknowledgements

To appear

References

1. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic Typing in a Stati-
cally Typed Language. ACM Trans. Program. Lang. Syst. 13(2), 237–268 (Apr
1991). https://doi.org/10.1145/103135.103138, https://doi.org/10.1145/103135.
103138, place: New York, NY, USA Publisher: Association for Computing Ma-
chinery

2. Baars, A.I., Swierstra, D.S.: Typing Dynamic Typing. In: Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional Programming. pp.
157–166. ICFP ’02, Association for Computing Machinery, New York, NY, USA
(2002). https://doi.org/10.1145/581478.581494, https://doi.org/10.1145/581478.
581494, event-place: Pittsburgh, PA, USA

3. Bolingbroke, M.: Constraint Kinds for GHC (Sep 2011), http://blog.omega-prime.
co.uk/2011/09/10/constraint-kinds-for-ghc/

4. Boulton, R., Gordon, A., Gordon, M., Harrison, J., Herbert, J., Tassel, J.V.: Expe-
rience with embedding hardware description languages in HOL. In: Stavridou, V.,
Melham, T.F., Boute, R.T. (eds.) IFIP TC10/WG. vol. 10, pp. 129–156. Elsevier,
North-Holland (1992)

Deep Embedding with Class 17

5. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: Tag-
less staged interpreters for simpler typed languages. Journal of Functional Pro-
gramming 19(05), 509 (Sep 2009). https://doi.org/10.1017/S0956796809007205,
http://www.journals.cambridge.org/abstract S0956796809007205

6. Cheney, J., Hinze, R.: A Lightweight Implementation of Generics and Dynam-
ics. In: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 90–
104. Haskell ’02, Association for Computing Machinery, New York, NY, USA
(2002). https://doi.org/10.1145/581690.581698, https://doi.org/10.1145/581690.
581698, event-place: Pittsburgh, Pennsylvania

7. Cheney, J., Hinze, R.: First-class phantom types. Tech. rep., Cornell University
(2003), https://ecommons.cornell.edu/handle/1813/5614

8. GHC Team: Data.Dynamic (2021), https://hackage.haskell.org/package/base-4.
14.1.0/docs/Data-Dynamic.html

9. GHC Team: GHC User’s Guide Documentation (2021), https://downloads.haskell.
org/∼ghc/latest/docs/users guide.pdf

10. Gibbons, J., Wu, N.: Folding Domain-Specific Languages: Deep and Shal-
low Embeddings (Functional Pearl). In: Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming. pp. 339–
347. ICFP ’14, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2628136.2628138, https://doi.org/10.1145/
2628136.2628138, event-place: Gothenburg, Sweden

11. Hinze, R.: Fun With Phantom Types. In: Gibbons, J., de Moor, O. (eds.) The Fun
of Programming, pp. 245–262. Cornerstones of Computing, Bloomsbury Publish-
ing, Palgrave (2003)

12. Hughes, J.: Restricted data types in Haskell. Tech. Rep. UU-CS-1999-28, Depart-
ment of Information and Computing Sciences, Utrecht University, Paris (1999)

13. Kiselyov, O.: Typed Tagless Final Interpreters. In: Gibbons, J. (ed.) Generic
and Indexed Programming: International Spring School, SSGIP 2010, Oxford,
UK, March 22-26, 2010, Revised Lectures, pp. 130–174. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32202-0 3,
https://doi.org/10.1007/978-3-642-32202-0 3

14. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing object-oriented
and functional design to promote re-use. In: Jul, E. (ed.) ECOOP’98 — Object-
Oriented Programming. pp. 91–113. Springer Berlin Heidelberg, Berlin, Heidelberg
(1998)

15. Läufer, K.: Combining type classes and existential types. In: Proceedings of the
Latin American Informatic Conference (PANEL). ITESM-CEM, Monterrey, Mex-
ico (1994)

16. Läufer, K.: Type classes with existential types. Journal of Functional Program-
ming 6(3), 485–518 (1996). https://doi.org/10.1017/S0956796800001817, pub-
lisher: Cambridge University Press

17. Löh, A., Hinze, R.: Open Data Types and Open Functions. In: Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming. pp. 133–144. PPDP ’06, Association for Computing
Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1140335.1140352,
https://doi.org/10.1145/1140335.1140352, event-place: Venice, Italy

18. Mitchell, J.C., Plotkin, G.D.: Abstract Types Have Existential Type.
ACM Trans. Program. Lang. Syst. 10(3), 470–502 (Jul 1988).
https://doi.org/10.1145/44501.45065, https://doi.org/10.1145/44501.45065,
place: New York, NY, USA Publisher: Association for Computing Machinery

18 Mart Lubbers

19. Najd, S., Peyton Jones, S.: Trees that Grow. Journal of Universal Computer Science
23(1), 42–62 (Jan 2017)

20. Odersky, M., Läufer, K.: Putting Type Annotations to Work. In: Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 54–67. POPL ’96, Association for Computing Machinery, New
York, NY, USA (1996). https://doi.org/10.1145/237721.237729, https://doi.org/
10.1145/237721.237729, event-place: St. Petersburg Beach, Florida, USA

21. Peyton Jones, S.: Haskell 98 language and libraries: the revised report. Cambridge
University Press (2003)

22. Reynolds, J.C.: User-Defined Types and Procedural Data Structures as Com-
plementary Approaches to Data Abstraction. In: Gries, D. (ed.) Programming
Methodology: A Collection of Articles by Members of IFIP WG2.3, pp. 309–317.
Springer New York, New York, NY (1978). https://doi.org/10.1007/978-1-4612-
6315-9 22, https://doi.org/10.1007/978-1-4612-6315-9 22

23. Svenningsson, J., Axelsson, E.: Combining Deep and Shallow Embedding for EDSL.
In: Loidl, H.W., Peña, R. (eds.) Trends in Functional Programming. pp. 21–36.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

24. Swierstra, W.: Data types à la carte. Journal of Functional Programming
18(4), 423–436 (2008). https://doi.org/10.1017/S0956796808006758, publisher:
Cambridge University Press

25. Wadler, P.: The expression problem (1998), https://homepages.inf.ed.ac.uk/
wadler/papers/expression/expression.txt

26. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Ma-
galhães, J.P.: Giving Haskell a Promotion. In: Proceedings of the 8th ACM
SIGPLAN Workshop on Types in Language Design and Implementation. pp.
53–66. TLDI ’12, Association for Computing Machinery, New York, NY,
USA (2012). https://doi.org/10.1145/2103786.2103795, https://doi.org/10.1145/
2103786.2103795, event-place: Philadelphia, Pennsylvania, USA

First-Class Data Types in Shallow Embedded
Domain Specific Languages using

Metaprogramming

Mart Lubbers[0000−0002−4015−4878], Pieter Koopman[0000−0002−3688−0957], and
Rinus Plasmeijer

Institute for Computing and Information Sciences,
Radboud University Nijmegen, Nijmegen, The Netherlands

firstname@cs.ru.nl

Abstract. Functional programming languages are excellent candidates
for hosting embedded domain specific languages (eDSLs) because of their
rich type systems, minimal syntax, referential transparency and com-
posability. However, data types defined in the host language are not
automatically available in the embedded language. To do so, all the op-
erations on the data type must be redefined by the programmer for the
eDSL resulting in a lot of boilerplate.
This paper shows that with the use of metaprogramming, all first order
user-defined data types can be automatically made first class in shallow
embedded DSLs. It does so by providing an implementation in Template
Haskell for a typical DSL with three different semantics for the language
of which one is a compiling semantics. Furthermore, we show that by util-
ising quasiquotation, there is hardly any burden on the syntax. Finally,
the paper also serves as a gentle introduction to Template Haskell.

Keywords: embedded domain specific languages, metaprogramming,
Haskell, Template Haskell

1 Introduction

Functional programming languages are excellent candidates for hosting embed-
ded domain specific languages (DSLs) because of their rich type systems, minimal
syntax, referential transparency and composability. By expressing the language
constructs in the host language, the parser, the type checker and sometimes
even the compiler are inherited from the host language. Unfortunately, data
types defined in the host language are not automatically available in the embed-
ded language. To do so, all the operations on the data type must be redefined
by the programmer for the eDSL.

The two main strategies for embedding DSLs in a functional language are
deep embedding (sometimes called initial) and shallow embedding (final). Deep
embedding represents the constructs in the language as data types and the se-
mantics as functions over these data types. This makes extending the language
with new semantics is effortless by adding another function Conversely, adding

2 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

a language construct requires changing the data type and updating all existing
semantics individually to support this new constructor. Shallow embedding on
the other hand models the language constructs as functions with the semantics
embedded. Consequently, adding a construct is easy, i.e. it entails adding another
function. Contrarily, adding semantics requires adapting all language constructs.
Lifting the functions to typeclasses, i.e. parametrising the constructs over the
semantics, allows extension of the language both in constructs and in semantics
orthogonally and is called tagless final or class-based shallow embedding [15].

In tagless final embedding, the parser and the compiler are inherited from
the host language. While it often is possible to lift values of a user-defined data
type to a value in the DSL, it is not possible to interact with it using DSL
constructs. In other words, it is not possible to 1. construct values from fields
using a constructor, 2. deconstruct values deconstructors or pattern matching,
3. test which constructor the value holds. The functions for this are simply not
available automatically in the embedded languages. For some semantics it is
possible to directly lift the functions from the host language to the DSL domain,
i.e. an interpreter. In other cases—e.g. compiling DSLs such as a compiler or a
printer—this is not possible [10]. Thus they have to be defined by hand using a
lot of boilerplate code.

To relieve the burden of adding all these functions, metaprogramming, ac-
companied by custom quasiquoters, can be used. Metaprogramming entails that
some parts of the program are generated by a program itself. Quasiquotation is
a metaprogramming technique for using the host language, or custom, parser to
write syntax fragments verbatim instead of with data types. This allows func-
tions to be added at compile time to the program based on the structure of a
user-defined data type.

1.1 Contributions of the paper

This paper shows that with the use of metaprogramming, all first order user-
defined data types can be automatically made first class in shallow embedded
DSLs. It does so by providing an implementation in Template Haskell for a
typical DSL with three different semantics for the language of which one is
a compiling semantics. Furthermore, we show that by utilising quasiquotation
(see Section 5), there is hardly any burden on the syntax. Finally, the paper also
serves as a gentle introduction to Template Haskell.

2 Tagless-final embedding

Tagless-final embedding is an upgrade to standard shallow embedding achieved
by lifting all language construct functions to typeclasses. As a result, views on
the DSL are data types implementing these classes.

To illustrate the technique, a simple DSL, the language consisting of literals
and addition, is outlined. This language, implemented in tagless-final style [4] in
Haskell [29] consists initially only of one typeclass containing two functions. lit

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 3

lifts values from the host language to the DSL domain. The class constraint Show
is enforced on the a type variable to make sure that the value can be printed.
Secondly, ⊕ represents the addition of two expressions in the DSL.

class Expr v where
lit :: Show a ⇒ a � v a

(⊕) :: Num a ⇒ v a � v a � v a

infixl 6 ⊕

The implementation of a view on the DSL is achieved by implementing the
typeclasses with the data type representing the view. In the case of our example
DSL, an interpreter accounting for failure may be implemented as an instance
for the Either String type. The standard infix functor application and infix
sequential application are used1.

instance Expr (Either String) where
lit a = Right a

(⊕) l r = (+) <$> l <∗> r

2.1 Adding language constructs

To add an extra language construct, we define a new class housing it. For exam-
ple, to add division we define a new class as follows:

class Div v where
(⊘) :: Fractional a ⇒ v a � v a � v a

infixl 7 ⊘

Division is an operation that fails when the right operand is equal to zero.
To capture this behaviour, the Left constructor from Either is used to represent
errors. The right-hand side of the division operator is evaluated first. If the
right-hand side is zero, the division is not performed and an error is returned
instead:

instance Div (Either String) where
(⊘) l r = r ≫=λlr�case lr of
0 � Left ”Division by zero”
n � (/) <$> l <∗> Right n

2.2 Adding semantics

To add semantics to the DSL, the existing classes are implemented with a novel
data type representing the view on the DSL. First a data type representing
the semantics is defined. In this case, the printer is very simple and defined as
a newtype of a string to store the string representation. Since the language is
typed, the printer data type has type variable which is only used during typing,
it is a phantom type [17]:

1 <$> :: (a � b) � f a � f b; infixl 4 <$>
<∗> :: f (a � b) � f a � f b; infixl 4 <∗>

4 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

newtype Printer a = P { runPrinter :: String }

The class instances for Expr and Div for the pretty printer are straightforward
and as follows:

instance Expr Printer where
lit a = P $ show a

(⊕) l r = P $ ”(” ++ runPrinter l ++ ”+” ++ runPrinter r ++ ”)”
instance Div Printer where

(⊘) l r = P $ ”(” ++ runPrinter l ++ ”/” ++ runPrinter r ++ ”)”

2.3 Functions

Adding functions to the language is achieved by adding a multi-parameter class
to the DSL. The type of the class function allows for the implementation to only
allow first order function by supplying the arguments in a tuple. Furthermore, by
defining the Main type, the DSL forces all functions to be defined at the top level
and with the :- operator the syntax becomes usable. Finally, by defining the
functions as a higher order abstract syntax (HOAS) type safety is achieved [5].
The complete definition looks as follows:

class Function a v where
fun :: ((a � v s) � In (a � v s) (Main (v u))) � Main (v u)

newtype Main a = Main { unmain :: a }

data In a b = a :- b

infix 1 :-

Using the Function type class can be used to define functions with little syn-
tactic overhead2. The following listing shows an expression in the DSL utilising
two user-defined functions:

fun λincrement� (λx �x ⊕ lit 1)

:- fun λdivide� (λ(x, y)�x ⊘ y)

:- Main { unmain = increment (divide (lit 38, lit 5)) }

The interpreter only requires one instance of the Function class that works
for any argument type. In the implementation, the resulting function g is simul-
taneously provided to the definition def. Because the laziness of Haskell’s lazy
let bindings, this results in a fixed point calculation:

instance Function a (Either String) where
fun def = Main $ let g :- m = def g in unmain m

The given Printer type is not sufficient to implement the Function instances,
it must be possible to generate fresh function names. After extending the Printer
type to contain some sort of state to generate fresh function names and a

2 The BlockArguments extension of GHC is used to reduce the number of brackets
that allows lambda’s to be an argument to a function without brackets or explicit
function application using $

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 5

MonadWriter [String]3 to streamline the output, we define an instance for every
arity. To illustrate this, the instance for unary functions is shown, all other arities
are implemented in similar fashion.

instance Function () Printer where . . .
instance Function (Printer a) Printer where . . .

fun def = Main $ freshLabel ≫=λf�
let g :- m = def $
λa0�const ⊥<$> (tell [”f”, show f, ” (”] ≫ a0 ≫ tell [”)”])

in tell [” le t f”, f, ” a0 = ”] ≫ g (const ⊥<$> tell [”a0”])
≫ tell [” in ”] ≫ unmain m

instance Function (Printer a, Printer b) Printer where . . .

2.4 Data types

Adding data types, e.g. a list, to the DSL requires the programmer to write
functions for all the machinery—constructors, deconstructors and constructor
predicate functions—to operate the data type. Lifting the values from the host
language to the DSL is already possible using the lit function. However, this
means that the data type has to have instances for all the class constraints that
lit enforces, something that is not always possible. Furthermore, once lifted, it
is not possible to do anything with values of a user-defined data type. It is not
possible to construct new values from expressions in the DSL, nor to deconstruct
a value into the fields or to test of which constructor the value is. The machinery
for this must thus be added manually, resulting in the following class definitions:

data List a = Nil | Cons {hd :: a, tl :: List a}

class ListDSL v where
−− Constructors
nil :: v (List a)

cons :: v a � v (List a) � v (List a)

−− Deconstructors
unnil :: v (List a) � v b � v b

uncons :: v (List a) � (v a � v (List a) � v b) � v b

−− Predicates
isNil, isCons :: v (List a) � v Bool

Furthermore, instances for all views on the DSL need to be created. We
omit the instance for the printer for brevity because it is very similar to the
interpreter. The instance for the interpreter is as follows:

instance ListDSL (Either String) where
nil = Right Nil

cons l r = Cons <$> l <∗> r

unnil _ f = f

uncons d f = d ≫=λ(Cons l r)�f (Right l) (Right r)

isNil d = d ≫=λv�Right $ case v of Nil � True; Cons _ _ � False

isCons d = d ≫=λv�Right $ case v of Nil � False; Cons _ _ � True

3 freshLabel :: Printer String; tell :: MonadWriter w m ⇒ w � m ()

6 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

Adding these classes and their corresponding instances is tedious and results
in boilerplate code. We therefore resort to metaprogramming, and in particular
Template Haskell [33].

3 Template metaprogramming

In metaprogramming, programs have the ability to treat program or program
fragments as data. There are several techniques to facilitate metaprogramming
and it has been around for many years now [19]. While it has been around for
many years, it is considered complex [32].

Template Haskell is GHC’s de facto metaprogramming system and it is im-
plemented as a compiler extension together with a library [33]. Readers familiar
with Template Haskell can safely skip this section. It adds four main concepts
to the language, namely AST data types (Section 3.1), splicing (Section 3.2),
quasiquotation (Section 3.3) and reification (Section 3.4). With this machinery,
regular Haskell functions can be defined that are called at compile time, inserting
generated code into the AST. These functions are monadic functions operating
in the Q monad. The Q monad facilitating failure, reification and fresh identifier
generation for hygienic macros [16]. Within the Q monad, capturable and non-
capturable identifiers can be generated using the mkName and newName functions
respectively. The Peter Parker principle4 holds for the Q monad because it exe-
cutes at compile time. It is possible to (mis)use Template Haskell to for example
subvert module boundaries, thus accessing constructors that were hidden, and
it may cause side effects during compilation because it is possible to call IO

operations [36].However, to achieve the goal of embedding data types in a DSL
we refrain from using the unsafe features.

3.1 Data types

Firstly, for all of Haskell’s AST elements, data types are available. With these
data types, the entire syntax of a Haskell program can be specified. A selection
of datatypes available in Template Haskell is given below:

data Dec = FunD Name [Clause] | SigD Name Type | ClassD Cxt Name . . .
data Clause = Clause [Pat] Body [Dec]

data Pat = LitP Lit | VarP Name | TupP [Pat] | WildP | . . .
data Body = GuardedB [(Guard, Exp)] | NormalB Exp

data Guard = NormalG Exp | PatG [Stmt]

data Exp = VarE Name | LitE Lit | AppE Exp Exp | LamE [Pat] Exp Exp

. . .
data Lit = CharL Char | StringL String | IntegerL Integer | . . .

When operating in the Q monad, lowercase variants of these AST data types
are available that lift the constructor to the Q monad as as follows:

lamE :: [Q Pat] � Q Exp � Q Exp

lamE ps es = LamE <$> sequence ps <∗> es

4 With great power comes great responsibility.

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 7

3.2 Splicing

Special splicing syntax ($(. . .)) marks functions for compile-time execution.
Other than that they always produce a value of an AST data type, they are
normal functions. Depending on the context of the splice, the result type is ei-
ther a list of declarations, a type, an expression or a pattern. The result of this
function, when successful, is then spliced into the code and treated as regular
code by the compiler. The following listing shows an example of a Template
Haskell function generating on-the-fly functions for arbitrary selection of a field
in a tuple. When called as $(tsel 2 4) it expands at compile time to (λ (_, f,

_, _)�f)

tsel :: Int � Int � Q Exp

tsel field total = do
f � newName ”f”
lamE [tupP [i f i == total then varP f else wildP | i�[0..t-1]]]

(varE f)

3.3 Quasiquotation

Another feature of Template Haskell is the dual of splicing: Quasiquotation [3].
While it is possible to construct entire programs using the provided data types,
it is a little cumbersome. Using oxford-style brackets and single or double apos-
trophes, verbatim Haskell code is converted automatically to the corresponding
AST nodes easing the creation of language constructs. Depending on the con-
text, different quasiquotes are used: – J . . . K or Je . . . K for expressions – Jd . . . K
for declarations – Jp . . . K for patterns – Jt . . . K for types – ' . . . for function
names – '' . . . for type names It is possible to escape the quasiquotes again
by splicing. Variables defined within quasiquotes are always fresh—as if defined
with newName—but it is possible to capture identifiers using mkName. For exam-
ple, Jλ x�xK translates to do { x � newName ”x”; lamE [varP x] (varE x)} and
does not interfere with other x’s already defined.

3.4 Reification

The final added construct is reification, querying the compiler for information
about a certain name. For example, reifying a type name results in information
about the type and the corresponding AST nodes of the type’s definition. This
information can then be used to generate code according to the structure of data
types. Reification is done using the reify :: Name � Q Info function.

4 Metaprogramming for generating DSL functions

Metaprogramming can relieve us from writing the boilerplate code by generating
it automatically at compile time. The genDSL function generates all required
boilerplate for the provided name of the type. All type names that are passed

8 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

as arguments to this function are made available for the DSL. For example, for
the list type, this results in the following definition and Template Haskell call.

data List a = Nil | Cons { hd :: a, tl :: List a }

$(genDSL ''List)

The genDSL function is defined in a different module and has type: Name �
Q Decs, i.e. given a name, it produces a list of declarations in the Q monad. The
genDSL function first reifies the name to retrieve the structural information. If the
name matches a type constructor containing a data type declaration, the struc-
ture of the type—the type variables, the type name and information about the
constructors—is passed to the genDSL' function. The structure sometimes needs
some occasional scrubbing first using genConsName. Unsupported constructors
such as generalised ADT constructors or constructors with universally quanti-
fied type variables are rejected. From this structure of the type, genDSL' generates
a list of declarations containing a class definition (Section 4.1), instances for the
interpreter (Section 4.2), and instances of the printer (Section 4.3) respectively.

genDSL :: Name � Q [Dec]

genDSL name = reify name ≫=λinfo�case info of
TyConI (DataD cxt typeName tvs mkind constructors derives)

� mapM getConsName constructors ≫= genDSL' tvs typeName

where
−−Invent names for non record types
getConsName :: Con � Q (Name, [(Name, Bang, Type)])

getConsName (NormalC consName fs) = pure (consName,

[(adtFieldName consName i, b, t) | (i, (b, t))�[0..] `zip` fs])

getConsName (RecC consName fs) = pure (consName, fs)

getConsName c = fail $ ”genDSL does not support : ” ++ show c

t � fail $ ”genDSL does not support : ” ++ show t

genDSL' :: [TyVarBndr] � Name � [(Name, [(Name, Bang, Type)])] � Q [

Dec]

genDSL' typeVars typeName constructors

= sequence [mkClass, mkInterpreter, mkPrinter]

where
(consNames, fields) = unzip constructors

. . .

−− Helper function te generate a field name from a constructor name and an index
adtFieldName :: Name � Integer � Name

4.1 Classes

The class definition is the same for all types and the function to generate it are
defined in thewhere clause of the genDSL' function. Using the classD constructor,
a typeclass is created with a single type variable v. The classD function takes four
arguments: 1. context, which is empty in this case 2. a name, generated from the
type name using the className function that simply appends the text DSL 3. a list

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 9

of type variables, in this case the only type variable is the view on the DSL, i.e. v.
4. functional dependencies, empty in our case 5. a list of function declarations, the
class members. The list of members is a concatenation of the list of constructors,
deconstructors, field selectors and constructor predicate functions . Depending on
the information needed, either zipWith or map is used to apply the generation
function to all constructors.

mkClass :: Q Dec

mkClass = classD (cxt []) (className typeName) [PlainTV (mkName ”v”)] []

(zipWith mkConstructor consNames fields

++ zipWith mkDeconstructor consNames fields

++ map mkPredicate consNames

)

In all class members, the view v plays a crucial role. Therefore, a definition for
v is accessible for all generation functions. Furthermore, the res type represents
the result type, it is defined as the type including all type variables. This result
type is derived from the type name and the list of type variables. In case of the
List type, res is defined as v (List a) and is available for as well:

v = varT $ mkName ”v”
res = v `appT` foldl appT (conT typeName) (map getName typeVars)

where getName (PlainTV name) = varT name

getName (KindedTV name _) = varT name

Constructors The constructor definitions are generated from just the con-
structor names and the field information. All class members are defined us-
ing the sigD constructor that represents a function signature. The first argu-
ment is the name of the constructor function, a lowercase variant of the ac-
tual constructor name generated using the constructorName function. The sec-
ond argument is the type of the function. A constructor Ck of type T where
T tv0 . . . tvn = . . . | Ck a0 . . . am | . . . is defined as a DSL function ck :: v a0 �
. . . � v am � v (T v0 . . . vn). In the implementation, first the view v is applied
to all the field types. Then, the constructor type is constructed by folding over
the lifted field types with the result type as the initial value using mkCFun.

mkConstructor :: Name � [(Var, Bang, Type)] � DecQ

mkConstructor n fs = sigD (constructorName n) $ mkCFun fs res

mkCFun :: [(Var, Bang, Type)] � Q Type � Q Type

mkCFun fs res = foldr (λx y� Jt $x � $yK) res

$ map (appT v . pure . thd3) fs

Deconstructors The deconstructor is generated similarly to the constructor
as the function for generating the constructor is the second argument modulo a
result type change. A deconstructor Ck of type T is defined as a DSL function
ck :: v (T v0 . . . vn) � (v a0 � . . . � v am � v b) � v b. In the implementation,
mkCFun is reused to construct the type of the deconstructor as follows:

10 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

mkDeconstructor :: Name � [(Var, Bang, Type)] � Q Dec

mkDeconstructor n fs = sigD (deconstructorName n)

Jt $res � $(mkCFun fs Jt $v $bK) � $v $bK
where b = varT $ mkName ”b”

Constructor predicates The last part of the class definition are the con-
structor predicates. A function that checks whether the provide value of type T
contains a value with constructor Ck. A constructor predicate for constructor Ck

of type T is defined as a DSL function v (T v0 . . . vn) � v Bool . A constructor
predicate—name prefixed by is—is generated for all constructors but they all
have the same type:

mkPredicate :: Name � Q Dec

mkPredicate n = sigD (predicateName n) Jt $res � $v BoolK

4.2 Interpreter

Generating the interpreter for the DSL means generating the class instance for
the Interpreter data type using the instanceD function. The first argument of the
instance is the context, this is left empty. The second argument of the instance
is the type, the Interpreter data type applied to the class name. Finally, the
class function instances are generated using the information derived from the
structure of the type. The structure for generating the function instances is very
similar to the definitions, other than that for the constructor predicates, the field
information is required as well as the names.

mkInterpreter :: Q Dec

mkInterpreter = instanceD (cxt []) Jt $(conT $ className typeName)

InterpreterK
$ zipWith mkConstructor consNames fields

++ zipWith mkDeconstructor consNames fields

++ zipWith mkPredicate consNames fields

where λldots

Constructors The interpreter is a view on the DSL that immediately executes
all operations in the Either String monad. Therefore, the constructor function
is implemented by lifting the actual constructor to the monad using sequen-
tial application. I.e. ck a0 . . . a1 = pure Ck <∗> a0 <∗> . . . <∗> a To avoid
accidental shadowing, fresh names for all the arguments are generated.

mkConstructor :: Name � [(Var, Bang, Type)] � Q Dec

mkConstructor consName fs = do
fresh � sequence [newName ”a” | _�fs]

fun (constructorName consName) (map varP fresh)

$ foldl (ifx ”<∗>”) Jpure $(conE consName)K (map varE fresh)

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 11

Deconstructors

mkDeconstructor :: Name � [(Var, Bang, Type)] � Q Dec

mkDeconstructor consName [] = fun (deconstructorName consName) [] Jconst
idK

mkDeconstructor consName fs = do
d � newName ”d”
f � newName ”f”
fresh � mapM (newName . nameBase . fst3) fs

fun (deconstructorName consName) [varP d, varP f]

J$(varE d) ≫=λ($(pure $ ConP consName (map VarP fresh)))� $(
fapp f fresh)K

where fapp f = foldl appE (varE f) . map (λf� Jpure $(varE f)K)

Constructor predicates Constructor predicates evaluate the argument and
make a case distinction on the result to determine the constructor. To be able
to generate a valid pattern in the case distinction, the total number of fields
must be known. To avoid having to explicitly generate a fresh name for the first
argument, a lambda function is used. In general, the constructor selector for Ck

results in the following code

isCk f = f ≫=λx�case x of
Ck _ . . . ai . . . _ � pure True

_ � pure False

mkPredicate :: Name � [(Var, Bang, Type)] � Q Dec

mkPredicate n fs = fun (predicateName n) []

Jλx�x ≫=λp�case p of
$(conP n [wildP | _�fs]) � pure True

_ � pure False

K

4.3 Pretty printer

. . .

5 Pattern matching

It is possible to construct and deconstruct values from other DSL expressions,
and to perform tests on the constructor but with a clunky and unwieldy syntax.
They have have become first-class citizens in a grotesque way. For example,
writing a list-based factorial function in our DSL would be done as follows:

−− List.hs
data List a = Nil | Cons { hd :: a, tl :: List a }

$(genDSL ''List)

12 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

−− Main.hs
factorial

= fun λfromto�(

λ(a, b)� if ' (a >. b) nil (cons a (a ⊕ lit 1, b))

:- fun λfacl�(

λl� if ' (isNil l) (lit 1) (unCons λhd tl�hd *. facl tl)

:- fun λfac�(

λn�facl (fromto (lit 1, n))

:- Main{unmain=fac (lit 10)}

A similar Haskell implementation is much more consice and less cluttered be-
cause of the support for pattern matching. Pattern matching offers a convenient
syntax for doing deconstruction and constructor tests at the same time.

−− List.hs
data List a = Nil | Cons { hd :: a, tl :: List a }

−− Main.hs
fromto :: Int � Int � [Int]

fromto fro to

| fro > to = []

| otherwise = fro : fromto (fro+1) to

factorial :: Int � Int

factorial n = facl (1 `fromto` n)

where
facl :: List Int � Int

facl Nil = 1

facl (Cons x xs) = x * facl xs

5.1 Custom quasiquoters

The syntax burden of DSLs can be reduced using quasiquotation. In Template
Haskell, quasiquotation is a convenient way to create Haskell language constructs
by entering them verbatim using oxford brackets. However, it is also possible
to create so-called custom quasiquoters [23]. If the programmer writes down
a fragment of code between tagged oxford brackets, the compiler executes the
associated quasiquoter functions at compile time. A quasiquoter is a value of the
following data type:

data QuasiQuoter = QuasiQuoter

{ quoteExp :: String � Q Exp, quotePat :: String � Q Pat

, quoteType :: String � Q Type, quoteDec :: String � Q Dec

}

Listing 1.1. The data type for the quasiquoter, containing parsers for all contexts

I.e. code between dsl brackets (Jdsl . . . K) is preprocessed by the dsl quasiquo-
ter. Because the functions are executed at compile time, errors—thrown using
the MonadFail instance of the Q monad—in these functions result in compile

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 13

time errors. The code produced by the quasiquoter is inserted into the location
and (type)checked as if it was written by the programmer.

To illustrate writing a custom quasiquoter, we show the implementation of
a quasiquoter for adding binary literals to Haskell. The bin quasiquoter is only
defined for expressions and parses subsequent zeros and ones as a binary number
and splices it back in the code as a regular integer. Thus, Jbin101010K results in
the literal integer expression 42. If an invalid character is used, a compile time
error is shown. The quasiquoter is defined as follows:

bin :: QuasiQuoter

bin = QuasiQuoter { quoteExp = parseBin }

where parseBin :: String � Q Exp

parseBin s = LitE . IntegerL <$> foldM bindigit 0 s

where bindigit :: Integer � Char � Q Integer

bindigit acc '0' = pure $ 2*acc

bindigit acc '1' = pure $ 2*acc + 1

bindigit acc c = fail $ ”invalid char : ” ++ show c

5.2 Quasiquotation for pattern matching

Custom quasiquoters allow the DSL user to enter fragments verbatim, bypass-
ing the syntax of the host language. Pattern matching in general is not suitable
for a custom quasiquoter because it does not really fit in one of the four syn-
tactic categories for which custom quasiquoter support is available. However, a
concrete use of pattern matching interesting enough to be benificial but simple
enough for a demonstration is the simple case expression. Simple case expres-
sions are expressions that match a single variable. As they are not nested and
cover all constructors, they are suitable for immediate conversion to existing
DSL primitives [28, Chp. 4.4].

In contrast to the binary literal quasiquoter example, we do not parse the
String by hand. The parser combinator library parsec is used instead to ease the
creation of the parser [18]. First the location of the quasiquoted code is retrieved
using the location function that operates in the Q monad. This location is
inserted in the parsec parser so that errors are localised in the source code. Then,
the expr parser is called that returns an Exp in the Q monad. The expr parser
uses parsec’s commodity expression parser primitive buildExpressionParser. The
resulting parser translates the string directly into Template Haskell’s AST data
types in the Q monad. The most interesting parser is the parser for a case
expression that is an alternative in the basic expression parser basic. A case
expression is parsed when a keyword case is followed by an expression that is
in turn followed by a list of matches. A match is parsed when a pattern (pat)
is followed by an arrow and an expression. The results of this parser are fed
into the mkCase function that transforms the case into an expression using DSL
primitives such as conditionals, deconstructors and constructor predicates. The
above translates to the following skeleton implementation:

expr :: Parser (Q Exp)

14 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

expr = buildExpressionParser [. . .] basic

where basic :: Parser (Q Exp)

basic

= . . .
<|> mkCase <$ reserved ”case” <∗> expr

<∗ reserved ”of” <∗> many1 match

<|> . . .

match :: Parser (Q Pat, Q Exp)

match = (,) <$> pat <∗ reserved ”�” <∗> expr

The mkCase function transforms a case expression into let bindings, construc-
tors, deconstructors and constructor predicates. For every pattern except for the
wildcard, either a constructor predicate, a literal comparison or a let binding is
introduced.

For every case, the generated AST node checks whether the structure of
the pattern matches the structure of the value using constructor predicates or
comparisons. If the structure matches, let bindings and deconstructors are used
to bind all variables to the correct fields. Finally, the expression on the right of
the arrow is copied verbatim.

mkCase :: ExpQ � [(PatQ, ExpQ)] � ExpQ

mkCase . . .

6 Discussion

Functional programming languages are especially suitable for embedding DSLs
but adding user-defined data types is still an issue. The tagless final style of
embedding offers great modularity, extensibility and flexibility. However, user-
defined data types are awkward to handle because the built-in operations on
them—construction, deconstruction and constructor tests—are not inherited
from the host language. We showed that by calling a Template Haskell func-
tion with the data type as the argument, the required definitions and views on
the novel DSL functions can be generated. Furthermore, by writing a custom
quasiquoter, pattern matches in natural syntax are automatically converted to
the internal representation of the DSL, thus removing the syntax burden. The
use of a custom quasiquoter does require the DSL programmer to write a parser
for their DSL, i.e. the parser is not inherited from the host language as is of-
ten the case in an embedded DSL. However, by making use of modern parser
combinator libraries, this overhead is limited and errors are already caught at
compilation.

6.1 Future work

For future work, it would be interesting to see how generating boilerplate for
user-defined data types translates from shallow embedding to deep embedding.

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 15

In deep embedding, the language constructs are expressed as data types in the
host language. Adding new constructs, e.g. constructors, deconstructors and con-
structor tests, for the user-defined data type therefore requires extending the
data type. Techniques such as data types à la Carte [35] and open data types [22]
show that it is possible to extend data types orthogonally but whether metapro-
gramming can still readily be used is something that needs to be researched.

Another venue of research is to try to find the limits of this technique in
regards to richer data type definitions. It would be interesting to see whether
it is possible to apply the technique on data types with existentially quantified
type variables or full-fledged generalised ADTs [13]. It is not possible to straight-
forwardly lift the deconstructors to typeclasses because existentially quantified
type variables will escape. Rank-2 polymorphism offers tools to define the types
in such a way that this is not the case anymore. However, implementing compil-
ing views on the DSL is complicated because it would require inventing values
of an existentially quantified type variable to satisfy the type system which is
difficult.

6.2 Related work

Generic or polytypic programming is a promising technique at first glance for
automating the generation of function implementations [21]. However, while it
is possible to define a function that works on all first-order types, adding a new
function with a new name to the language is not possible.

Much research is going into optimising EDSL techniques but embedding data
types and pattern matching is mostly uncharted territory. Atkey et al. first
describe embedding pattern matching in a DSL by giving patterns an explicit
representation in the DSL by using pairs, sums and injections [2, Section 3.3].
McDonell et al. extend on this idea and use it in deep embedding, again by
purely within the concrete syntax of the host language [24] Their approaches
differ from this work in the sense that all its functionality is expressed in terms
of the concrete syntax of the host language, resulting in an overhead. While it
does not require an extra metaprogramming step, the syntax is clunky and it
is only possible to match on data types using the structure of the type and not
the name of the fields. Furthermore, Young et al. added pattern matching to a
deeply embedded DSL using a compiler plugin [39]. This plugin implements a
externalise :: a � E a function that allows lifting all machinery required for
pattern matching automatically from the host language to the DSL. Under the
hood, this function translates the pattern match to constructors, deconstructors,
constructor predicates. The main difference with this work is that it requires a
compiler plugin while our metaprogramming approach works on any compiler
supporting a metaprogramming system similar to Template Haskell.

6.3 Related work on Template Haskell

Metaprogramming in general is a very broad research topic and has been around
for years already. We therefore do not claim an exhaustive related work on all

16 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

aspects of metaprogramming but have tried to present all research on metapro-
gramming in Template Haskell. Czarnecki et al. provide a more detailed compari-
son of different metaprogramming techniques. They compare staged interpreters,
metaprogramming and templating by comparing MetaOCaml, Template Haskell
and C++ templates [7]. Template Haskell has been used to implement related
work. They all differ slightly in functionality from our domain and can be divided
into several categories.

Generating extra code Using Template Haskell or other metaprogramming
systems it is possible to add extra code to you program. The original Tem-
plate Haskell paper showed that it is possible to create variadic functions such
as printf using Template Haskell that would be almost impossible to define
without [33]. Hammond et al. used Template Haskell to generate parallel pro-
gramming skeletons [12]. In practise, this means that the programmer selects
a skeleton and, at compile time, the code is massaged to suit the pattern and
information about the environment is inlined for optimisation.

Polak et al. implemented automatic GUI generation using Template Has-
kell [30]. Dureg̊ard et al. wrote a parser generator using template haskell and
the custom quasiquoting facilities [8]. From a specification of the grammar, given
in verbatim using a custom quasiquoter, a parser is generated at compile time.
Shioda et al. used metaprogramming in the D programming language to create
a DSL toolkit [34]. They also programmatically generate parsers and a backend
for either compiling or interpretering the IR.

Optimisation Besides generating code, it is also possible to analyse existing
code and perform optimisations. Yet, this is dangerous territory because un-
wantedly the semantics of the optimised program may be slightly different than
the original program. For example, Lynagh implemented various optimisations
in Template Haskell such as automatic loop unrolling [20]. The compile time
executed functions analyse the recursive function and unroll the recursion to a
fixed depth to trade execution speed for program space. Also, O’Donnoll em-
bedded Hydra, a hardware description language, in Haskell utilising Template
Haskell [27]. Using intensional analysis of the AST, it detects cycles by labelling
nodes automatically so that it can generate netlists. Alternatively this could be
done using a monad but this hampers equational reasoning greatly, which is a
key property of Hydra. Finally, Viera et al. present an a way of embedding at-
tribute grammars in Haskell in a staged fashion [38]. Checking several aspects of
the grammar is done at compile time using Template Haskell while other safety
checks are performed at runtime.

Compiler extension Sometimes, expressing certain functionalities in the host
languages requires a lot of boilerplate, syntax wrestling or other pains. Metapro-
gramming can relief some of this stress by performing this translation to core
constructs automatically. For example, implementing generic—or polytypic—

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 17

functions in the compiler is a major effort. Norell et al. used Template Haskell to
implement the generic machinery required to implement generic functions com-
piletime [26]. Adams et al. explores also implement generic programming using
Template Haskell to speed things up considerably compared to regular generic
programming [1]. Clifton et al. used Template Haskell with a custom quasiquo-
ter to offer skeletons for workflows and embed foreign function interfaces in a
DSL [6]. Eisenberg et al. showed that it is possible to programmatically lift some
functions from the function domain to the type domain, i.e. type families[9]. Fur-
thermore, Seefried et al. argued that it is difficult to do some optimisations in
EDSLs and that metaprogramming can be of use there [31]. They use Template
Haskell to change all types to unboxed types, unroll loops to a certain depth and
replace some expressions by equivalent more efficient ones. Torrano et al. showed
that it is possible to use Template Haskell to perform a strictness analysis and
perform let to case translation [37]. Both applications are examples of compiler
extensions that can be implemented using Template Haskell. Another example
of such a compiler extension is shown by Gill et al. [11]. They created a meta
level DSL to describe rewrite rules on Haskell syntax that are applied on the
source code at compile time.

Quasiquotation By means of quasiquotation, the host language syntax that
usually seeps through the embedding can be hidden. The original Template
Haskell quasiquotation paper [23] shows how this can be done for regular ex-
pressions, not only resulting in a nicer syntax but syntax errors are also lifted
to compile time instead of run time. Also, Kariotis et al. used Template Haskell
to automatically construct monad stacks without having to result to the monad
transformers library which requires advanced type system extensions [14].

Najd use the compiletime to be able to do normalisation for a DSL, dubbing
is QDSLs [25]. They utilise the quasiquation facilities of Template Haskell to
convert Haskell DSL code to constructs in the DSL,p applying optimisations
such as eliminating lambda abstractios and function applications along the way.

Acknowledgements

This research is partly funded by the Royal Netherlands Navy. Furthermore, we
would like to thank the anonymous reviewers for their invaluable comments.

References

1. Adams, M.D., DuBuisson, T.M.: Template Your Boilerplate: Using Template Has-
kell for Efficient Generic Programming. In: Proceedings of the 2012 Haskell Sym-
posium. pp. 13–24. Haskell ’12, Association for Computing Machinery, New York,
NY, USA (2012). https://doi.org/10.1145/2364506.2364509, event-place: Copen-
hagen, Denmark

18 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

2. Atkey, R., Lindley, S., Yallop, J.: Unembedding Domain-Specific Languages. In:
Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell. pp. 37–48. Has-
kell ’09, Association for Computing Machinery, New York, NY, USA (2009).
https://doi.org/10.1145/1596638.1596644, event-place: Edinburgh, Scotland

3. Bawden, A.: Quasiquotation in Lisp. In: O. Danvy, Ed., University of Aarhus,
Dept. of Computer Science. BRICS Notes Series, vol. NS-99-1, pp. 88–99. BRICS,
Aarhus, Denmark (1999). https://doi.org/10.1.1.22.1290

4. CARETTE, J., KISELYOV, O., SHAN, C.C.: Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Pro-
gramming 19(5), 509–543 (2009). https://doi.org/10.1017/S0956796809007205,
publisher: Cambridge University Press

5. Chlipala, A.: Parametric Higher-Order Abstract Syntax for Mechanized Seman-
tics. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming. pp. 143–156. ICFP ’08, Association for Computing Ma-
chinery, New York, NY, USA (2008). https://doi.org/10.1145/1411204.1411226,
event-place: Victoria, BC, Canada

6. Clifton-Everest, R., McDonell, T.L., Chakravarty, M.M.T., Keller, G.: Embedding
Foreign Code. In: Flatt, M., Guo, H.F. (eds.) Practical Aspects of Declarative
Languages. pp. 136–151. Springer International Publishing, Cham (2014)

7. Czarnecki, K., O’Donnell, J.T., Striegnitz, J., Taha, W.: DSL Implementation in
MetaOCaml, Template Haskell, and C++. In: Lengauer, C., Batory, D., Consel, C.,
Odersky, M. (eds.) Domain-Specific Program Generation: International Seminar,
Dagstuhl Castle, Germany, March 23-28, 2003. Revised Papers, pp. 51–72. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
25935-0 4, https://doi.org/10.1007/978-3-540-25935-0 4

8. Dureg̊ard, J., Jansson, P.: Embedded Parser Generators. In: Proceedings of the 4th
ACM Symposium on Haskell. pp. 107–117. Haskell ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2034675.2034689,
event-place: Tokyo, Japan

9. Eisenberg, R.A., Stolarek, J.: Promoting Functions to Type Families in Haskell.
In: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell. pp. 95–106.
Haskell ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2633357.2633361, event-place: Gothenburg, Sweden

10. Elliott, C., Finne, S., de Moor, O.: Compiling embedded lan-
guages. Journal of Functional Programming 13(3), 455–481 (2003).
https://doi.org/10.1017/S0956796802004574, publisher: Cambridge University
Press

11. Gill, A.: A Haskell Hosted DSL for Writing Transformation Systems. In: Taha,
W.M. (ed.) Domain-Specific Languages. pp. 285–309. Springer Berlin Heidelberg,
Cham (2009)

12. Hammond, K., Berthold, J., Loogen, R.: AUTOMATIC SKELE-
TONS IN TEMPLATE HASKELL. Parallel Processing Letters 13(03),
413–424 (2003). https://doi.org/10.1142/S0129626403001380, eprint:
https://doi.org/10.1142/S0129626403001380

13. Hinze, R.: Fun With Phantom Types. In: Gibbons, J., de Moor, O. (eds.) The Fun
of Programming, pp. 245–262. Cornerstones of Computing, Bloomsbury Publish-
ing, Palgrave (2003)

14. Kariotis, P.S., Procter, A.M., Harrison, W.L.: Making Monads First-Class with
Template Haskell. In: Proceedings of the First ACM SIGPLAN Symposium on
Haskell. pp. 99–110. Haskell ’08, Association for Computing Machinery, New York,

First-class Data Types in Shallow Embedded DSLs using Metaprogramming 19

NY, USA (2008). https://doi.org/10.1145/1411286.1411300, event-place: Victoria,
BC, Canada

15. Kiselyov, O.: Typed Tagless Final Interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming: International Spring School, SSGIP 2010, Oxford, UK,
March 22-26, 2010, Revised Lectures, pp. 130–174. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32202-0 3

16. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic Macro Ex-
pansion. In: Proceedings of the 1986 ACM Conference on LISP and Functional
Programming. pp. 151–161. LFP ’86, Association for Computing Machinery, New
York, NY, USA (1986). https://doi.org/10.1145/319838.319859, event-place: Cam-
bridge, Massachusetts, USA

17. Leijen, D., Meijer, E.: Domain Specific Embedded Compilers. In: Proceed-
ings of the 2nd Conference on Domain-Specific Languages. pp. 109–122. DSL
’99, Association for Computing Machinery, New York, NY, USA (2000).
https://doi.org/10.1145/331960.331977, event-place: Austin, Texas, USA

18. Leijen, D., Meijer, E.: Parsec: Direct Style Monadic Parser Combinators For The
Real World. Tech. Rep. UU-CS-2001-27, Universiteit Utrecht, Utrecht (2001)

19. Lilis, Y., Savidis, A.: A Survey of Metaprogramming Languages. ACM Comput.
Surv. 52(6) (Oct 2019). https://doi.org/10.1145/3354584, place: New York, NY,
USA Publisher: Association for Computing Machinery

20. Lynagh, I.: Unrolling and Simplifying Expressions with Template Haskell (May
2003), http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/

21. Lämmel, R., Jones, S.P.: Scrap Your Boilerplate: A Practical Design Pattern
for Generic Programming. In: Proceedings of the 2003 ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation. pp. 26–37.
TLDI ’03, Association for Computing Machinery, New York, NY, USA (2003).
https://doi.org/10.1145/604174.604179, event-place: New Orleans, Louisiana, USA

22. Löh, A., Hinze, R.: Open Data Types and Open Functions. In: Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming. pp. 133–144. PPDP ’06, Association for Computing
Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1140335.1140352,
event-place: Venice, Italy

23. Mainland, G.: Why It’s Nice to Be Quoted: Quasiquoting for Haskell. In: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell Workshop. pp. 73–82.
Haskell ’07, Association for Computing Machinery, New York, NY, USA (2007).
https://doi.org/10.1145/1291201.1291211, event-place: Freiburg, Germany

24. McDonell, T.L., Meredith, J.D., Keller, G.: Embedded Pattern Matching (2021),
eprint: 2108.13114

25. Najd, S., Lindley, S., Svenningsson, J., Wadler, P.: Everything Old is New Again:
Quoted Domain-Specific Languages. In: Proceedings of the 2016 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation. pp. 25–36.
PEPM ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2847538.2847541, event-place: St. Petersburg, FL, USA

26. Norell, U., Jansson, P.: Prototyping Generic Programming in Template Haskell.
In: Kozen, D. (ed.) Mathematics of Program Construction. pp. 314–333. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004)

27. O’Donnell, J.T.: Embedding a Hardware Description Language in Template Has-
kell. In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific
Program Generation: International Seminar, Dagstuhl Castle, Germany, March
23-28, 2003. Revised Papers, pp. 143–164. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-25935-0 9

20 Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer

28. Peyton Jones, S.: The Implementation of Functional Programming
Languages. Prentice Hall (Jan 1987), https://www.microsoft.com/en-
us/research/publication/the-implementation-of-functional-programming-
languages/

29. Peyton Jones, S.: Haskell 98 language and libraries: the revised report. Cambridge
University Press (2003)

30. Polak, G., Jarosz, J.: Automatic Graphical User Interface Form Generation Using
Template Haskell (2006)

31. Seefried, S., Chakravarty, M., Keller, G.: Optimising Embedded DSLs Using Tem-
plate Haskell. In: Karsai, G., Visser, E. (eds.) Generative Programming and Com-
ponent Engineering. pp. 186–205. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

32. Sheard, T.: Accomplishments and Research Challenges in Meta-programming. In:
Taha, W. (ed.) Semantics, Applications, and Implementation of Program Genera-
tion. pp. 2–44. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

33. Sheard, T., Jones, S.P.: Template Meta-Programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 1–16. Has-
kell ’02, Association for Computing Machinery, New York, NY, USA (2002).
https://doi.org/10.1145/581690.581691, event-place: Pittsburgh, Pennsylvania

34. Shioda, M., Iwasaki, H., Sato, S.: LibDSL: A Library for Developing Embedded
Domain Specific Languages in d via Template Metaprogramming. In: Proceed-
ings of the 2014 International Conference on Generative Programming: Concepts
and Experiences. pp. 63–72. GPCE 2014, Association for Computing Machin-
ery, New York, NY, USA (2014). https://doi.org/10.1145/2658761.2658770, event-
place: Väster̊as, Sweden

35. Swierstra, W.: Data types à la carte. Journal of functional programming 18(4),
423–436 (2008)

36. Terei, D., Marlow, S., Peyton Jones, S., Mazières, D.: Safe Haskell.
In: Proceedings of the 2012 Haskell Symposium. pp. 137–148. Haskell
’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2364506.2364524, event-place: Copenhagen, Denmark

37. Torrano, C., Segura, C.: Strictness Analysis and let-to-case Transformation using
Template Haskell (2008)

38. Viera, M., Balestrieri, F., Pardo, A.: A Staged Embedding of Attribute Grammars
in Haskell. In: Proceedings of the 30th Symposium on Implementation and Appli-
cation of Functional Languages. pp. 95–106. IFL 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3310232.3310235,
event-place: Lowell, MA, USA

39. Young, D., Grebe, M., Gill, A.: On Adding Pattern Matching to Haskell-Based
Deeply Embedded Domain Specific Languages. In: Morales, J.F., Orchard, D.
(eds.) Practical Aspects of Declarative Languages. pp. 20–36. Springer Interna-
tional Publishing, Cham (2021)

Creating Interactive Visualizations of TopHat
Programs

Mark Gerarts1, Marc de Hoog1, Nico Naus2, and Tim Steenvoorden1

1 Open University, Heerlen, The Netherlands mark.gerarts@gmail.com,
mladehoog@gmail.com, tim.steenvoorden@ou.nl

2 Virginia Tech, Blacksburg VA, United States niconaus@vt.edu

Abstract. Many companies and institutions have automated their busi-
ness process in workflow management software. The novel programming
paradigm Task-Oriented Programming (TOP) provides an abstraction
for such software. The largest framework based on TOP, iTasks, has
been used to develop real-world software.
Workflow software often includes critical systems. In such cases it is im-
portant to reason over the software to ascertain its correctness. The lack
of a formal iTasks semantics makes it unsuitable for formal reasoning.
To this end TopHat has been developed as a TOP language with a for-
mal semantics. However, TopHat lacks a graphical user interface(GUI),
making it harder to develop practical TopHat systems.
In this paper we lay the foundation for TopHat to support GUIs. By
combining an existing server framework and user interface framework,
we have developed a fully functioning proof of concept implementation
in Haskell, on top of TopHat’s semantics. We show that implementing a
TOP framework is possible using a different host language than iTasks
uses. None of TopHat’s formal properties have been compromised, since
the UI framework is completely separate from TopHat. We run several
example programs and evaluate their generated GUI. The results of this
paper show that one can have a TOP system with a formal semantics
and a user interface. Having such a system improves the quality and
verifiability of TOP software in general.

Keywords: Task Oriented Programming · User Interface · Functional
Programming

1 Introduction

Workflow software is present in most businesses and institutions nowadays. From
health care and first responders, to commerce and industrial processes. Busi-
nesses use workflow software to streamline their processes, increase efficiency
and reduce costs. In these sectors, reliability of software is crucial.

Previous research into workflow software in the functional programming com-
munity aimed to improve reliability, while at the same time reducing the effort
of development. This led to the development of Task-Oriented Programming
(TOP), a programming paradigm that aims to facilitate working with multiple

2 Gerarts and de Hoog, et al.

people towards a shared goal over the internet. TOP separates the what from the
how. This separation allows programmers to focus on the work that has to be
done (what) instead of paying attention to design issues, implementation details,
operating system limitations, and environment requirements (how) [1, 20].

iTasks [1], implemented in the functional programming language Clean [7],
is the main TOP framework that has been around for a long time. iTasks has
been used to create real-world applications, such as an incident coordination tool
for the Dutch coast guard [14]. While this proves its practical usability, iTasks
lacks in formalization. The iTasks’ semantics are given by its implementation,
making it much harder to formally reason about iTasks programs. Previous at-
tempts to mitigate this issue by some of iTasks’ creators involved developing
a separate iTasks semantics, which allowed them to perform model-based test-
ing, but no formal verification [13]. Formal program verification is necessary to
ensure the correctness of critical software, like the incident coordination tool.
TopHat is a Domain-Specific Language (DSL) that paves the way to formally
reason about task-oriented programs [26], by defining a formal TOP semantics.
These semantics have been implemented in Haskell and Idris 3. Idris is a pro-
gramming language that features dependent types and a totality checker, which
is used to prove properties of TopHat programs. Even though TopHat has an
implementation in Haskell, it lacks an interactive user interface.

Motivation

In this paper, we develop such an interactive UI for TopHat as a goal in and of it-
self, what challenges arise here? But it also answers several fundamental research
questions. Before the development of TopHat, it was the case that iTasks, TOP
and Clean were tied together very strongly. Previous research even suggests that
certain specific Clean features are essential to the implementation of TOP[20]:
uniqueness typing, data generic programming, dynamics [30] and a sophisticated
backend using interpreted ABC bytecode on clients [18], to name a few. We aim
to determine if it is possible to implement a true TOP framework in a different
host language, Haskell. TopHat is geared towards formal reasoning, which begs
the question, does the addition of a UI to TopHat jeopardize the formal rea-
soning properties? In other words: is a formal TOP framework that is useful in
practice possible? Can we have the best of both worlds?

Besides these research questions and challenges, we expect this work to bring
TOP to a bigger audience. The current Clean user base is quite small. Haskell
is being used in production code, has a huge number of packages available on-
line and an active online community. Task-oriented programming could benefit
from being ported to Haskell, making it available to a large community of both
developers and researchers. Developing an interactive UI for TopHat brings this
one step closer.

3 https://github.com/timjs/tophat-proofs

Creating Interactive Visualizations of TopHat Programs 3

Motivated by the above, this paper presents a prototype framework written
on top of TopHat’s Haskell implementation that is able to create interactive
graphical user interfaces of TopHat programs.

Structure

The remainder of this paper is structured as follows: we first provide some back-
ground about TOP, including iTasks and TopHat in Section 2. Section 3 in-
troduces our TopHat UI prototype. Section 4 demonstrates the capabilities of
our framework, including formal reasoning, using several example TopHat pro-
grams. We highlight related work in Section 5. Section 6 reflects on the goals
and research questions outlined above. Section 7 concludes.

2 Task-Oriented Programming

This paper builds upon previous TOP research [20, 1, 26]. In this section we de-
scribe the basic idea of TOP and two TOP implementations: iTasks and TopHat.

2.1 Task-Oriented Programming

TOP is centred around the concept of tasks, which specify the work a user or
system has to perform with a high level of abstraction. Tasks can be combined
using combinators, allowing complex programs to be constructed from small
building blocks [20].

A TOP language provides a description of the work that has to be per-
formed. It is left to a TOP framework to implement technical details such as
event handling or creating a User Interface (UI). iTasks [1] is such a framework,
implemented in the functional programming language Clean [7]. An example of
a basic task in iTasks is presented in Listing 1.1. Developers only have to specify
that they want the user to enter some information. Passing this task description
to iTasks generates an application that prompts the user for their name.

1 enterName :: Task String
2 enterName = Hint "What is your name?" @>> enterInformation []

Listing 1.1: A simple task prompting the user for their name (Clean)

The TOP paradigm provides an abstraction over workflow software. Instead
of having to write a server, database, user interfaces, etc, programmers just
define what needs to be done. The complete application is then derived from
this specification. TOP is usually embedded in pure functional programming.
TOP is made up of four core concepts [20]:

Tasks that describe the work that has to be performed, providing an abstraction
that separates the what from the how [1].

Shared data sources that allow the sharing of data between tasks.

4 Gerarts and de Hoog, et al.

Generics to generate user interfaces based on data types.
Composition of tasks through combinators, allowing the creation of arbitrary

large tasks.

Tasks lie at the heart of TOP. A task models the work that has to be done by
the system or a user. Combining small tasks allows creating large and complex
applications using simple building blocks. Tasks can be combined using com-
binators: they can be executed sequentially, in parallel, or conditionally. These
combinators closely resemble how collaboration happens in real life.

TOP aims to facilitate collaborating with multiple people towards a shared
goal, over the internet. Creating complex applications is further facilitated be-
cause tasks are first-class citizens: they can be used as input of functions, they
can be returned from them, and tasks can contain other tasks as value.

Tasks are interactive and input-driven. When a task receives input it is reeval-
uated and results in a new task. A task’s value can be observed at all times. Tasks
can share information with each other, either directly through shared data stores,
or by passing task values to continuations.

TOP itself focuses on the domain logic, with tasks providing merely a descrip-
tion of the work that has to be performed. It is left up to a TOP framework to
do the heavy lifting, such as generating the user interface, storing and handling
data, setting up a web server, and authenticating users.

2.2 iTasks

iTasks [19] is a TOP framework that uses Clean [5] as its host language. It
supplements Clean with a set of combinators, model types, and algorithms that
allow the construction of task-oriented programs.

An example of a basic task was given in Listing 1.1. iTasks will automatically
generate an entire application for this task. It uses generics to deduce that a task
of type String requires a text input field. In Listing 1.2 we combine the task
with a view task using a sequential step combinator. A user has to enter their
name and is greeted by the program after stepping to the next task. Figure 1
shows how these steps would look in iTasks.

1 greet :: Task String
2 greet = enterName >>!
3 \result -> viewInformation [] ("Hello " +++ result)

Listing 1.2: Combining two tasks with a step combinator (Clean)

iTasks is a work in progress, receiving constant updates and improvements.
For example, a recent addition is the usage of a distributed, dynamic infras-
tructure [18]. iTasks has formed the basis of further research as well. Tonic [28]
facilitates the subject for non-technical people by providing graphical blueprints
of iTasks specifications. It also provides a way to monitor the process while end
users are interacting with the application [27]. iTasks acted as the starting point
for research into declarative user interfaces, first for SVG images [2] and later as
a generalized solution [3].

Creating Interactive Visualizations of TopHat Programs 5

Fig. 1: Entering your name (left) and the result after pressing continue (right)

2.3 TopHat

When software is used in critical applications, it is important that its behavior
can be verified and formally reasoned about. iTasks is primarily focused on
practical applicability, and therefore lacks this formalization. Testing an iTasks
application is time consuming and often incomplete because of the many different
execution paths.

TopHat [26] distills TOP’s core features to provide a way to reason about
task-oriented programs. By employing symbolic execution it is possible to for-
mally verify TopHat programs [17]. Symbolic execution has also been used to
provide end-users of tasks with additional feedback [16].

Our work is based on TopHat’s Haskell implementation. Listing 1.3 gives
the TopHat implementation of the example introduced in Section 2.2. Similar to
the iTasks code, this task uses a step combinator to ask a user their name and
subsequently greet them.

1 greet :: Task h String
2 greet = enter >>? \result -> view ("Hello " ++ result)

Listing 1.3: A TopHat task that greets the user (Haskell)

TopHat contains the following set of tasks and combinators:

Editors model user interaction. They are typed containers that are either empty
or hold a value. TopHat contains different kinds of editors:
Update contains a predefined value.
View is an editor with a view-only value.
Enter is an editor that is initially empty. Filling it transforms it into an

Update editor.
Watch displays the value of a shared data store.
Change is an editor that allows to change the value of a shared data store.

Done and Fail are success and failure end tasks.
Pair combines two tasks (parallel-and).
Choose makes a choice between two tasks (parallel-or).
Step sequentially moves from one task to another.
Share creates a shared data store.
Assign assigns a value to a reference in a shared data store.

6 Gerarts and de Hoog, et al.

2.4 Formal reasoning

iTasks defines tasks as a “state transforming function that reacts to an event,
rewrites itself to a reduct and accumulates responses to users” [20]. For combi-
nators, iTasks takes the swiss-army-knife-approach. It defines two combinators
that perform a multitude of actions. From these combinators, more simple ones
can be constructed. For example, the »* combinator performs sequention, al-
lows the user to choose from a list of tasks, allows automatic progressing tasks,
guarded tasks, and stepping on exception. Its definition in the latest version of
iTasks is about 100 lines of Clean code, relying on many custom functions 4.
While iTasks is certainly an impressive engineering accomplishment, it is unfit
for formal reasoning.

TopHat on the other hand defines tasks as a simple datatype, with three base
cases and a small number of simple combinators [26]. The TopHat framework
takes care of handling events, rewriting and task rendering. The formal TopHat
semantics fits on a single page, and is largely straightforward.

To demonstrate the formal reasoning capabilities of TopHat, a symbolic ex-
ecution semantics has been developed [17]. For space reasons, we will refrain
from repeating syntax and semantics here, but will revisit an example, to use
thoughout this paper.

1let today = 25 Sept 2020 in
2let provideDocuments = � Amount ./ � Date in
3let companyConfirm = � True ♦ � False in
4let officerApprove = λ invoiceDate. λ date. λ confirmed.
5� False ♦ if (date − invoiceDate < 365 ∧ confirmed)
6then � True
7else in
8provideDocuments ./ companyConfirm I
9λ 〈〈invoiceAmount, invoiceDate〉 , confirmed〉 .
10officerApprove invoiceDate today confirmed I λ approved.
11let subsidyAmount = if approved
12then min 600 (invoiceAmount / 10) else 0 in
13� 〈subsidyAmount, approved, confirmed, invoiceDate, today〉

Listing 1.4: Subsidy request and approval workflow at the Dutch tax office.

Listing 1.4 provides the code for a small example task, implementing the
process of applying for a tax subsidy. This example was inspired by a collabo-
ration with the Dutch Tax office. The user gets asked to provide documents to
back up his or her tax subsidy request for solar panel installation (line 2). The
installation company has to confirm that they installed them (line 3), this can
be done in parallel (line 8). Finally, a tax officer can either approve or deny the

4 https://gitlab.com/clean-and-itasks/itasks-sdk/-/blob/master/
Libraries/iTasks/WF/Combinators/Core.icl

Creating Interactive Visualizations of TopHat Programs 7

Fig. 2: Architecture. Each box represents a main module.

request (line 4), depending on certain conditions (line 5). After the task has been
completed, the subsidy amount is being calculated (line 12), and the details are
returned in a view (line 13).

For this task, symbolic execution allowed the authors to prove correctness
properties over the code. In Section 4.4 we will take a look at generating a UI
using the framework presented in the coming section.

3 TopHat User Interface Framework

In this section we describe our prototype TOP UI framework, which is a proof-
of-concept and not a fully fledged TOP framework. Our application supports
TopHat tasks as mentioned in Section 2.3. We limit ourselves to a select num-
ber of datatypes: only integers, booleans, and strings are supported. Advanced
framework features such as multi-user support are out of scope as well. We will
reflect on this in Section 6 The framework is published on GitHub5, along with
the examples described below.

Key to our approach is that we leave the task specification of TopHat un-
touched. This preserves the nice formal properties for which TopHat has been
developed in the first place. The prototype UI framework completely relies on
the TopHat semantics for handling input and rewriting tasks. The responsibility
of the UI framework is to render the task in a web browser, and hand off input
that comes in from the user to the TopHat semantics.

The prototype framework is architecturally separated in two parts: the back-
end and the frontend. Figure 2 shows the main modules of each part. The backend
is responsible for initializing tasks and handling communication with TopHat.
The frontend renders tasks and allows the user to interact with them. After a
comparative study of existing web server and UI frameworks [11], we have se-
lected Servant [21] as our webserver and Halogen [6] for the UI. Other options
are discussed in the Section 5. Section 3.1 illustrates the communication between
5 https://github.com/mark-gerarts/ou-afstuderen-artefact

8 Gerarts and de Hoog, et al.

Fig. 3: Communication between frontend and backend. Sequence diagram that
displays requests (solid arrows) and responses (dashed arrows). update value
and reset are user actions. Task and Input are JSON objects.

frontend and backend. Section 3.2 explains the working of the backend and the
frontend is discussed in Section 3.3.

3.1 Communication between backend and frontend

Figure 3 shows the communication between frontend and backend. The frontend
first requests the initial task, which the backend returns using a JSON represen-
tation of this task. A user can now interact with the system. In this example,
the user updates a value. The frontend sends the input as JSON to the backend,
and the backend responds with the updated task. This step can be repeated
as necessary. In this case, the user resets the application, which results in the
backend resetting back to the initial task.

The frontend is written in PureScript and the backend in Haskell. We choose
JSON as data interchange format, because JSON allows custom data structures,
it is easy to use, and both backend and frontend support JSON out-of-the-box.

3.2 Backend

The backend is written in Haskell, using Servant [21] as the web server. It has
three main responsibilities, which is reflected in its module structure, shown in
Figure 2:

Creating Interactive Visualizations of TopHat Programs 9

1. The Application module loads the application, defines the web server and
configures the handlers.

2. The Communication module handles JSON conversion, both encoding tasks
to their JSON representation and decoding user input.

3. The Visualize module is intended for the end user. It exposes functions to
start the framework, which is demonstrated in Listing 1.5.

1 import Task (Task , enter , view , (>>?))
2 import Visualize (visualizeTask)
3
4 main :: IO ()
5 main = visualizeTask greet
6
7 greet :: Task h String
8 greet = enter >>? \result -> view ("Hello " ++ result)

Listing 1.5: Starting the framework (Haskell)

Application module We create an abstract web application (WAI-application)
in the Application module (see the application function in Listing 1.6). We
define the endpoints, the request and the response formats. For example, see
the TaskAPI in Listing 1.6. The server function provides handlers to serve the
initial task, to handle interaction with the frontend and to perform a reset.
The remainder of the module consists of functions that expose functionality
of TopHat: initializing tasks, deconstructing tasks in a representation that can
be sent to the frontend, and interacting with tasks. We have only added key
signatures to Listing 1.6.

1 module Application (application , State (..)) where
2
3 data State h t = State
4 { currentTask :: TVar (Task RealWorld t),
5 initialised :: Bool ,
6 originalTask :: Task RealWorld t
7 }
8
9 type TaskAPI =

10 "initial -task" :> Get ’[JSON] TaskDescription
11 :<|> "interact"
12 :> ReqBody ’[JSON] JsonInput :> Post ’[JSON] TaskDescription
13 :<|> "reset" :> Get ’[JSON] TaskDescription
14
15 type StaticAPI = Get ’[HTML] RawHtml :<|> Raw
16 type API = TaskAPI :<|> StaticAPI
17
18 interactIO :: Input Concrete -> Task RealWorld a -> IO (Task RealWorld a)
19 initialiseIO :: Task RealWorld a -> IO (Task RealWorld a)
20 describeIO :: Task RealWorld a -> IO TaskDescription
21
22 server :: ToJSON t => State h t -> ServerT API (AppM h t)
23
24 application :: ToJSON t => State h t -> Application

Listing 1.6: Application module (Haskell)

10 Gerarts and de Hoog, et al.

Communication module In Listing 1.7 we show the core of the communication
module. We introduce a new datatype, TaskDescription, that holds all data
we need to render a task: the task itself (JsonTask) and its possible inputs
(InputDescription), along with the describe function that extracts this data
from a TopHat task. User input, which is sent back and forth from the client to
the server, is defined in JsonInput.

1 module Communication (JsonTask (..), TaskDescription (..), describe) where
2
3 type JsonTask = Value
4
5 type InputDescriptions = List (Input Abstract)
6
7 data TaskDescription where
8 TaskDescription :: JsonTask -> InputDescriptions -> TaskDescription
9

10 instance ToJSON JsonTask
11
12 describe :: Members ’[Alloc h, Read h] r => Task h t -> Sem r TaskDescription
13
14 data JsonInput where
15 JsonInput :: Input Concrete -> JsonInput
16
17 instance FromJSON JsonInput

Listing 1.7: Communication module (Haskell)

Visualize module In Listing 1.8 we show the signatures of the visualize module.
We use this module to run the web server in production (visualizeTask) or de-
velopment (visualizeTaskDevel) mode. We differentiate between these modes
because we implemented live code reloading for development, which requires a
bit of additional setup. Both visualizeTask and visualizeTaskDevel use the
initApp function. InitApp on its turn invokes the application-function of the
Application Module.

1 module Visualize (visualizeTask , visualizeTaskDevel) where
2
3 initApp :: ToJSON t => Task RealWorld t -> IO Application
4
5 visualizeTaskDevel :: ToJSON t => Task RealWorld t -> IO ()
6
7 visualizeTask :: ToJSON t => Task RealWorld t -> IO ()

Listing 1.8: Visualize module (Haskell)

3.3 Frontend

The frontend renders the UI and provides a way for the user to interact with the
it. The code is written in PureScript using the Halogen framework. The frontend
consists of three main modules and some auxiliary modules. We explain the main
modules:

Creating Interactive Visualizations of TopHat Programs 11

1. The Client module is the communication layer with the backend. It defines
functions which send requests to the backend and handles the responses.

2. The Task module handles JSON encoding and decoding of our domain’s
datatypes (tasks and user input).

3. The TaskLoader module is the starting point of Halogen and is responsible
for rendering the UI.

Client module The client module is responsible for the communication between
frontend and backend. The backend sends a response in JSON that consists of
two parts: a Task and a description of possible inputs. We decode this JSON
object into a TaskResponse. See Listing 1.9.

1 module App.Client (ApiError , TaskResponse (..), getInitialTask , interact ,
reset) where

2
3 data TaskResponse
4 = TaskResponse Task (Array InputDescription)
5
6 instance decodeJsonTaskResponse :: DecodeJson TaskResponse
7
8 getInitialTask :: Aff (Either ApiError TaskResponse)
9

10 interact :: Input -> Aff (Either ApiError TaskResponse)
11
12 reset :: Aff (Either ApiError TaskResponse)

Listing 1.9: Client module (PureScript)

Task module In the Client module we defined a TaskResponse. This TaskResponse
consists of two parts: a Task and an array of InputDescription. In the Task
module we define the decoding process of Task and InputDescription. See
Listing 1.10.

1 module App.Task where
2
3 data Task
4 = Edit Name Editor
5 | Select Name Task Labels
6 | Pair Task Task
7 | Choose Task Task
8 | Step Task
9 | Trans Task

10 | Done
11 | Fail
12
13 instance showTask :: Show Task
14
15 instance decodeJsonTask :: DecodeJson Task
16
17 data Input
18 = Insert Int Value
19 | Decide Int String
20
21 instance showInput :: Show Input
22
23 instance encodeInput :: EncodeJson Input
24

12 Gerarts and de Hoog, et al.

25 data InputDescription
26 = InsertDescription Int String
27 | OptionDescription Int String
28
29 instance showInputDescription :: Show InputDescription
30
31 instance decodeJsonInputDescription :: DecodeJson InputDescription
32

Listing 1.10: Task module (PureScript)

TaskLoader module The TaskLoader module renders the user interface (the
render function in Listing 1.11). The module also contains logic to handle
events (handleAction), for example when a user modifies a value. Finally, the
taskLoader function (see Listing 1.11) initializes the component.

1 module Component.TaskLoader (taskLoader) where
2
3 taskLoader :: forall query input output m. MonadAff m => H.Component query

input output m
4
5 handleAction :: forall output m. MonadAff m => Action -> H.HalogenM State

Action Slots output m Unit
6
7 render :: forall m. MonadAff m => State -> HH.ComponentHTML Action Slots m

Listing 1.11: TaskLoader module (PureScript)

4 Examples

We present a few examples to demonstrate how our framework handles TopHat
programs. We use a simple multiplication-by-seven machine to demonstrate the
Step task and the Edit task (with View, Enter, and Update editors) (Section ??).
The candy vending machine combines the Select and View editor, the Step Task,
and the Pair Task to construct a candy machine (Section 4.1). The calorie cal-
culator demonstrates a real-world application of our framework (Section 4.2).
The chat sessions demonstrates the use of shared data stores (Section 4.3), and
finally Section 4.4 describes UI generation for the tax example from Section 2.4

4.1 Candy vending machine

The candy machine allows a user to choose a chocolate bar and, after the bill is
paid, the candy machine returns the bar. The candy machine combines the Edit,
Pair and Step task. We have defined different Edit tasks with View and Select
editors. The implementation of the initial task is given in Listing 1.12. The Pair
combinator is denoted with the operator ><.

1. After the candy machine is started, the machine displays some introductory
text and a selection of chocolate bars (See Figure 4a). This is done using a

Creating Interactive Visualizations of TopHat Programs 13

Pair Task that consists of two Edit tasks: an Edit task with a View editor
and an Edit Task with a Select editor.

2. Select a chocolate bar. After choosing a bar, the candy machine displays the
price of the bar (see Figure 4b). This is done using another Pair Task that
consists of an Edit task with a View editor (“you need to pay:”) and a Step
Task. The Step task consists of two tasks: first a view editor is shown (with
the price) and after the step, a select editor is rendered (see Figure 4c).

3. Press the continue button.
4. Insert coins until you have paid the bill (see Figure 4c). The application

alternates a view and a select editor.
5. The application shows a view editor to indicate to the user that the bill is

paid (see Figure 4d).

1 data CandyMachineMood = Fair | Evil
2
3 startCandyMachine :: (Task h (Text , (Text , Text)))
4 startCandyMachine = view "We offer you three chocolate
5 bars. Pure Chocolate: It ’s all in the name. IO
6 Chocolate: Chocolate with unpredictable side effects.
7 Sem Chocolate: don ’t try to understand , just eat
8 it!" >< select candyOptions
9

10 candyOptions :: HashMap Label (Task h (Text , Text))
11 candyOptions =
12 [entry "Pure Chocolate" 8,
13 entry "IO Chocolate" 7,
14 entry "Sem Chocolate" 9
15]
16 where
17 entry :: Text -> Int -> (Label , Task h (Text , Text))
18 entry name price =
19 (name , view "You need to pay:" >< (view price >>? payCandy))
20
21 payCandy :: Int -> Task h Text
22 payCandy bill =
23 select (payCoin bill) >>? \billLeft ->
24 case compare billLeft 0 of
25 EQ -> dispenseCandy Fair
26 LT -> dispenseCandy Evil
27 GT -> payCandy billLeft
28
29 payCoin :: Int -> HashMap Label (Task h Int)
30 payCoin bill =
31 [coinSize 5,
32 coinSize 2,
33 coinSize 1
34]
35 where
36 coinSize :: Int -> (Label , Task h Int)
37 coinSize size = (display size , view (bill - size))
38
39 dispenseCandy :: CandyMachineMood -> Task h Text
40 dispenseCandy Fair =
41 view "You have paid. Here is your candy. Enjoy it!"
42 dispenseCandy Evil =
43 view "You have paid too much! Sorry , no change , but here is your candy."

Listing 1.12: Initial Task of the candy vending machine (Haskell)

14 Gerarts and de Hoog, et al.

(a) Step 1: Select a chocolate bar

(b) Step 2: Price of the selected candy is shown to the user

(c) Step 3: Insert a coin

(d) Step 4: You have paid the bill

Fig. 4: Different stages of the candy vending machine

4.2 Calorie calculator

To demonstrate a more real-world application that incorporates most task types,
we created a calorie calculator. This application calculates how many calories a
person should eat per day in order to maintain their weight. The calculation de-
pends on several factors, such as age, weight, and activity level. The application
can be broken down in several steps to prompt the user for input, and finally
calculating the result. The implementation of the task is given in Listing 1.13.

1. When started, the application presents the user with some information about
the calculation using a View editor.

2. After pressing continue, the user is prompted to enter the required data in
different steps: height, weight, and age using Enter editors, and gender and
activity level using Select editors. Each prompt is wrapped in a Pair task
with a View editor on the left side to act as the label. Such a prompt is
shown in Figure 5.

3. In the last step the result is displayed using a View editor.

Creating Interactive Visualizations of TopHat Programs 15

1 data Gender = Male | Female
2
3 data ActivityLevel = Sedentary | Low | Active | VeryActive
4
5 type Height = Int
6
7 type Weight = Int
8
9 type Age = Int

10
11 calculateCaloriesTask :: Task h Text
12 calculateCaloriesTask =
13 introduction >>? _ -> do
14 (_, height) <- promptHeight
15 (_, weight) <- promptWeight
16 (_, age) <- promptAge
17 (_, gender) <- promptGender
18 (_, activityLevel) <- promptActivityLevel
19 let calories = calculateCalories gender activityLevel height weight

age
20 view
21 ("Your resting metabolic rate is: "
22 <> display calories
23 <> " calories per day."
24)
25
26 introduction :: Task h Text
27 introduction = view <| unlines
28 ["This tool estimates your resting metabolic rate ,",
29 "i.e. the number of calories you have to consume",
30 "per day to maintain your weight.",
31 "Press \" Continue \" to start"
32]
33
34 promptGender :: Task h (Text , Gender)
35 promptGender =
36 view "Select your gender:"
37 >< select
38 ["Male" ~> Done Male ,
39 "Female" ~> Done Female
40]
41
42 promptHeight :: Task h (Text , Height)
43 promptHeight = view "Enter your height in cm:" >< enter
44
45 promptWeight :: Task h (Text , Weight)
46 promptWeight = view "Enter your weight in kg:" >< enter
47
48 promptAge :: Task h (Text , Age)
49 promptAge = view "Enter your age:" >< enter
50
51 promptActivityLevel :: Task h (Text , ActivityLevel)
52 promptActivityLevel =
53 view "What is your activity level?"
54 >< select
55 ["Sedentary" ~> Done Sedentary ,
56 "Low active" ~> Done Low ,
57 "Active" ~> Done Active ,
58 "Very Active" ~> Done VeryActive
59]
60
61 -- We omit the actual calculation here since it is a bit lengthy.
62 calculateCalories :: Gender -> ActivityLevel -> Height -> Weight -> Age ->

Int
63 calculateCalories gender al h w age = ...

Listing 1.13: Task of the calorie calculator (Haskell)

16 Gerarts and de Hoog, et al.

Fig. 5: Prompting the user to enter his/her height

4.3 Chat session

This example uses shared data stores to model a chat session between two users,
as displayed in Figure 6. Each user can write messages to the chat history on
the left hand side using their respective inputs on the right hand side.

The implementation for this example is given in Listing 1.14. The function
share creates a data store that can be accessed by multiple tasks, in this case the
two chat tasks. The <<= operator is used to transform the contents of the shared
data store.

Fig. 6: A chat session using shared data stores.

1 chatSession :: Reflect h => Task h (Text , ((), ()))
2 chatSession = do
3 history <- share ""
4 watch history ><
5 (chat "Tim" history >< chat "Nico" history)
6 where
7 chat :: Text -> Store h Text -> Task h ()
8 chat name history = repeat <|
9 enter >>* ["Send" ~> append history name]

10
11 append :: Store h Text -> Text -> Text -> Task h ()
12 append history name msg = do
13 history <<= \h ->
14 (if h == "" then h else h ++ "\n")
15 ++ name ++ ": ’"
16 ++ msg ++ "’"

Listing 1.14: A chat Session using shared data stores (Haskell)

Creating Interactive Visualizations of TopHat Programs 17

4.4 Tax example

For our final example, we revisit the tax program from Section 2.4.

1 tax :: Task h ((((Amount , Bool), Bool), Date), Date)
2 tax =
3 let today :: Date
4 today = 100
5
6 provideDocuments :: Task h (Amount , Date)
7 provideDocuments = enter >< enter
8
9 companyConfirm :: Task h Bool

10 companyConfirm = enter
11
12 officerApprove :: Date -> Date -> Bool -> Task h Bool
13 officerApprove invoiceDate date confirmed =
14 view (date - invoiceDate < 365 && confirmed)
15 in (provideDocuments >< companyConfirm)
16 >>? \((invoiceAmount , invoiceDate), confirmed) ->
17 officerApprove invoiceDate today confirmed
18 >>? \approved ->
19 let subsidyAmount =
20 if approved
21 then min 600 (invoiceAmount ‘div ‘ 10)
22 else 0
23 in view
24 <| unlines
25 ["Subsidy amount: " ++ display subsidyAmount ,
26 "Approved: " ++ display approved ,
27 "Confirmed: " ++ display confirmed ,
28 "Invoice date: " ++ display invoiceDate ,
29 "Today: " ++ display today
30]

Listing 1.15: Tax example in Haskell

Listing 1.15 gives the Haskell code that implements the task. Compared to
the original definition as given in Listing 1.4, the task is nearly identical. The only
change made is to the final line, where we have opted for a different presentation
of the final result, for simplicity sake.

Figure 7 lists the different stages of the UI for the tax subsidy task. First, the
user requesting the subsidy can enter in information (first two tasks), while the
company can confirm or deny. Then, the tax officer can verify if the conditions
are met, and approve the request. Finally, the outcome is shown.

Since we did not have to modify the task at all, besides a minor presenta-
tion detail, this task can still be proven correct using symbolic execution. This
example clearly illustrates the advantage of TopHat with a UI over the current
state-of-the-art in the form of iTasks.

5 Related work

Section 2 presentend related work on TOP and iTasks. In this section, we will
briefly discuss Functional reactive programming as an alternative to TOP, as
well as alternatives for the UI framework and web server we have used during
the development of the UI for TopHat.

18 Gerarts and de Hoog, et al.

(a) Step 1: The citizen enters the request info on the left, the installation company
confirms on the right

(b) Step 2: The tax office con-
firms or denies the request

(c) Step 3: The final out-
come of the request is dis-
played

Fig. 7: Different stages of the tax subsidy application

5.1 Functional Reactive Programming

Functional Reactive programming (FRP) is another approach to UI develop-
ment using functional programming. FRP is a programming paradigm centered
around interactive event-based applications. It has implementations in multiple
programming languages, such as Haskell and JavaScript [4].

FRP consists of two main concepts: behaviors and events. A behavior consists
of a value and can be mapped to output, for example a label. Behaviors can
depend on other behaviors, so a change in a behavior can propagate through a
network of dependent behaviors. An event only occurs at a certain point in time
and contains a value. Input is mapped to events, for example the pressing of a
key or the position of the mouse cursor. Events can trigger changes in behaviors.

It is worth noting that, while they share some similarities, FRP and TOP
are conceptually different. FRP is a paradigm for reactive programming, whereas
TOP is a way to model collaboration between users.

5.2 User Interface frameworks

We build upon the Halogen framework to create our prototype, but many other
UI frameworks exist in the domain of functional programming. We discuss three
of these briefly below.

Elm [9] refers to both Elm, a functional programming language that compiles
to JavasScript [8], and TEA [10], a programming pattern that emerged from it.

Creating Interactive Visualizations of TopHat Programs 19

Elm’s ecosystem consists of a large number of available libraries that help in
creating web applications.

Miso [12] is a Haskell front-end framework inspired by Elm and Redux. It
relies on GHCJS [15], a Haskell-to-JavaScript compiler based on GHC.

Reflex [29] is an FRP framework written in Haskell with support for a variety
of platforms, including the web, desktop, and mobile. Reflex applications are
modular, which makes growing and refactoring an application efficient and swift.

We have selected PureScript and Halogen because it is a powerful functional
programming language that fits our problem domain. Halogen provides an excel-
lent developer experience, has a component based architecture and builds upon
PureScript’s power and expressiveness.

5.3 Web servers

We have opted for Servant as our web server. Servant provides combinators to im-
plement our features, which makes coding less error prone and time-consuming.
Servant is up-to-date, well-maintained, well documented and it is easy to get a
working prototype. Below we discuss Yesod and Warp as possible alternatives
for the server used in our implementation.

The Yesod Web Framework [23] is a Haskell web framework that allows for
rapid development of type-safe, RESTful and high performance web applica-
tions [24]. The Yesod Web Framework adds the strengths of Haskell (like type
safety) to the web. Especially on the boundaries of Yesod and the world, for ex-
ample a user enters input or persistent data is loaded, Yesod adds mechanisms
to define the expected types [22]. We found that developing a prototype based
on Yesod is more difficult than developing a prototype based Servant. We also
found that the Yesod Web Framework is too extensive for our purposes [11].

The Warp web server is a light-weight web server that supports the Web
Application Interface (WAI) [25]. It is meant to be easy to use and provide easy
composition of web services. Because of the design choices to achieve this, the
code of a Warp prototype is low-level. This means that implementing all features
in this way will be error prone and time-consuming. Therefore, we have chosen
Servant. However, Servant also uses Warp as its web server [11].

6 Discussion

We set out this paper with two goals in mind, to answer academic research
questions, and to develop an interactive TOP system in Haskell.

Our first questions was, are the advanced Clean features used by iTasks
essential for TOP? While these features definitely contribute to the quality of
the implementation of iTasks, it is evident that they are not essential.

We were able to develop the UI framework for TopHat in such a way that
the original TopHat semantics did not need to be altered. The task specification
and its semantics are leveraged by the framework just so it can display the task
and pass along input that is entered into the UI.

20 Gerarts and de Hoog, et al.

This answers our second question, do we need to compromise the formal
properties of TopHat to build a UI for it. Here the answer is clearly no. The UI
framework is completely separate. This is possible due to the fact that TopHat
is a deeply embedded DSL, compared to iTasks, which is mostly a shallowly
embedded DSL.

The development has been largely a straight forward process. Section 5 lists
some details on how we selected the components that make up the UI framework.
The implementation has been validated by running several example applications.

As mentioned in Section 3, TOP features such as multi-user support and
richer datatypes are out of scope for this publication. We see no technical or
formal reason prohibiting them from being included in future versions of the
UI framework. As with iTasks, the rendering of values, and editors of values, is
generic in the type of the value. Adding support for more complex datatypes
would just mean making instances for them for viewing and editing them, simi-
lar to how this is done in iTasks. As for multi-user support, this is a limitation
in the current version of TopHat. Its developers are already working on adding
multi-user support. Once this feature is released, we see no fundamental limi-
tations in supporting this in the UI. The server framework used in the current
implementation, Servant, already has extensive support for user authentication,
which could be leveraged 6.

7 Conclusion

We conclude that it is indeed possible to create an interactive web UI for TopHat
programs without resorting to Clean or iTasks. Even though our implementation
does not have the full capabilities of the iTasks framework, we show that all
the basic requirements for a TOP framework can be implemented. We support
tasks, shared data stores, combinators and generics. This means that we can
really have the best of both worlds, a formal semantics for TOP, as well as an
interactive UI that can be used to build realistic applications. The source code
for our framework is available online, and can thus be leveraged by developers
and researchers to advance the field of Task-Oriented Programming.

References

1. Achten, P., Koopman, P., Plasmeijer, R.: An Introduction to Task Oriented Pro-
gramming, pp. 187–245. Springer International Publishing, Cham (2015)

2. Achten, P., Stutterheim, J., Domoszlai, L., Plasmeijer, R.: Task Oriented Program-
ming with Purely Compositional Interactive Scalable Vector Graphics. pp. 1–13.
ACM (2014)

3. Achten, P., Stutterheim, J., Lijnse, B., Plasmeijer, R.: Towards the Layout
of Things. pp. 1–13. ACM (2016), https://dl-acm-org.ezproxy.elib11.ub.
unimaas.nl/doi/pdf/10.1145/3064899.3064905

6 https://docs.servant.dev/en/stable/tutorial/Authentication.html

Creating Interactive Visualizations of TopHat Programs 21

4. Bainomugisha, E., Carreton, A., Cutsem, T., Mostinckx, S., Meuter, W.: A survey
on Reactive Programming. ACM computing surveys 45(4), 1–34 (2013)

5. Brus, T., van Eekelen, M.C., Van Leer, M., Plasmeijer, M.J.: Clean—A Language
for Functional Graph Rewriting. In: Conference on Functional Programming Lan-
guages and Computer Architecture. pp. 364–384. Springer (1987)

6. Burgess and Honeyman et al.: Halogen. https://github.com/purescript-
halogen/purescript-halogen (2021), version 6.1.2

7. Clean. https://clean.cs.ru.nl (2021), version 3.0
8. Czaplicki: Elm. https://elm-lang.org (2012), version 0.19.1
9. Czaplicki: Elm: Concurrent frp for functional guis. Senior thesis, Harvard Univer-

sity 30 (2012)
10. The Elm Architecture. https://guide.elm-lang.org/architecture (2021), ac-

cessed at 2021-07-01
11. Gerarts, M., de Hoog, M.: Creating interactive visualizations of tophat programs

(2021)
12. Johnson: Miso. https://haskell-miso.org (2020), version 1.7.1
13. Koopman, P.W.M., Plasmeijer, R., Achten, P.: An executable and testable se-

mantics for itasks. In: Implementation and Application of Functional Languages
- 20th International Symposium, IFL 2008, Hatfield, UK, September 10-12, 2008.
Revised Selected Papers. pp. 212–232 (2008). https://doi.org/10.1007/978-3-642-
24452-0_12, https://doi.org/10.1007/978-3-642-24452-0_12

14. Lijnse, B., Jansen, J.M., Plasmeijer, R., et al.: Incidone: A Task-Oriented Incident
Coordination Tool. In: Proceedings of the 9th International Conference on Infor-
mation Systems for Crisis Response and Management, ISCRAM. vol. 12 (2012)

15. Mackenzie et al.: GHCJS. https://github.com/ghcjs/ghcjs (2021), version 8.6
16. Naus, N., Steenvoorden, T.: Generating next step hints for task oriented programs

using symbolic execution. In: Trends in Functional Programming - 21st Interna-
tional Symposium, TFP 2020, Krakow, Poland, February 13-14, 2020, Revised Se-
lected Papers. pp. 47–68 (2020). https://doi.org/10.1007/978-3-030-57761-2_3,
https://doi.org/10.1007/978-3-030-57761-2_3

17. Naus, N., Steenvoorden, T., Klinik, M.: A symbolic execution seman-
tics for tophat. In: IFL ’19: Implementation and Application of Func-
tional Languages, Singapore, September 25-27, 2019. pp. 1:1–1:11 (2019).
https://doi.org/10.1145/3412932.3412933, https://doi.org/10.1145/3412932.
3412933

18. Oortgiese, A., van Groningen, J., Achten, P., Plasmeijer, R.: A Dis-
tributed Dynamic Architecture for Task Oriented Programming. pp. 1–12.
ACM (2017), https://dl-acm-org.ezproxy.elib11.ub.unimaas.nl/doi/pdf/
10.1145/3205368.3205375

19. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: Executable Specifications of In-
teractive Work Flow Systems for the Web. ACM SIGPLAN Notices 42(9), 141–152
(2007)

20. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-Oriented
Programming in a Pure Functional Language. pp. 195–206. ACM (2012)

21. Servant Contributors: Servant – A Type-Level Web DSL. https://docs.servant.
dev/en/stable/index.html (2021), version 0.18.3

22. Snoyman: Developing Web Applications with Haskell and Yesod. O’Reilly Media,
Inc. (2012)

23. Snoyman: The Abominable Snoyman). https://www.snoyman.com/ (2020)
24. Snoyman: Yesod Web Framework. https://www.yesodweb.com/ (2020)

22 Gerarts and de Hoog, et al.

25. Snoyman, M.: Warp: A Haskell Web Server. IEEE internet computing 15(3), 81–85
(2011)

26. Steenvoorden, T., Naus, N., Klinik, M.: TopHat: A formal foundation for task-
oriented programming. pp. 1–13. ACM (2019), https://dl-acm-org.ezproxy.
elib11.ub.unimaas.nl/doi/10.1145/3354166.3354182

27. Stutterheim, J., Achten, P., Plasmeijer, R., Zsók, V., Porkoláb, Z., Horváth, Z.:
Static and Dynamic Visualisations of Monadic Programs. Lecture notes in com-
puter science pp. 341–379 (2019)

28. Stutterheim, J., Plasmeijer, R., Achten, P.: Tonic: An Infrastructure to Graphically
Represent the Definition and Behaviour of Tasks. In: International Symposium on
Trends in Functional Programming. pp. 122–141. Springer (2014)

29. Trinkle et al.: Reflex. https://reflex-frp.org/ (2020), version 0.8.0.0
30. Vervoort, M., Plasmeijer, M.J.: Lazy dynamic input/output in the lazy func-

tional language clean. In: Implementation of Functional Languages, 14th Inter-
national Workshop, IFL 2002, Madrid, Spain, September 16-18, 2002, Revised
Selected Papers. pp. 101–117 (2002). https://doi.org/10.1007/3-540-44854-3_7,
https://doi.org/10.1007/3-540-44854-3_7

Sig-adLib

A Compilable Embedded Language for Synchronous
Data-Flow Programming on the Java Virtual Machine

[Draft Research Paper]

Baltasar Trancón y Widemann
12

and Markus Lepper
2

1
Nordakademie, Elmshorn, DE

2
semantics GmbH, Berlin, DE

Abstract. This paper presents Sig-adLib, an embedded domain-specific
language for complex realtime data stream processing tasks on the JVM.
It distinguishes a declarative data-flow and an imperative control-flow
aspect. Sig-adLib programs can be interpreted, or compiled transpar-
ently to JVM bytecode and eventually jit-compiled. Both the interpreter
and the compiler are completely modular and extensible. The compiler is
fully embedded in the host program. Interpreted and compiled code both
run indefinitely on fixed space. Benchmarks indicate a roughly 50-fold
speedup by compilation, comparable with hand-coded, statically com-
piled reimplementations.

1 Introduction

We report on the design and implementation of an embedded domain-specific
language (EDSL), Sig-adLib, that adds declarative support for synchronous
data-flow computations to the Java platform.

The design of the language covers a middle ground between several related
approaches, and has an unusual combination of technical properties: Sig-adLib
is a managed language hosted on the Java Virtual Machine (JVM), but its
programs can operate indefinitely on a very tight resource budget. It is a dy-
namic, modular and extensible language, but cooperates at runtime with the
just-in-time (jit) compiler of the host environment to generate high-performance
code, in the double sense of high throughput and ultra-low latency. It is purely
functional in one principal aspect, but procedural in another. It embodies the
abstract declarative paradigm of clocked synchronous data-flow programming,
but also age-old folklore techniques of low-level imperative stream processing.

3

It has been conceived initially as a backend for compilation of the standalone
high-level language Sig [22], but is also productive, educational and fun to use
directly.

3
Data stream programming in this sense can be considered a restricted form of array
programming, without random access.

1 S = 0.0

2 DO 4 I = 1, N
3 YI = ⋯
4 S = S + YI

5 ⋯

1 S = 0.0
S2 = 0.0

2 DO 4 i = 1, N
3 YI = ⋯
13 S2 = S2 + YI

T = S + S2
23 S2 = (S - T) + S2
4 S = T
5 ⋯

Fig. 1. Näıve (left) vs. Kahan’s compensated summation (right, [10]) – imperative style

1.1 Motivating Example

It is a well-known fact that the summation of a stream of floating-point values
should not be performed in the näıve way, by simply reducing the stream with
the binary addition operations. [10] Except for rare special cases, one operand
(the cumulative sum) is bound to outgrow the other (the next value element),
and hence the overlap in significant bits and ultimately the precision of the result
decrease progressively. A compensating algorithm has been proposed in 1965 [10]
already. In Fig. 1 the original Fortran formulation is depicted, juxtaposed with
a simplified variant that encodes the näıve summation in the same style.

Arguably, notation has come a long way since then. The depicted code can
be considered unnecessarily convoluted by modern standards. In particular, the
style is as far removed from referential transparency as possible in such a short
code fragment: Variables are freely used both before and after being updated
in each loop iteration. A transformation of the code to static single-assignment
form [16] is able to reveal that for the variable S2 alone, there are no less than five
distinct regional meanings with different sets of relevant definitions. As a result,
reasoning about algorithms is extremely hard and non-scalable in this style.
In particular, any perturbation of the assignment statements is quite likely to
corrupt the semantics in complicated ways.

It is therefore no coincidence that in areas where this class of algorithms
is of practical relevance, such as physical modeling or signal processing, visual
approaches that display the algorithmic content as a data-flow network enjoy
great popularity (see section 2.3). Fig. 2 depicts the same two algorithms in the
graphical style that we have been using in the Sig(-adLib) context. In a data-
flow network, most operators are understood as operating repeatedly, once per
element of all connected data streams.

The “secret weapon” of the style is the special delay operator δ,
4

which delays
a data stream by exactly one element. Semantically, an extra initial element is
prepended to the stream. Its value must of course be specified somewhere, but
is usually omitted from the diagram for visual hygiene reasons. Delay lines allow
data-flow networks to be specified without the need to explicitly name stream

4
variously also written z

−1
; an abuse of notation from filter theory

+
+

δ

−
+

δ

YI

S

Fig. 2. Näıve (white) vs. Kahan’s compensated summation (colored) – data-flow style

variables and distinguish pre-update and post-update access, by sampling the
stream after and before the delay operator, respectively.

Furthermore, delayed feedback loops are semantically relatively harmless,
but contribute greatly to the expressive power of the approach by supporting
stateful computations. In [19] we have demonstrated how to translate a data-
flow network with arbitrary delayed feedback to a countably infinite system of
equations that has both full referential transparency and well-defined operational
semantics.

2 Related Work

In this section, we give an overview and comparison of related approaches, in
order to clarify and justify the particular position in the solution space taken up
by the design of Sig-adLib.

2.1 Functional Reactive Programming

The paradigm of functional reactive programming (FRP) has been developed
for computation with time-dependent values in a general sense that subsumes
the one discussed above. FRP programs abstract from the nature of time and
change (continuous signals, synchronous streams, asynchronous events, etc.) [7]
with the help of high-level algebraic structures such as monads or arrows [8].

Fig. 3 depicts an implementation of Kahan’s algorithm in Rhine [1], a recent
FRP EDSL in Haskell. Note that, of the Rhine language proper, only the mealy
wrapper is used; the circuit itself is described as a recursive let construct. The
dense graph structure of this particular data-flow network makes the expression
in an arrow-based combinatorial notation exceedingly difficult; cf. Fig. 4.

The abstraction level of FRP is convincingly elegant at the level of denota-
tional semantics, but makes reasoning about resources rather hard [8], and is far
removed from traditional programming models for data stream processing. By

ksum :: (Monad m, Floating a) ⇒ MSF m a a
ksum = mealy step (0, 0)
where step y (s, s2) = (t, (t, s2b))

where s2a = s2 + y
t = s + s2a
s2b = (s - t) + s2a

Fig. 3. Kahan’s compensated summation – simple (Mealy) FRP style in Rhine

ksum :: (Monad m, Floating a) ⇒ MSF m a a
ksum = feedback 0 $

binop (+) ⋙ first (sum ⋙ second (binop (-))) &&& arr id
⋙ arr assoc ⋙ second (binop (+))

where sum = feedback 0 $
binop (+) &&& arr snd ⋙ arr shuffle

binop = arr ◦ uncurry
assoc ((a, b), c) = (a, (b, c))
shuffle (a, b) = ((a, (b, a)), a)

Fig. 4. Kahan’s compensated summation – arrow-oriented FRP style in Rhine

contrast, Sig-adLib is founded on a coalgebraic semantics [19] that connects
infinite Mealy machines to causal stream functions. That semantic model comes
with a significantly less abstract representation of time, but is highly compatible
with the intuitive analogy to digital circuits on one hand, and with traditional
imperative programming patterns in the stream processing domain on the other.

2.2 Synchronous Languages

Time-oriented programming, with special emphasis on low-level and safety-
critical aspects of the synchronous paradigm, has also been studied extensively
in the “French” school of synchronous languages such as Esterel [3], Signal [6]
and Lustre [4].

Fig. 5 depicts an implementation of Kahan’s summation algorithm in Lus-
treV6 [18]. The operator → delays its right operand by prepending the initial

node ksum (y : real) returns (t : real);
let

s2a = s2 + y
t = s + s2a
s2 = 0 → pre((s - t) + s2a)
s = 0 → pre(t)

tel

Fig. 5. Kahan’s compensated summation – synchronous style in Lustre

shuffle = route(2,3,1,1,1,3,2,2);
sum = (shuffle : +,_)˜_;
ksum = (+ <: (_,(sum : shuffle : -,_))˜+) : !,!,_;

Fig. 6. Kahan’s compensated summation – combinator style in Faust

value of its left operand. Note how the language elegantly avoids the tradeoff
between referential transparency and naming parsimony, by virtue of the com-
positional pre operator that distinguishes pre-update from post-update values.

In analogy to hardware description languages [2], it useful in operational
semantics of the synchronous paradigm to conceptually distinguish macro-time
and micro-time. Macro-time progresses discretely at global clock tick-like events.
Every signal is assigned a constant value per macro-time slice. Micro-time pro-
gresses as the updating of the data-flow network propagates by actual value-level
computation operations. A synchronous execution model guarantees the absence
of macro-time inconsistencies, i.e., the observation of values that have been out-
dated or prematurely overwritten in micro-time.

A typical resource-efficient implementation strategy achieves synchronicity
by data-flow dependency analysis: On one hand, signals are realized as mutable
variables, such that updates take effect globally and irreversibly. But on the
other hand, computations are sorted in a causal micro-time firing order, i.e., each
operation may execute and update its result only after its operands have been
updated. This strategy implicitly rules out macro-time instantaneous feedback
loops, but not delayed ones. For an explication of the latter, see the elimination
technique for delay operations proposed in [19].

Faust Fig. 6 depicts an implementation of Kahan’s summation algorithm in
Faust[12], a functional DSL for synchronous data-flow programming, specifically
for the audio domain. Its most distinguishing feature is a very terse syntax that
provides a basis of combinators not unlike the algebra of arrows, but with a
unique flavor.

2.3 Visual Data-Flow Languages

In several application domains, visual programming tools enjoy great popularity,
being considered more accessible and appealing to domain experts. We shall men-
tion just a few very popular examples. They have in common that synchronous
stream processing and event-based flow are mixed in a pragmatic fashion that
is not grounded in unifying precise semantics.

Max, PD Max/MSP enjoys great popularity in the digital musical community,
and has even been hailed as the lingua franca for live performance [14]; PD
is its near-identical open-source twin [15]. Fig. 7 depicts an example PD data-
flow network (patch), where the flow direction and micro-time precedence are
indicated by vertical and horizontal alignment, respectively.

Fig. 7. Example patch (data-flow network) in PD

public interface Stream<A> {
Spliterator<A> spliterator();

}
public interface Spliterator<A> {

boolean tryAdvance(Consumer<A> action);
}

Fig. 8. Java Streams, Low-Level Control API [9]

Matlab/Simulink Simulink is a signal processing system which serves as front-
end for Matlab and is widely used in industrial prototyping.[17]

2.4 Java Streams

With Java Version 8, a stream-processing framework API has been introduced
into the language. Stream computations are programmed in data-flow style, by
setting up pipelines with the help of well-known higher-order functions such as
map and filter. Evaluation of actual data elements then takes place on demand.
Low-level explicit control is supported with a glorified variant of the Iterator
pattern, see Fig. 8. By contrast, usual applications use high-level implicit control
by means of terminal reduce-like operations, see Fig. 9, thus also benefiting from
potential transparent parallelization.

The resulting declarative style of usage raises the abstraction level consid-
erably, compared to the procedural, loop-oriented approach of traditional Java
patterns. But the abstraction comes at a steep price: Because the observation of
the current element and the transition to the next one are fused in an atomic
consumption event, data-flow networks are necessarily limited to linear pipelines;
it is not possible to pass the same data element to two simultaneous consumers
(unzip). This restriction of expressive power rules out many interesting algorith-
mic applications, in particular all that rely on feedback.

int total = shoppingCart.stream()
.filter(Item::isAvailable)
.limit(maxOrderSize)
.map(Item::getPrice)
.sum();

Fig. 9. Java Streams, High-Level Usage Example

As a result, algorithms such as Kahan’s summation cannot be decomposed
into Java stream combinators and expressed in the stream EDSL for fundamen-
tal reasons. Ironically, the API documentation for the stream operation sum5

suggests that compensated summation may be used, but it has to be imple-
mented under the hood by escaping into the host language. The language design
of Sig-adLib can be seen as a variation on the stream framework which trades
(mildly) more explicit imperative control at evaluation time for (significantly)
enhanced declarative expressive power at construction time.

3 Design

Sig-adLib is an embedded domain-specific language, i.e., it does not come with
a textual syntax or execution environment of its own. Instead, programs are
represented as program object graphs (POGs) and executed as method calls by
a meta-program in the host language, Java, and share its platform, the JVM.
The structure of an embedded program can be written down statically, thus
inheriting the syntax of host language, or constructed dynamically by a meta-
programming algorithm. Every program object (PO) is at least equipped with
an implementation of its own operational semantics, such that the POG as a
whole constitutes its own modular, even decentral, interpreter.

Several key features of the design hinge on the characteristic property of
Sig-adLib, namely the separation of the concerns of data and control flow. The
following subsections describe the respective APIs.

3.1 Core Interfaces and Constructs

Sig-adLib does not require any facilities beyond a vanilla JVM to run. Thus
the implementation is a pure Java library. Its API is organized around a small
number of simple interfaces for modularity and extensibility, but also provides
a large number of implementing classes and factory operations as predefined
data-flow network constructs.

5 https://docs.oracle.com/javase/8/docs/api/java/util/stream/DoubleStream.
html#sum-- [9]

https://docs.oracle.com/javase/8/docs/api/java/util/stream/DoubleStream.html#sum--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/DoubleStream.html#sum--

@FunctionalInterface
interface IntSignalSource extends IntSupplier {

@Override public int getAsInt();
}

Fig. 10. Sig-adLib Data Flow API (Excerpt)

3.2 Data Flow

The basic unit of Sig-adLib data-flow networks is a signal source, an abstract
consumer-perspective view on a signal, i.e., a strongly typed time-dependent
value. Fig. 10 depicts the specialized variant for the unboxed primitive data type
int;

6
analogous variants exist for other primitive types of the JVM, as well as a

generic variant for reference types.
The interface is a specialization of the standard Java functional interface

Supplier, and as such a valid target type for a lambda expression. Its additional
contract stipulates that the observation of the current value (by calling the getter
method) does not constitute an event for the observed signal, i.e., it must not be
the cause of upstream state transitions. This allows multiple observers to share
the signal without interference, in marked contrast to the Java Stream API.
In general though, values may change arbitrarily between observations due to
concurrent activity.

Data-flow networks are constructed from atomic signal sources by various
constructs, implemented by constructors and factory operations. Most of these
involve the lifting of elementwise operations to signals by memoryless repeti-
tion. Sig-adLib provides generic constructs for lifting operations of various ar-
ities, such as constant, map and zip, as well as specializations for frequently
used operations, such as add or equal. For example, a network that computes
the instantaneous average of three input signals x, y, z could be denoted as
x.add(y).add(z).divide(constant(3)).

3.3 Control Flow

Orthogonally to the data aspect of a Sig-adLib computation, its control aspect
is described in terms of the Process interface, depicted in Fig. 11. A process in
the Sig-adLib sense is understood as a non-spontaneous provider of signals.
A process can be started (or restarted), and commanded to perform a single
transition step in macro-time, by calling the init and step methods, respec-
tively. A process is not entitled to terminate spontaneously; computation ceases
implicitly when step is called no more. Confer the programming model of the
Arduino microcontroller architecture [11], in particular the structure functions

setup and loop7, respectively.

6
The redundant method name getAsInt is due to the lack of result-type overloading.

7
Actually, loop does not specify a loop but a loop body, and hence is a striking
misnomer.

interface Process {
public void init();
public void step(RealtimeContext context);

}

Fig. 11. Sig-adLib Control Flow API (Excerpt)

XSignalSource out1 = ...;
...
ZSignalSource outn = ...;
Process main = ...;

void run(RealtimeContext rc) {
main.init();
while (needMoreData()) {

main.step(rc);
processData(out1.getAsX(), ..., outn.getAsZ());

}
}

Fig. 12. Sig-adLib Driver Loop, General Pattern

Thus the basic usage of a Sig-adLib program follows the pattern depicted
in Fig. 12. At construction time, POs are allocated and wired, and typed ref-
erences to all observable data outputs and the control flow entry point re-
tained. The POG can then be run by calling methods in the regular pattern
init (step get

∗)∗. Reuse ist supported sequentially by simply restarting the
pattern, but not concurrently, since POs may have allocated mutable internal
state.

Sig-adLib processes are compositional in micro-time. The most basic op-
eration combines two processes sequentially, such that r = p.andThen(q) re-
sults in a process where r.init() is equivalent to {p.init(); q.init();} and
r.step(c) is equivalent to {p.step(c); q.step(c);}. Note that this operation
is very different from sequential composition of (finite) streams in macro-time.
Sequential combinators can, and must, be used to construct a causal firing order
for a stateful data-flow network.

Besides micro-time sequential composition, various other operations on pro-
cesses exists. Most notably, rate-changing operations can be used to construct
data-flow networks with subsystems operating at different rates. For example,
q = p.every(128) constructs a process where only every 128th call of q.step
results in a call of p.step.

3.4 Synchronization

While it is often convenient and elegant to separate the data and control aspects
of a program, in analogy to digital circuits considerable additional expressive

interface IntClockedSignalSource extends IntSignalSource, Process {}

abstract class IntStoredSignalSource implements IntClockedSignalSource {
protected int value; // to be written by init & step
@Override public final int getAsInt() { return value; }

}

Fig. 13. Sig-adLib Signal Synchronization (Excerpt)

power is gained by connecting them at particular points, thus adding stateful
features such as buffering, delay and feedback to the picture.

In the simplest case, one interface for each aspect is attached by multiple in-
heritance. We call a signal source that is also a process clocked. A signal source
can be bundled with an arbitrary process (that should of course update its value)
using the factory operation clock. Fig. 13 (top) depicts the resulting intersec-
tion interface for the int data type. Its additional contract stipulates that the
observed value may only change at events caused by the process method step
of the same PO. In the absence of such calls, a clocked signal source must re-
tain a (temporarily) constant value. Thus multiple observers may never observe
inconsistent values for the same macro-time instant. Clocked signal sources can
be understood as true data streams.

The simplest implementation of a clocked signal source is a buffering com-
ponent that provides a field to store and indefinitely retain a data element.
Fig. 13 (bottom) depicts the corresponding abstract base class. Subclasses need
to implement the methods init and step to perform the actual computation
and write operations. Storing the value of a signal source has numerous uses,
most notably the caching of intermediate results for efficient retrieval by mul-
tiple observers, as opposed to redundant recalculation in multiple call contexts.
For convenience, every signal source supports the factory operation stored that
constructs such a cache.

Stateful components in general, and stored signal sources in particular, need
to be included in the main process of the program, in a causally consistent firing
sequence, in order to work correctly. By nature of being an EDSL with local
and compositional programming support only, Sig-adLib provides no automatic
checks on this correspondence requirement on data and control flow, leaving the
task to the user. Errors in the control flow of the program manifest as data races
and unexpected latency of signals, analogously to wrongly timed clocked digital
circuits.

3.5 Delay

Besides value caches, the most important primitive synchronized operation is
delay. Delay components are stateful, requiring buffer storage of fixed size and
type to retain each value between the macro-time steps where it figures as input
and output, respectively. The basic case is a single-step delay as required for

delay :: Monad m => a -> MSF m a a
delay = mealy step
where step (x, p) = (y, q)

where y = p -- load
q = x -- store

Fig. 14. Single-step Delay – FRP style in Rhine

interface Register extends Process {
public Process getLoadPhase();
public Process getStorePhase();

}

Fig. 15. Sig-adLib Load/Store-phased Control Flow (Excerpt)

Kahan’s algorithm. Longer delays can be constructed by “shift register” cascad-
ing; only for significantly more than a few steps it is beneficial to use optimized
implementation strategies such as ring buffers.

A single-step delay requires a buffer of size one. In each step, it forwards
the current buffer state to the output (load) and the current input to the buffer
(store). Fig. 14 depicts an implementation in FRP style. The delay elimination
technique proposed in [19] hinges on the observation that the load and store
phases are separable in the causal firing order, and can accomodate arbitrary
feedback loops in between.

Sig-adLib provides a generic interface Register for components with sep-
arable phases, depicted in Fig. 15. Instances act as load.andThen(store) when
used as atomic processes, but they also provide a sequential control-flow op-
eration andMeanwhile that sandwiches another register or process between the
phases.

Fig. 16 depicts the Sig-adLib implementation of single-step delay for the
primitive data type int. Note that each method of each phase performs just a
single assignment, and that the double-buffering strategy with next and value
is quite analogous to the design of D-flipflops in hardware.

3.6 Motivating Example, Revisited

The Sig-adLib implementation of Kahan’s algorithm is depicted in Fig. 17. Since
the host language Java does not support mutually recursive value definitions,
cycles are introduced imperatively using the setInput method. Otherwise, the
program structure is strikingly analogous to the Lustre variant (Fig. 5): The
description of data flow is identical; owing to its low-level compositional nature
Sig-adLib adds explicit caching of shared values (corresponding to “fan-out
solder blobs” in Fig. 2) and a causal firing order.

For ease of reference, colors are used to indicate the distinct aspects of Sig-
adLib programming, namely control, data and synchronization.

class IntDelay extends IntStoredSignalSource {
private final int initial;
private final IntSignalSource input;

private int next;

Process load = new Process() {
@Override public void init() {}
@Override public void step(RealtimeContext rc) {

value = next;
}

};

Process store = new Process() {
@Override public void init() {

next = initial;
}
@Override public void step(RealtimeContext rc) {

next = input.getAsInt();
}

};
}

Fig. 16. Sig-adLib Single-step Delay

FloatClockedSignalSource ksum(FloatSignalSource y) {
FloatDelay s = new FloatDelay(0),

s2 = new FloatDelay(0);
FloatClockedSignalSource s2a = s2.add(y).stored();

t = s.add(s2a).stored();
FloatSignalSource s2b = s.subtract(t).add(s2a);
s2.setInput(s2b);
s.setInput(t);
return clock(t, s2.andMeanwhile(s).andMeanwhile(s2a.andThen(t)));

}

Fig. 17. Kahan’s compensated summation – Sig-adLib style. (For color legend see
text section 3.6)

Note that Sig-adLib is not a textual language; thus not the depicted Java
code is the actual program, but the resulting POG. Hence the data-flow aspect of
the program is purely declarative, in spite of the use of setInput in its construc-
tion. While the library API provides many notational constructs to express such
directly hosted programs (i.e., as construction statements with trivial linear con-
trol flow), other means of production, such as component abstraction and reuse,
algorithmic meta-programming, or translation from a different input format, are
all effectively equivalent.

4 Execution Environment

Each Sig-adLib PO carries a modular fragment of operational semantics, in the
form of its implementations of the interface methods detailed above. Thus the
interfaces constitute entry points for a decentral interpreter that is distributed
over the abstract syntax POG. The external interface of this interpreter follows
an inversion-of-control (IoC) architectural pattern: References to (sub-)processes
and signal sources serve as clock inputs and data outputs of the data-flow net-
work, respectively. See Fig. 12 and its discussion given above.

The clock inputs can be driven in various manners: as fast as possible for
offline processing, by hardware timers for realtime, or by consumer speed (such
as a display frame rate) for modeled time. Iterations of step can be performed
in a tight loop until terminated externally, in small batches to fill a buffer, or
individually in interrupt-handler style for ultra-low-latency computation.

4.1 Memory Usage

The Java language and the JVM have been criticized for not being fully object-
oriented, but maintaining the distinction between primitive data types and ob-
ject reference types.[13] However, the distinction works to our advantage for the
efficiency and realtime behavior of Sig-adLib program execution.

The predefined implementations of signal sources of primitive value type
have been designed carefully to avoid any dynamic use of objects at runtime; in
particular, they do not box or otherwise wrap values, or hold them in collections.
By virtue of the distjoint subdomains in both the type system and the instruction
set of the JVM, this property is easy to specify, realize and check. Furthermore,
typical data-flow algorithms that do require stateful constructs can be limited
to fixed amounts of memory that are allocated at construction time of the POG.

As a result of these two properties, Sig-adLib programs, unless explicitly
constructed to allocate objects, run idefinitely on constant memory, and do not
cause any garbage collector load. Experiments have shown that this eliminates
the crucial obstacle to the use of a vanilla JVM, or any managed language
environment that is not realtime-hardened for that matter, in low-latency soft-
realtime applications such as online audio synthesis.

4.2 Compilation

While a modular, extensible, dynamically meta-programmed embedded language
is very convenient for the user, it can be quite challenging to execute efficiently.
The fine-grained use of strongly encapsulating interfaces creates numerous ab-
straction barriers that hinder non-local optimization. Thus the jit compiler of
the JVM can not be expected to generate particularly short or fast machine code
for Sig-adLib programs.

For this reason, Sig-adLib is also equipped with a dedicated compiler that
dynamiclly creates specialized JVM bytecode for a particular whole POG, which

obliterates abstraction barriers and dynamic bindings and is far more suitable
for both bytecode interpretation and jit compilation.

In this situation, the apparent curse of modularity turns into a blessing: Be-
cause all implementations are hidden behind interfaces, interpreted Sig-adLib
POGs can be transparently replaced, wholesale or in parts of arbitrary granular-
ity, by compiled counterparts. For example, the abstract type IntClockedSignal-
Source comes equipped with a default method IntClockedSignalSource compile()
that generates, loads and instantiates a freshly specialized implementation class
on the fly.

The implementation of the bytecode generator is modular and distributed
alongside the interpreter. Compilation support is optional for extension classes;
since the interpreter is context-free, specialized code can call back into inter-
pretation at any time, if an embedded PO does not come with a specific code
generator fragment. At compile time, a context object is passed around, which
is responsible for the upper structure of the generated class and acts as a cen-
tral sink for the bytecode instructions emitted by the per-PO code generator
fragments.

Despite the fact that the modular bytecode generator is not able to per-
form complex non-local optimizations, vast performance gains are obtained by
the well-known combination of early binding, control-flow unfolding, constant
propagation and aggressive inlining. The latter is aided in particular by the non-
recursive nature of micro-time computations. The resulting mostly sequential
instruction sequences can then be attacked effectively by the jit compiler with
SSA-based non-local optimizations.

The only non-local optimization currently supported by the Sig-adLib com-
piler is the localization of data cache variables: Any such variables that are
introduced by the stored() construct and not accessible at the interface of the
compiled network may be demoted from heap to stack allocation. This is pos-
sible because, with full inlining, the writer and reader code end up in the same
method body.

The Sig-adLib compiler is based on the LLJava-live bytecode genera-
tor framework, which is an experimental implementation of the staged meta-
programming paradigm for the JVM, and has been applied to educational ex-
amples [21] and a real-world Java-hosted EDSL for nondeterministic pattern
matching [20]. The basic idea is to pair each interpreter fragment with a corre-
sponding inlining bytecode generator fragment. The heteroiconic staged meta-
programming style ensures that the two are reasonably similar in appearance.
Fig. 18 depicts an example, namely the inner structure of the class that imple-
ments the construct input.map(op) for element type type int. Note how the
compiler uses andThen, the sequential combinator of a pair of code generators,
to realize implicit data flow via the JVM operand stack: the former produces
(pushes) a value, and the latter consumes (pops) it. The code generator prim-
itive storeOutput replaces the interprocedural return of the interpreter by a
local assignment, in order to behave ideally in an inlining context.

final IntSignalSource input;
final CompilableIntUnaryOperator op;

@Override public int getAsInt() {
return op.applyAsInt(input.getAsInt());

}

@Override public Consumer<CompilationContext> compileGetAsInt() {
return storeOutput(input.compileGetAsInt()

.andThen(op.compileApplyAsInt()));
}

Fig. 18. Compilation of Sig-adLib construct input.map(op) (Excerpt)

5 Case Study: Zero-Crossing Detection

As an example of a realistic problem of nontrivial but manageable algorithmic
complexity, we investigate zero-crossing detection. The idealized continuous ver-
sion of this problem is deceptively simple: Given a real-valued time-dependent
signal x ∶ R → R, detect the points t0 in time where some ε > 0 exists such that

(sgnx(t0 − δ))(sgnx(t0 + δ)) = −1 for all 0 < δ < ε .

For actual synchronous data-flow implementations, things become more dif-
ficult because of four key differences:

1. Signals are discretized in time by sampling. Zero-crossing detection must
work by comparing the signs of successive sampled values, but regardless
whether the actual zero value happens precisely at a sampling point, or in
between two adjacent ones.

2. Signals can have zero intervals. For many analytic functions, zeroes occur
as isolated points. By contrast, arbitrary signals are prone to retaining zero
values for arbitrarily long periods. (E.g., consider the output of a sensor that
has been switched off to reduce energy consumption.) Zero-crossing detection
must not raise false alarms during these periods.

3. Floating-point numbers come with additional semantics that extend the reals.
Zero-crossing detection must work robustly in the presence of signed infinities
and, notoriously, missing values (not-a-number, NaN).

4. Signals do not continue an infinite past, but start at some particular point
in time. Zero-crossing detection must work right away, with arbitrary initial
values.

5.1 Algorithm Design

The most elegant formulation, at least to our knowledge, of an algorithm that
decisively settles all of these issues is depicted in Fig. 19. The leftmost column
of operations classifies the input signal x into three cases, namely

<0

>0

/≶0

S&H

S&H

∨

float

boolean

p

n

o
x

P

N

u

d

c

Fig. 19. Data-Flow Network for Zero-Crossing Detector

– positive numbers including infinity (p),

– negative numbers including infinity (n),

– signless numbers, i.e. positive and negative zero (sic!) and NaN (o).
8

The signals p/n encode the observation that the input signal x is currently
definitely in the positive/negative half-space, respectively.

To prevent jitter in case of signless values, in the second column each is fed
into a sample-and-hold (S&H) component, to the effect that the previous hy-
pothesis value is retained if the current input is signless. Thus the signals P/N
encode the observation that the input signal x has last been in the positive/neg-
ative half-space respectively.

The third column of operations detect rising flanks () in the preceding sig-
nals, i.e., u/d encode the observation that the input signal has newly moved into
the positive/negative half-space, respectively, in the current sampling interval,
thereby having crossed zero. Assuming that the direction of crossing is irrelevant,
both can be or-ed together, resulting in the output signal c.

By initializing all stateful components, namely the sample-and-hold and
rising-flank components highlighted with white background, with true for the
virtual preceding values, the danger of false positives is averted for signals that
start with an indefinitely long sequence of signless values.

The straightforward Sig-adLib implementation, together with those of its
subcomponents, is depicted in Fig. 20. Note how the different aspects can be
segregated into easily discernible clusters in the code; we have found this likely
to hold for any well-designed algorithm.

8
The test for this final condition can of course be replaced by a NOR of the preceding
two, but apparent improvement in empirical performance is insignificant.

public BooleanClockedSignalSource zeroCrossing() {
final FloatClockedSignalSource copy = this.stored();
final BooleanClockedSignalSource

neut = copy.guard(zero.or(notANumber)).stored(),
pos = copy.guard(positive).sampleAndHold(neut, true),
neg = copy.guard(negative).sampleAndHold(neut, true),
up = pos.rising(true),
down = neg.rising(true);

return up.or(down).stored().after(copy, neut, pos, neg, up, down);
}

public BooleanClockedSignalSource sampleAndHold(BooleanSignalSource hold,
boolean initValue) {

return delayedFeedback(initValue, prev -> hold.choose(prev, this));
}

public BooleanClockedSignalSource rising(boolean initialValue) {
final BooleanClockedSignalSource prev = delayed(initialValue);
return zipWith((now, before) -> now & !before, prev)

.stored().after(prev);
}

Fig. 20. Sig-adLib Implementation of Zero-Crossing Detector

5.2 Evaluation

The Sig-adLib POG as implemented above has been evaluated empirically by
a number-crunching benchmark. In this setup, the input stream consists of
K = 10

3
iterations over a pre-computed array of M = 10

6
values generated

by an autoregressive random process, such that zero crossings are abundant but
occur irregularly. All measurements have been carried out on a dual Core i5-
10210U CPU at 1.6 GHz with 8 GiB of RAM, running Ubuntu 20.04LTS and
the OpenJDK 11.0.10 64-bit Server VM. Computation times have been mea-
sured as whole-loop wallclock times with System.nanoTime precision. Every run
has been immediately preceded by an identical dry run to allow for jit compiler
warmup.

The Java test harness for interpreted/compiled execution of the same POG
differs only dynamically, precisely by the occurrence of a call to the factory
method FloatClockedSignalSource.compile(). Compilation itself runs in few
milliseconds, including bytecode generation, loading, verification and instantia-
tion, and requires no external resources besides the LLJava-live library. [21]

On average, the interpreted and compiled variant have been measured to
take 197.1 ns and 4.2 ns per element, respectively. This translates to a speedup
of 47, which indicates that significant abstraction barriers have been removed by
compilation. For comparison, a simple baseline experiment with a hand-written
monolithic C function, statically compiled with gcc 9.3.0 with options -O3 -fno-

0x7935d141: vmovss 0x10(%r11,%r9,4),%xmm2 ; load x from array
; ...

0x7935d17a: vxorps %xmm1,%xmm1,%xmm1
0x7935d17e: vucomiss %xmm2,%xmm1 ; x = 0?
0x7935d182: jp 0x7935d18a
0x7935d184: je 0x7935d211 ; goto side path (0)
0x7935d18a: vucomiss %xmm2,%xmm2 ; x NaN?
0x7935d18e: jp 0x7935d249 ; goto side path (NaN)
0x7935d194: jne 0x7935d249 ; goto side path (NaN)
0x7935d19a: movzbl 0x13(%rsi),%r11d ; load P.prev
0x7935d19f: movzbl 0x12(%rsi),%r10d ; load N.prev
0x7935d1a4: xor $0x1,%r11d ; !P.prev
0x7935d1a8: xor $0x1,%r10d ; !N.prev
0x7935d1ac: xor %r9d,%r9d
0x7935d1af: mov $0x1,%ecx
0x7935d1b4: vucomiss %xmm2,%xmm1 ; x > 0?
0x7935d1b8: mov $0x1,%ebx
0x7935d1bd: cmovbe %r9d,%ebx ; p = (x > 0)
0x7935d1c1: mov %bl,0x11(%rsi) ; store p
0x7935d1c4: mov %bl,0x13(%rsi) ; store P
0x7935d1c7: vucomiss 0xffffff11(%rip),%xmm2 ; x < 0?
0x7935d1cf: cmovbe %r9d,%ecx ; n = (x < 0)
0x7935d1d3: mov %cl,0x10(%rsi) ; store n
0x7935d1d6: mov %cl,0x12(%rsi) ; store N
0x7935d1d9: and %ebx,%r11d ; u = P & !P.prev
0x7935d1dc: and %ecx,%r10d ; d = N & !N.prev
0x7935d1df: or %r11d,%r10d ; c = u | d
0x7935d1e2: and $0x1,%r10d
0x7935d1e6: mov %r10l,0x14(%rsi) ; store c

; ...
; (side paths)

Fig. 21. Disassembly of JIT-Compiled Zero-Crossing Detector

inline9 on the same machine has yielded 4.2 ns as well; the apparent difference
is less than the precision of measurement. This finding can be confirmed by dis-
assembly of the resulting jit-compiled machine code. Fig. 21 depicts the relevant
excerpt for the hottest path. It can be clearly seen that each Sig-adLib PO
translates into a small number of instructions, selected from the most adequate
extension layer supported by the host CPU, in this case MMX registers and the
AVX instruction set.

9
Inlining into the main loop must be prevented to preserve the IoC architecture;
otherwise benefits from loop unrolling enter the picture.

6 Conclusion

We have demonstrated how data stream processing can be implemented as an
EDSL in Java, or for that matter in any mainstream managed language. The Sig-
adLib approach relies on an extensible framework of PO classes and POG con-
structs. Every node type is equipped at least with decentral self-interpretation,
and optionally with a bytecode generator. Programs are constructed by meta-
programming in the host language, and executed by a straightforward IoC API
with neglectible overhead.

In contrast to purely declarative language designs, Sig-adLib makes the
control flow aspects of programs, namely the causal firing order of POs, visible
to the client. While this is perfectly acceptable for use in a compiler backend,
it places some unwelcome burden on the human programmer. Since it is well-
known that causality is a non-local property [5], a fully automatic solution that
is also compatible with the compositional and extensible nature of the language
is not easily conceivable. We foresee the possibility of automation by reflection
on the completed POG structure, assuming cooperation of all POs, but leave
the topic for future research.

The transparent support for compilation for Sig-adLib POGs promises the
best of both worlds: Interpreted programs, which can be constructed dynamically
(and debugged with vanilla host language IDEs) for rapid prototyping on the
one hand, and their compiled counterparts with full participation in JVM code
acceleration techniques and competitive real-world performance on the other,
just a method call apart. Future experience with realistic projects will tell if
there are also substantial downsides, but so far the results are consistent with
optimism.

Acknowledgments

Thanks to G. Voutsinos and K. Hufenbach for illuminating discussions.

References

[1] M. Bärenz and I. Perez. “Rhine: FRP with Type-Level Clocks”. In: SIGPLAN
Not. 53.7 (2018), pp. 145–157. doi: 10.1145/3299711.3242757.

[2] M. Belhadj, R. McConnell, and P. L. Guernic. “A framework for macro- and
micro-time to model VHDL attributes”. In: Proc. EURO-VHDL 1993. IEEE,
1993, pp. 520–525. doi: 10.1109/EURDAC.1993.410686.

[3] G. Berry and G. Gonthier. “The Esterel synchronous programming language:
design, semantics, implementation”. In: Science of Computer Programming
19.2 (1992), pp. 87–152. doi: 10.1016/0167-6423(92)90005-V.

[4] P. Caspi et al. “LUSTRE: A Declarative Language for Real-Time
Programming”. In: Proc. POPL 1987. ACM, 1987, pp. 178–188. doi:
10.1145/41625.41641.

https://doi.org/10.1145/3299711.3242757
https://doi.org/10.1109/EURDAC.1993.410686
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/41625.41641

[5] P. Cuoq and M. Pouzet. “Modular Causality in a Synchronous Stream
Language”. In: vol. 2028. LNCS. Springer, 2001, pp. 237–251. doi:
10.1007/3-540-45309-1_16.

[6] T. Gautier and P. Le Guernic. “SIGNAL: A declarative language for
synchronous programming of real-time systems”. In: Proc. FPCA. Vol. 274.
LNCS. Springer, 1987, pp. 257–277. doi: 10.1007/3-540-18317-5_15.

[7] P. Hudak. “Principles of Functional Reactive Programming”. In: SIGSOFT
Softw. Eng. Notes 25.1 (2000), p. 59. doi: 10.1145/340855.340961.

[8] P. Hudak et al. “Arrows, Robots, and Functional Reactive Programming”. In:
Lect. AFP 2002. Vol. 2638. LNCS. Springer, 2002, pp. 159–187. doi:
10.1007/978-3-540-44833-4_6.

[9] Java Platform, Standard Edition 8: API Specification. Oracle Corporation.
2014–2022. url: https://docs.oracle.com/javase/8/docs/api/.

[10] W. Kahan. “Further remarks on reducing truncation errors”. In: Comm. ACM
8.1 (1965), p. 40. doi: 10.1145/363707.363723.

[11] Language Reference. Arduino. 2019. url:
https://www.arduino.cc/reference/en/.

[12] Y. Orlarey, D. Fober, and S. Letz. “Syntactical and semantical aspects of
Faust”. In: Soft Comput. 8.9 (2004), pp. 623–632. doi:
10.1007/s00500-004-0388-1.

[13] N. Ourusoff. “Primitive Types in Java Considered Harmful”. In: Commun.
ACM 45.8 (2002), pp. 105–106. issn: 0001-0782. doi: 10.1145/545151.545182.

[14] T. Place and T. Lossius. “Jamoma: A modular standard for structuring
patches in Max”. In: Proc. of the International Computer Music Conference
2006. 2006, pp. 143–146.

[15] Pure Data Homepage. 2011. url: http://puredata.info/docs.
[16] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Numbers and

Redundant Computations”. In: Proc. POPL 1988. ACM, 1988, pp. 12–27. doi:
10.1145/73560.73562.

[17] Simulink, Dynamic System Simulation for Matlab — Using Simulink. The
MathWorks. 2000. url: http://www.mathworks.com.

[18] The Lustre V6 Reference Manual. Verimag. 2022. url: https://www-
verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf.

[19] B. Trancón y Widemann and M. Lepper. “Foundations of Total Functional
Data-Flow Programming”. In: Proc. MSFP 2014. Vol. 154. EPTCS. 2014,
pp. 143–167. doi: 10.4204/EPTCS.153.10.

[20] B. Trancón y Widemann and M. Lepper. “Improving the Performance of the
Paisley Pattern-Matching EDSL by Staged Combinatorial Compilation”. In:
Declarative Programming and Knowledge Management. Vol. 12057. LNAI.
Springer, 2019. doi: 10.1007/978-3-030-46714-2.

[21] B. Trancón y Widemann and M. Lepper. “LLJava live at the loop: a case for
heteroiconic staged meta-programming”. In: Proc. MPLR 2021. ACM, 2021,
pp. 113–126. doi: 10.1145/3475738.3480942.

[22] B. Trancón y Widemann and M. Lepper. “On-Line Synchronous Total Purely
Functional Data-Flow Programming on the Java Virtual Machine with Sig”.
In: Proc. PPPJ 2015. ACM, 2015, pp. 37–50. doi: 10.1145/2807426.2807430.

https://doi.org/10.1007/3-540-45309-1_16
https://doi.org/10.1007/3-540-18317-5_15
https://doi.org/10.1145/340855.340961
https://doi.org/10.1007/978-3-540-44833-4_6
https://docs.oracle.com/javase/8/docs/api/
https://doi.org/10.1145/363707.363723
https://www.arduino.cc/reference/en/
https://doi.org/10.1007/s00500-004-0388-1
https://doi.org/10.1145/545151.545182
http://puredata.info/docs
https://doi.org/10.1145/73560.73562
http://www.mathworks.com
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
https://doi.org/10.4204/EPTCS.153.10
https://doi.org/10.1007/978-3-030-46714-2
https://doi.org/10.1145/3475738.3480942
https://doi.org/10.1145/2807426.2807430

Appendix

final float[] data = new float[N];
// prepare data ...
final FloatClockedSignalSource input = cycle(data);
BooleanClockedSignalSource cross = input.zeroCrossing().after(input);
if (COMPILE)

cross = cross.compile();
final ConstantRealtimeContext rc = rate(1);

// warm-up
cross.init();
for (int i = 0; i < K * N; i++) {

cross.step(rc);
cross.getAsBoolean();

}

// race
cross.init();
final long tstart = System.nanoTime();
for (int i = 0; i < K * N; i++) {

cross.step(rc);
cross.getAsBoolean();

}
final long tend = System.nanoTime();

Fig. 22. Zero-crossing detection – Sig-adLib benchmark harness

#include <stdbool.h>

#define K 1000
#define M 1000000

static float data[M];
static int i;
static bool P, N, Pprev, Nprev;
static volatile bool cross;

void zero_cross_init()
{
P = true;
N = true;
Pprev = true;
Nprev = true;

}

void zero_cross_step()
{
float x = data[i];
i = (i + 1) % M;
bool p = x > 0;
bool n = x < 0;
bool o = (x == 0) | (x != x);
P = o ? P : p;
N = o ? N : n;
bool up = P & !Pprev;
bool down = N & !Nprev;
Pprev = P;
Nprev = N;
cross = up | down;

}

int main()
{
zero_cross_init();
i = 0;
for (int t = 0; t < K; t++)
for (int j = 0; j < M; j++)
zero_cross_step();

}

Fig. 23. Zero-crossing detection – C99 baseline implementation

Understanding Algebraic Effect Handlers
via Delimited Control Operators

Youyou Cong1[0000−0003−2315−6182] and Kenichi Asai2

1 Tokyo Institute of Technology
2 Ochanomizu University
cong@c.titech.ac.jp

asai@is.ocha.ac.jp

https://prg.is.titech.ac.jp/people/cong/

http://pllab.is.ocha.ac.jp/~asai/

Abstract. Algebraic effects and handlers are a powerful and convenient
abstraction for user-defined effects. In this paper, we present three re-
sults from our ongoing work on enhancing the understanding of effect
handlers via control operators. Specifically, we establish two program
transformations and a type system for effect handlers, all by reusing the
existing results about control operators and their relationship to effect
handlers.

Keywords: Algebraic effects and handlers · Delimited control operators
· Macro translation · CPS translation · Type systems.

1 Introduction

Algebraic effects [33] and handlers [34] have become an essential element of a
programmer’s toolbox. Effect handlers provide a convenient interface for defining
and composing effects. They also enable concise implementation of sophisticated
behavior by giving the programmer access to continuations.

Over the past decade, researchers have been actively studying the theory
of effect handlers. As an outcome of these studies, we have obtained various
program transformations for effect handlers, which can be used to compile effect
handlers into plain λ-terms [16,36,38]. There are also a variety of type systems
for effect handlers, in which effects are represented as sets [2], rows [13], or
capabilities [7].

We continue the study of effect handlers, but from a different point of view.
Instead of directly developing the theory of effect handlers, we derive it from
the theory of delimited control operators [9,17,27,10]. Control operators have a
longer history than effect handlers, and their theory is closely connected to that
of effect handlers [12,31]. We aim to enhance the understanding of effect handlers
by using the existing results about control operators, as well as the connection
between effect handlers and control operators.

In this paper, we discuss a variant of control operators known as shift0 and
dollar [28], and a variant of effect handlers that are called deep handlers [18].
Our goal is to answer the following research questions.

https://prg.is.titech.ac.jp/people/cong/
http://pllab.is.ocha.ac.jp/~asai/

2 Y. Cong

– The dollar operator extends the more traditional reset0 operator with a
return clause, and this extension is known to cause no change in the expres-
siveness [28]. Does this result apply to deep effect handlers as well?

– The shift0 and dollar operators are associated with a CPS translation that
can be viewed as a definitional interpreter. What CPS translation can we
derive for deep effect handlers from the CPS translation for shift0 and
dollar?

– The typing of shift0 and dollar is directed by their CPS translation [8,17,27],
rather than their direct-style form. What type system can we derive for deep
effect handlers using the CPS approach?

We begin by defining a calculus of shift0/dollar (Section 2) and another
calculus of deep effect handlers (Section 3). We next answer the three questions
one by one (Sections 4 to 6). We then discuss related work (Section 7) and
conclude with future perspectives (Section 8).

2 λS0: A Calculus of Shift0 and Dollar

As a calculus of control operators, we consider a minor variation of Forster et
al.’s calculus of shift0 and dollar [12], which we call λS0 . In Figure 1, we present
the syntax and reduction rules of λS0 . The calculus differs from that of Forster
et al. in that it is formalized as a fine-grain call-by-value calculus [24] instead
of call-by-push-value [23]. This means (i) functions are classified as values; and
(ii) computations must be explicitly sequenced using the let expression. The
fine-grain syntax simplifies the CPS translation and type system developed in
later sections.

Among the control constructs, S0k.M (pronounced “shift”) captures a con-
tinuation surrounding itself. The other construct 〈M | x.N〉 (pronounced “dol-
lar”) computes the main computation M in a delimited context that ends with
the continuation N3.

There are two reduction rules for the control constructs. If the main com-
putation of dollar evaluates to a value V , the whole expression evaluates to the
ending continuation N with V bound to x (rule (βS0)). If the main computa-
tion evaluates to F [S0k.M], where F is a pure evaluation context that has no
dollar surrounding a hole, the whole expression evaluates to M with k being
the captured continuation λy. 〈F [return y] | x.N〉 (rule (β$)). Notice that the
continuation includes the dollar construct that was originally surrounding the
shift0 operator. This design is shared with the shift operator of Danvy and
Filinski [9]. Notice next that the body of shift0 is evaluated without being
surrounded by the original dollar. This differentiates shift0 from shift, and
allows shift0 to capture a meta-context, i.e., a context that resides outside of
the lexically closest dollar.

3 The original dollar operator proposed by Materzok and Biernacki [28] takes the form
N $M , where M is the main computation and N is an arbitrary expression repre-
senting an ending continuation. We are in essence restricting N to be an abstraction
λx.N .

Understanding Algebraic Effect Handlers via Delimited Control Operators 3

Syntax

V,W ::= x | λx.M Values

M,N ::= return V | V V | let x = M in M | S0k.M | 〈M | x.M〉 Computations

Pure Evaluation Contexts

F ::= [] | let x = F in M

Reduction

(λx.M) V M [V/x] (βv)

let x = return V in M M [V/x] (ζv)

〈return V | x.M〉 M [V/x] (β$)

〈F [S0k.M] | x.N〉 M [λy. 〈F [return y] | x.N〉/k] (βS0)

Fig. 1. Syntax and Reduction Rules of λS0

3 λh: A Calculus of Effect Handlers

As a calculus of effect handlers, we consider a restricted variant of Hillerström et
al.’s calculus of deep handlers [16], which we call λh. In Figure 2, we present the
syntax and reduction rules of λh. The calculus differs from Hillerström et al.’s in
that it features unlabeled operations. This means handlers in λh can only handle
a single operation. The restriction helps us concentrate on the connection to the
λS0

calculus.

Among the effect constructs, do V performs an operation with argument
V . The other construct handle M with {x.Mr; x, k.Mh} computes the main
computation M in a delimited context, and handles the result of M using the
return clause Mr and the operation clause Mh.

There are again two reduction rules for the effect constructs. If the main
computation of a handler evaluates to a value V , the whole expression evaluates
to the return clause N with V bound to x (rule (βh)). If the main computation
evaluates to F [do V], where F is a pure evaluation context that has no handler
surrounding a hole, the whole expression evaluates to the operation clause Mh,
with x being V and k being the captured continuation (often called “resumption”
in the effect handlers literature) λy. handle F [return y] with {x.Mr; x, k.Mh}
(rule (βdo)). Notice that the continuation includes the handler that was originally
surrounding the operation. This design is shared with shift0, and characterizes
handlers in λh as deep ones [18]. Notice next that the operation clause is evalu-
ated without being surrounded by the original handler. This is another similarity
to shift0, and allows handlers to capture a metacontext.

4 Y. Cong

Syntax

V,W ::= x | λx.M Values

M,N ::= return V | V V | let x = M in M Computations

| do V | handle M with {x.M ; x, k.M}

Pure Evaluation Contexts

F ::= [] | let x = F in M

Reduction

(λx.M) V M [V/x] (βv)

let x = return V in M M [V/x] (ζv)

handle return V with {x.Mr; x, k.Mh} Mr[V/x] (βh)

handle F [do V] with {x.Mr; x, k.Mh} Mh[V/x, f/k] (βdo)

where f = λy. handle F [return y]

with {x.Mr; x, k.Mh}

Fig. 2. Syntax and Reduction Rules of λh

4 Adding and Removing the Return Clause

The dollar construct 〈M | x.N〉 in λS0
is a generalization of the “reset” construct

〈M〉, which is more commonly found in the continuations literature. The reset
construct does not have an ending continuation; it simply evaluates the body
M in an empty context. As shown by Materzok and Biernacki [26], the dollar
and reset constructs can macro-express [11] each other. That is, there is a pair
of local translations, called macro translations, that add and remove the ending
continuation while preserving the meaning of the program.

It is easy to see that the return clause of an effect handler plays a similar role
to the ending continuation of dollar. Thus, we can naturally consider a variant
of effect handlers without the return clause. Such handlers are not uncommon
in formalizations [36,38,40] as they simplify the reduction and typing rules. Now
the reader might wonder: Does the existence of the return clause affects the
expressiveness of an effect handler calculus?

In this section, we define macro translations between handlers with and with-
out the return clause. We show that, to remove the return clause, we need
to equip the target language with facilities for distinguishing between different
kinds of operations. In what follows, we review the macro translations between
dollar and reset (Section 4.1), then adapt the translations to effect handlers
(Section 4.2), and lastly prove the correctness of the translations (Section 4.3).

Understanding Algebraic Effect Handlers via Delimited Control Operators 5

4.1 Translating Between Dollar and Reset0

Materzok and Biernacki [28] define the macro translations J Km between dollar
and reset0 as follows4.

From dollar to reset

J〈M | x.N〉Km = 〈let y = JMKm in S0z. (λx. JNKm) y〉

From reset to dollar

J〈M〉Km = 〈JMKm | x.return x〉

The translation from reset to dollar is straightforward: it simply adds a trivial
ending continuation. The translation from dollar to reset is more involved: it
wraps the computation JMKm around a reset, and inserts a shift0 to remove the
surrounding reset. The removal of reset is necessary for preservation of meaning
(the return clause should not be evaluated under the original handler), and is
realized by discarding the captured continuation z.

Note that the translation of other constructs is defined homomorphically. For
instance, we have Jλx.MKm = λx. JMKm.

4.2 Translating Between Handlers with and without Return Clause

Guided by the translations between dollar and reset, we define macro translations
between handlers with and without the return clause. We can easily imagine
that adding the return clause is simple. To remove the return clause, we must
somehow implement the removal of a handler. In a calculus of effect handlers,
any non-local control is triggered by an operation call. This means we need
to make an operation call when we wish to remove a handler. Unlike shift0,
however, an operation call does not have an interpretation on its own. This
means we need to implement the removing behavior in the surrounding handler,
while distinguishing the “return operation” from regular operations.

In Figure 3, we define a calculus of effect handlers without the return clause,
which we call λ−h . The calculus has labels l and pairs 〈l, V 〉, allowing us to repre-
sent the return and regular operations as do 〈ret, V 〉 and do 〈op, V 〉, respectively.
The calculus also has pattern matching constructs, with which we can interpret
the two kinds of operations differently in a handler. Note that these facilities
are introduced only for the translation purpose. That is, we assume that the
user can only program with unlabeled operations; they do not have access to the
shaded constructs in Figure 3.

We now define the macro translations between λh and λ−h
5.

4 The macro translation is originally defined as:

(λk. 〈(λx.S0z. k x) JMKm〉) JNKm

We adapted the translation by sequencing the application, and by incorporating the
fact that N is always a λ-abstraction.

5 Note that these translations are not designed for a typed setting. Specifically, the
translation of regular handlers yields a single pattern variable x representing the
arguments of the ret and op operations, which may be of different types.

6 Y. Cong

Syntax

V,W ::= x | λx.M | 〈l, V 〉 Values

M,N ::= return V | V V | let x = M in M | do V Computations

| casep V of {〈l, x〉 →M} | casel l of {ret→M ; op→M}

| handle M with {x, k.M}
l ::= op | ret Labels

Reduction

(λx.M) V M [V/x] (βv)

let x = return V in M M [V/x] (ζv)

casep 〈l, V 〉 of {〈l′, x〉 →Mr} Mr[l/l′, V/x] (ιp)

casel ret of {ret→Mr; op→Mh} Mr (ιret)

casel op of {ret→Mr; op→Mh} Mh (ιop)

handle return V with {x, k.Mh} return V (βh)

handle F [do V] with {x, k.Mh} M [V/x, f/k] (βdo)

where f = λy. handle F [y] with {x, k.Mh}

Fig. 3. λ−h : A Calculus of Effect Handlers without the Return Clause

From λh to λ−h

Jdo V Km = do 〈op, JV Km〉
Jhandle M with {x.Mr; x, k.Mh}Km = handle (let y = JMKm in do 〈ret, y〉) with

{p, k → casep p of 〈l, x〉 →
{casel l of {ret→ JMrKm; op→ JMhKm}}}

From user fragment of λ−h to λh

Jdo V Km = do JV Km
Jhandle M with {x, k.Mh}Km = handle JMKm with {x. return x; x, k. JMhKm}

The first translation attaches a label op to regular operations and simulates the
return clause by performing a ret operation, which removes the surrounding
handler by discarding the continuation k. The second translation is fairly easy.

4.3 Correctness

The macro translations defined above preserve the meaning of programs. We
state this property as the following theorem.

Understanding Algebraic Effect Handlers via Delimited Control Operators 7

Theorem 1 (Correctness of Macro Translations). Let = be the least con-
gruence relation that includes the reduction in λh and λ−h .

1. If M = N in λh, then JMKm = JNKm in λ−h .
2. If M = N in the user fragment of λ−h (i.e., the fragment consisting of non-

shaded constructs), then JMKm = JNKm in λh.

Proof. By cases on the reduction relation M N . We provide the proof of
interesting cases in Appendix A.

5 Deriving a CPS Translation

The classical way of specifying the semantics of control operators is to give a
translation into continuation-passing style (CPS) [32], which converts control
operators into plain lambda terms. In the case of shift0 and dollar (or reset),
there exist several variants of CPS translation, differing in the representation of
continuations [3,10,37,27,28].

Compared to control operators, the semantics of effect handlers seems to be
less tightly tied to the CPS translation. In fact, the CPS translation of effect
handlers has not been formally studied until recently [16,15]. This gives rise to
a question: What would we obtain if we derive the CPS translation of effect
handlers from that of control operators, which is considered definitional?

In this section, we derive the CPS translation of effect handlers by composing
the following translations.

1. The macro translation from effect handlers to shift0/dollar [12]
2. The CPS translation of shift0/dollar [28]

We show that, by not introducing “administrative” constructs in the macro
translation, we obtain the same CPS translation as the unoptimized6 translation
given by Hillerström et al. [16]. In what follows, we review the existing CPS
translations of shift0/dollar and effect handlers (Sections 5.1 and 5.2), as well
as the macro translation from effect handlers to shift0/dollar (Section 5.3). We
then compose the first and third translations to obtain the second translation
(Section 5.4), thus formally relating the CPS translations of shift0/dollar and
effect handlers.

5.1 CPS Translation of Shift0 and Dollar

In Figure 4, we present the CPS translation from λS0
to the plain λ-calculus. The

definition is adopted from Hillerström et al. [16] (for the λ-terms fragment) and
Materzok and Biernacki [28] (for shift0/dollar). We have two mutually-defined
translations J Kc′ and J Kc, taking care of values and computations, respectively.

6 By “unoptimized translation”, we mean the first-order translation in Figure 5 of
Hillerström et al. [16].

8 Y. Cong

JxKc′ = x

Jλx.MKc′ = λx. JMKc
Jreturn V Kc = λk. k JV Kc′

JV W Kc = JV Kc′ JW Kc′

Jlet x = M in NKc = λk. JMKc (λx. JNKc k)

JS0k.MKc = λk. JMKc
J〈M | x.N〉Kc = JMKc (λx. JNKc)

Fig. 4. CPS Translation of λS0 [16,27]

Jdo V Kc = λk. λh. h JV Kc′ (λx. k x h)

Jhandle M with {x.Mr; x, k.Mh}Kc = JMKc (λx. λh. JMrKc) (λx. λk. JMhKc)

Fig. 5. CPS Translation of λh [16] (cases for λ-terms are the same as Figure 4)

The former yields a direct-style value in the λ-calculus, whereas the latter yields
a continuation-taking function. To go through the cases of the control opera-
tors, the translation turns a shift0 construct into a λ-abstraction, and a dollar
construct into an application of the main computation JMKc to an ending con-
tinuation λx. JNKc7.

5.2 CPS Translation of Effect Handlers

In Figure 5, we present the CPS translation from λh to the plain λ-calculus.
The definition is adopted from Hillerström et al. [16]. We again have separate
translations for values and computations. Among them, the computation trans-
lation yields a function that takes in two continuations: a pure continuation k
for returning a value, and an effect continuation h for handling an operation. To
go through the interesting cases, the translation of an operation calls the effect
continuation h representing the interpretation of that operation8. Notice that
the resumption λx. k x h passed to h includes h itself, reflecting the deep na-
ture of handlers. The translation of a handler sets the two continuations for the
handled computation JMKc. Other cases are the same as the translation of λS0 .
In particular, the translation of a return clause requires only one continuation
argument as the effect continuation can be removed by η-reduction.

7 The CPS translation of the original dollar operator N $M is defined as
λk. JNKc (λf. JMKc f k).

8 The original translation of Hillerström et al. [16] packages the two arguments to h
into a tuple and associates the tuple with an operation label.

Understanding Algebraic Effect Handlers via Delimited Control Operators 9

Jdo V Km = S0k. return (λh. let v1 = h JV Km
in v1 (λx. let v2 = k x in v2 h))

Jhandle M with {x.Mr; x, k.Mh}Km = let v = 〈JMKm | x.return λh. JMrKm〉
in v (λx. return (λk. JMhKm))

Fig. 6. Macro Translation from λh to λS0

Jdo V Km = S0k. (λh. h JV Km (λx. k x h))

Jhandle M with {x.Mr; x, k.Mh}Km = 〈JMKm | x.λh. JMrKm〉 (λx. λk. JMhKm)

Fig. 7. Simpler Macro Translation from λh to λS0 [12]

5.3 Macro Translation from λh to λS0

Having seen the CPS translations, we look at the macro translation from λh to
λS0

(Figure 6), which is adapted from Forster et al. [12]. Roughly speaking, the
translation converts operations into shift0 and handlers into dollar. Technically,
it introduces an effect-continuation-passing mechanism to move the handling
code from the delimiter to the control operator. The result of the translation is
somewhat verbose due to the presence of the return and let expressions; these
are necessary for ensuring that the translation produces a well-formed expression
in fine-grain call-by-value. The original translation of Forster et al. (Figure 7) is
simpler, as it is defined on call-by-push-value (where the operator of an appli-
cation may be a computation). Note that, in both versions, the translation of
λ-terms is defined homomorphically.

5.4 Composing Macro and CPS Translations

Now, let us derive a CPS translation of λh by composing the macro translation
on λh and the CPS translation on λS0

.

Operations We begin with the case of operations. Below is the näıve composition
of the macro and CPS translations.

JJdo V KmKc
= JS0k. return (λh. let v1 = h JV Km in v1 (λx. let v2 = k x in v2 h)Kc
= λk. λk1. k1 (λh. λk2. h JJV KmKc′ (λv1. v1 (λx. λk3. k x (λv2. v2 h k3)) k2))

The result has four continuation variables: k, k1, k2, and k3. Among them, the
latter three continuations come from the return and let expressions introduced
by the macro translation. As we mentioned before, these return and let are

10 Y. Cong

only necessary for the well-formedness of macro-translated expressions. In other
words, they do not have any computational content. What this implies is that,
when our ultimate goal is to convert effect handlers into plain λ-terms, we can
use a simpler macro translation that does not yield these administrative return

and let. This simpler translation is exactly the original translation by Forster
et al. [12], and it allows us to avoid the three continuation variables as shown
below.

JJdo V KmKc
= JS0k. λh. h JV Km (λx. k x h)Kc
= λk. λh. h JJV KmKc′ (λx. k x h)

The result of composition is identical to the existing translation of operations,
which we saw in Figure 5.

Handlers We next look at the handler case. Below is the näıve composition of
the two translations.

JJhandle M with {x.Mr; x, k.Mh}KmKc
= Jlet v = 〈JMKm | x.return λh. JMrKm〉 in v (λx. return λk. JMhKm)Kc
= λk1. (JJMKmKc (λx. λk2. k2 (λh. JJMrKmKc))) (λv. v (λx. λk3. k3 (λk. JJMhKmKc)) k1)

As in the case of operations, the result has three continuation variables k1, k2,
and k3 that originate from the macro translation. To avoid these continuation
variables, we use the simpler macro translation of Forster et al. This makes the
composition more concise, as shown below.

JJhandle M with {x.Mr; x, k.Mh}KmKc
= J〈JMKm | x.λh. JMrKm〉 (λx. λk. JMhKm)Kc
= JJMKmKc(λx. λh. JJMrKmKc) (λx. λk. JJMhKmKc)

The result is again the same as the existing translation of handlers we saw in
Figure 5.

6 Deriving a Type System from the CPS Translation

The traditional approach to designing a type system for control operators is to
analyze their CPS translation [8], which exposes the typing constraints of each
syntactic construct. In the case of shift0 and dollar, the CPS translation gives
rise to a stack-like representation of effects, reflecting the ability of shift0 to
capture metacontexts [27,28].

Understanding Algebraic Effect Handlers via Delimited Control Operators 11

Unlike control operators, the type system of effect handlers has been designed
independently of the CPS translation. Indeed, the first type system of effect
handlers [2] was proposed before the first CPS translation [16]. This brings up a
question: What would we obtain if we derive the type system of effect handlers
from their CPS translation?

In this section, we derive the type system of effect handlers following the
recipe of Danvy and Filinski [8], which consists of two steps:

1. Annotate the CPS image of each construct in the most general way

2. Encode the identified typing constraints into the typing rules

We show that, when guided by the CPS translation, we obtain a type system
with explicit answer types and a restricted form of answer-type modification [8].
In what follows, we review the existing type systems of shift0/dollar and effect
handlers (Sections 6.1 and 6.2), design a new type system of effect handlers by
applying the CPS approach (Section 6.3), and prove the soundness of the type
system (Section 6.4).

6.1 Type System of Shift0 and Dollar

In Figure 8, we present the type system of λS0 . The type system is adopted
from Hillerström et al [16] (for λ-terms) and Forster et al. [12] (for shift0 and
dollar). There are two classes of types: value types (A,B) and computation types
(C,D). The latter take the form A ! ε, which reads: the computation returns a
value of type A while possibly performing an effect represented by ε9. An effect is
a list of answer types, representing what kind of context is needed to evaluate a
computation10. The list is extended by (Shift0) (which requires a specific kind
of context) and shrunk by (Dollar) (which supplies the required context).

6.2 Type System of Effect Handlers

In Figure 9, we present the type system of λh. The type system is adopted from
Hillerström et al. [16]. We again have value and computation types. An effect is
either the pure effect ι or an operation type A⇒ B; the latter tells us what kind
of handler is needed to evaluate a computation. Operation types are introduced
by (Do) (which requires a specific kind of operation clause) and eliminated by
(Handle) (which supplies the required operation clause). The typing rules for
λ-terms stay the same as those of λS0

because they do not modify effects.

9 In the original type system of Forster et al. [12], effects are attached to the typing
judgment instead of being part of a computation type.

10 The effect representation does not allow answer-type modification. A more general
(and involved) type system supporting answer-type modification is given by Mater-
zok and Biernacki [28].

12 Y. Cong

Syntax of Types and Effects

A,B ::= b | A→ C Value Types

C,D,E ::= A ! ε Computation Types

ε ::= [] | A :: ε Effects

Typing Rules

x : A ∈ Γ
Γ ` x : A

(Var)
Γ, x : A `M : C

Γ ` λx.M : A→ C
(Abs)

Γ ` V : A

Γ ` return V : A ! ε
(Return)

Γ ` V : A→ C Γ `W : A

Γ ` V W : C
(App)

Γ `M : A ! ε Γ, x : A ` N : B ! ε

Γ ` let x = M in N : B ! ε
(Let)

Γ, k : A→ B ! ε `M : B ! ε

Γ ` S0k.M : A ! (B :: ε)
(Shift0)

Γ `M : A ! (B :: ε)
Γ, x : A ` N : B ! ε

Γ ` 〈M | x.N〉 : B ! ε
(Dollar)

Fig. 8. Type System of λS0

Syntax of Types and Effects

A,B ::= b | A→ C Value Types

C ::= A ! ε Computation Types

ε ::= ι | A⇒ B Effects

Typing Rules

Γ ` V : A

Γ ` do V : B !A⇒ B
(Do)

Γ `M : A !A′ ⇒ B′

Γ, x : A `Mr : C
Γ, x : A′, k : B′ → C `Mh : C

Γ ` handle M with {x.Mr; x, k.Mh} : C
(Handle)

Fig. 9. Type System of λh (rules for λ-terms are the same as Figure 8)

Understanding Algebraic Effect Handlers via Delimited Control Operators 13

6.3 Applying the CPS Approach

The type system presented in Figure 9 is defined on the direct-style expressions
in λh. We now design a new type system based on the CPS translation. As we
saw in Section 5, a CPS-translated λh computation is a function that receives
a return continuation and an effect continuation. Among the two arguments, a
return continuation takes in a value and a handler, whereas an effect continuation
takes in an operation argument and a resumption (a continuation whose handler
is already given). Hence, if we annotate the CPS image of a computation in the
most general way, we obtain something like this:

λkA→(A1→(B1→C1)→D1)→E1 . λhA2→(B2→C2)→D2 . eE2

The annotations are however too general. The semantics of deep handlers natu-
rally gives rise to the following invariants.

1. The two handler types A1 → (B1 → C1) → D1 and A2 → (B2 → C2) →
D2 are the same. This is because a computation and its continuation are
evaluated under the same handler.

2. The return type E1 of the return continuation and the return type C2 of the
resumption are the same. This is because a resumption is constructed using
a return continuation.

3. The type E2 of the eventual answer must be either C2 (the type of the return
clause) or D2 (the type of the operation clause).

These invariants lead to the following refined annotations.

λkA→(A′→(B′→C)→D)→C . λhA
′→(B′→C)→D. eE where E = C or D

The annotations have six different types. Among them, A′, B′, C, D, and E
specify the kind of the handler required by the computation. By including these
types in non-empty effects, we arrive at the following effect representation.

ε ::= ι | 〈A⇒ B,C,D,E〉 where E = C or D

Here, 〈A⇒ B,C,D,E〉 carries the following information.

– The computation may perform an operation of type A⇒ B.
– When evaluated under a handler whose return clause has type C and whose

operation clause has type D, the computation returns an answer of type E
(which must be either C or D).

Using this representation of effects, we design the typing rules for λh com-
putations and values. We do this by annotating the CPS image of individual
syntactic constructs and converting annotated expressions into typing deriva-
tions.

14 Y. Cong

Return Expressions We begin by annotating the CPS image of a return expres-
sion. To make the calculation of types easier to follow, we explicitly write the
effect continuation h.

λkA→(A′→(B′→C)→D)→C . λhA
′→(B′→C)→D. (k JV KAc′ h)C

The trivial use of the continuation forces the type of the eventual answer to be C
(corresponding to invariant 3 mentioned above). From this annotated expression,
we obtain the following typing rule.

Γ ` V : A

Γ ` return V : A ! 〈A′ ⇒ B′, C,D,C〉
(Return)

Application We next annotate the CPS image of an application.

(JV KA→C
c JW KAc)C

The annotations simply tell us that the effect of an application comes from the
body of the function. This corresponds to the following typing rule.

Γ ` V : A→ C Γ `W : A

Γ ` V W : C
(App)

Let Expressions Having analyzed application, we consider the let expression.

λkB→(A′→(B′→C)→D)→C .
JMK(A→(A′→(B′→C)→D)→C)→(A′→(B′→C)→D)→E

c

(λxA. JNK(B→(A′→(B′→C)→D)→C)→(A′→(B′→C)→D)→C
c k)

The sequencing of M and N forces the eventual answer type of N to be C. The
corresponding typing rule is as follows.

Γ `M : A ! 〈A′ ⇒ B′, C,D,E〉 Γ, x : A ` N : B ! 〈A′ ⇒ B′, C,D,C〉
Γ ` let x = M in N : B ! 〈A′ ⇒ B′, C,D,E〉

(Let)

Operations We now move on to the case of an operation call.

λkB
′→(A′→(B′→C)→D)→C . λhA

′→(B′→C)→D. (h JV Kc′ (λxA. k x h))D

The application of h forces the eventual answer type to be D (invariant 3). The
application k x h restricts the annotations in two ways: (i) the handler type
of the whole expression and that of k must coincide (invariant 1); and (2) the
return type of k and that of the resumption must coincide (invariant 2). Below
is the derived typing rule.

Γ ` V : A′

Γ ` do V : B′ ! 〈A′ ⇒ B′, C,D,D〉
(Do)

Understanding Algebraic Effect Handlers via Delimited Control Operators 15

Handlers Lastly, we consider the case of a handler.

JMK(A→(A′→(B′→C)→D)→C)→(A′→(B′→C)→D)→E
c

(λxA. λhA
′→(B′→C)→D. JerKCc)

(λxA
′
. λkB

′→C . JehKDc))E

The construction requires the effect of the handled expression M and the type
of the two clauses of the handler to be consistent. Thus we obtain the following
typing rule.

Γ `M : A ! 〈A′ ⇒ B′, C,D,E〉
Γ, x : A `Mr : C

Γ, x : A′, k : B′ → C `Mh : D

Γ ` handle M with {x.Mr; x, k.Mh} : E
(Handle)

Values Let us complete the development by giving the typing rules for variables
and abstractions. These are derived straightforwardly from the CPS translation
on values. The only thing that is non-standard is the well-formedness condition
` A in the (Var) rule. Here, well-formedness means every function type that
appears in a type takes the form A→ B ! 〈A′ ⇒ B′, C,D,C〉 or A→ B ! 〈A′ ⇒
B′, C,D,D〉.

x : A ∈ Γ ` A
Γ ` x : A

(Var)
Γ, x : A `M : C

Γ ` λx.M : A→ C
(Abs)

Through this exercise, we obtained a type system that is different from the
one presented in Figure 9. First, the type system explicitly keeps track of answer
types. Second, the type system allows a form of answer-type modification [8,1,20].
Answer-type modification is the ability of an effectful computation to change
the return type of its delimited context. In our setting, this ability is gained by
allowing the return and operation clauses of a handler to have different types.

The answer-type modification supported in this type system is however very
limited. Specifically, it does not allow answer-type modification in a captured
continuation. In fact, we have already seen where this restriction comes from:
the let expression. Recall that, in the typing rule (Let), the body N of let

(which corresponds to the continuation of M) has a type of the form B ! 〈A′ ⇒
B′, C,D,C〉. This means N must be a pure computation (which is eventually
handled by the return clause of type C) or it must be handled by a handler
whose return and operation clauses have the same type (i.e., C = D).

6.4 Soundness

The type system we derived from the CPS translation is sound. We state this
property as the following theorem.

Theorem 2 (Soundness of Type System). If Γ ` M : A ! ι and M
return V , then Γ ` V : A.

16 Y. Cong

Proof. The statement is witnessed by a CPS interpreter11 written in the Agda
programming language [30]. The interpreter takes in a well-typed λh computa-
tion and returns a fully-evaluated Agda value. The signature of the interpreter
corresponds exactly to the statement of soundness, and the well-typedness of the
interpreter implies the validity of the statement.

7 Related Work

Variations of Effect Handler Calculi There is a discussion of the relationship
between effect operations with and without a label, which is similar to our dis-
cussion of handlers with and without the return clause. The handling of a labeled
operation may involve skipping of handlers that do not take care of the operation
in question. To simulate labeled operations in a calculus with unlabeled opera-
tions, Biernacki et al. [4] introduce an operator [] called “lift”, which allows an
operation to skip the innermost handler and be handled by an outer handler.
This enables programming with multiple effects without using labels, although it
requires the programmer to know what handlers are surrounding each operation
in what order.

CPS Translations of Effect Handlers The CPS translations of effect handlers
have been developed as a technique for compiling effect handlers into common
runtime platforms. For this reason, existing CPS translations are either directed
by the specific typing discipline of the source language [22,6] or tuned for the
particular implementation strategy of the compiler [16,15]. We derived a CPS
translation of effect handlers from the definitional CPS translation of shift0 and
dollar. As a result, we obtained a translation that is identical to Hillerström’s [16]
unoptimized translation, which we regard as the definitional translation of gen-
eral (deep) effect handlers.

Type Systems of Effect Handlers There are different flavors of type systems for
effect handlers. In the most traditional type systems [2,18], effects are represented
as a set of operations, similar to the effect systems for side-effect analysis [29].
In some research languages such as Koka [21], Frank [25], and Links [13], effects
are treated as row types, which were originally developed for type inference
with records [35]. More recently, several languages [39,7] adopt the notion of
capabilities from object-oriented programming as an approach to safe handling
of effects. Unlike the type system we developed in Section 6, these type systems
are all defined independent of the CPS translation, and they do not explicitly
carry answer types.

Effect Handlers and Control Operators The relationship between deep effect
handlers and the shift0/dollar operators was first established by Forster et
al. [12] in an untyped setting. The result was later extended by Piróg et al. [31]
to a typed relation, through a special form of polymorphism that fills the gap

11 The interpreter is available at https://github.com/YouyouCong/tfp22.

https://github.com/YouyouCong/tfp22

Understanding Algebraic Effect Handlers via Delimited Control Operators 17

between effect handlers and control operators. Such relations have been used for
implementation of effect handlers [18,19], but not for theoretical purposes as in
our work.

8 Conclusion and Future Work

In this paper, we presented three results from our study on understanding deep
effect handlers through the lens of the shift0 and dollar operators. Specifi-
cally, we defined a pair of macro translations that add and remove the return
clause, derived a CPS translation for effect handlers from the CPS translation
for shift0/dollar, and designed a type system for effect handlers from the CPS
translation.

As a continuation of this work, we intend to visit those challenges that have
been solved for shift0 and dollar (or reset) but not for effect handlers. We are
particularly interested in exploring equational axiomatization [26] and reflec-
tion [5], which could be useful for optimization purposes.

As an extension of our approach, we plan to study shallow effect handlers [14]
by leveraging their connection to the control0 and prompt0 operators [31].
These operators have a more complex semantics due to the absence of the de-
limiter surrounding captured continuations, but we conjecture that it is possible
to establish similar results to what we have presented in this paper.

References

1. Asai, K.: On typing delimited continuations: three new solutions to the printf
problem. Higher-Order and Symbolic Computation 22(3), 275–291 (2009)

2. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers. In:
Heckel, R., Milius, S. (eds.) Algebra and Coalgebra in Computer Science. pp. 1–
16. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

3. Biernacki, D., Danvy, O., Millikin, K.: A dynamic continuation-passing style for
dynamic delimited continuations. ACM Trans. Program. Lang. Syst. 38(1) (Oct
2015). https://doi.org/10.1145/2794078

4. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Handle with care: Rela-
tional interpretation of algebraic effects and handlers. Proc. ACM Program. Lang.
2(POPL), 8:1–8:30 (Dec 2017). https://doi.org/10.1145/3158096

5. Biernacki, D., Pyzik, M., Sieczkowski, F.: Reflecting Stacked Continuations in a
Fine-Grained Direct-Style Reduction Theory. PPDP ’21, Association for Comput-
ing Machinery, New York, NY, USA (2021), https://doi.org/10.1145/3479394.
3479399

6. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effect handlers for the masses.
Proc. ACM Program. Lang. 2(OOPSLA), 111:1–111:27 (Nov 2018)

7. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effects as capabilities: Ef-
fect handlers and lightweight effect polymorphism. Proc. ACM Program. Lang.
4(OOPSLA) (nov 2020). https://doi.org/10.1145/3428194, https://doi.org/10.
1145/3428194

8. Danvy, O., Filinski, A.: A functional abstraction of typed contexts. BRICS 89/12
(Aug 1989)

https://doi.org/10.1145/2794078
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3479394.3479399
https://doi.org/10.1145/3479394.3479399
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194

18 Y. Cong

9. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM
conference on LISP and functional programming. pp. 151–160. ACM (1990)

10. Dyvbig, R.K., Peyton Jones, S., Sabry, A.: A monadic framework for
delimited continuations. J. Funct. Program. 17(6), 687–730 (Nov 2007).
https://doi.org/10.1017/S0956796807006259

11. Felleisen, M.: On the expressive power of programming languages. In: Selected
Papers from the Symposium on 3rd European Symposium on Programming. pp.
35–75. ESOP ’90, Elsevier North-Holland, Inc., New York, NY, USA (1991)

12. Forster, Y., Kammar, O., Lindley, S., Pretnar, M.: On the expressive power of user-
defined effects: Effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang. 1(ICFP), 13:1–13:29 (Aug 2017). https://doi.org/10.1145/3110257

13. Hillerström, D., Lindley, S.: Liberating effects with rows and handlers.
In: Proceedings of the 1st International Workshop on Type-Driven De-
velopment. pp. 15–27. TyDe 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2976022.2976033

14. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Asian Symposium on Pro-
gramming Languages and Systems. pp. 415–435. APLAS ’18, Springer (2018)

15. Hillerström, D., Lindley, S., Atkey, R.: Effect handlers via gener-
alised continuations. Journal of Functional Programming 30 (2020).
https://doi.org/10.1017/S0956796820000040

16. Hillerström, D., Lindley, S., Atkey, R., Sivaramakrishnan, K.: Continuation passing
style for effect handlers. In: Proceedings of 2nd International Conference on Formal
Structures for Computation and Deduction. pp. 18:1–18:19. FSCD ’17, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)

17. Kameyama, Y., Yonezawa, T.: Typed dynamic control operators for delimited con-
tinuations. In: International Symposium on Functional and Logic Programming.
pp. 239–254. FLOPS ’08, Springer (2008)

18. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming. pp. 145–158. ICFP ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2500365.2500590

19. Kiselyov, O., Sivaramakrishnan, K.C.: Eff directly in ocaml. In: ML Workshop
(2016)

20. Kobori, I., Kameyama, Y., Kiselyov, O.: Answer-type modification without
tears: Prompt-passing style translation for typed delimited-control operators.
In: Electronic Proceedings in Theoretical Computer Science EPTCS 212 (Post-
Proceedings of the Workshop on Continuations 2015). pp. 36–52 (June 2016).
https://doi.org/10.4204/EPTCS.212.3

21. Leijen, D.: Koka: Programming with row polymorphic effect types. In: 5th Work-
shop on Mathematically Structured Functional Programming. MSFP ’14 (2014).
https://doi.org/10.4204/EPTCS.153.8

22. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages. pp. 486–499. POPL ’17, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3009837.3009872

23. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis. Springer,
Dordrecht (2003)

24. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Information and computation 185(2), 182–210 (2003)

https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/3110257
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.4204/EPTCS.212.3
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872

Understanding Algebraic Effect Handlers via Delimited Control Operators 19

25. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. pp. 500–514. POPL ’17, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3009837.3009897

26. Materzok, M.: Axiomatizing subtyped delimited continuations. In: Computer Sci-
ence Logic 2013. CSL 2013, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2013)

27. Materzok, M., Biernacki, D.: Subtyping delimited continuations. In: Proceed-
ings of the 16th ACM SIGPLAN International Conference on Functional
Programming. pp. 81–93. ICFP ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2034773.2034786

28. Materzok, M., Biernacki, D.: A dynamic interpretation of the CPS hierarchy. In:
Asian Symposium on Programming Languages and Systems. pp. 296–311. APLAS
’12, Springer (2012)

29. Nielson, F., Nielson, H.R.: Type and effect systems. In: Correct System Design, Re-
cent Insight and Advances, (to Hans Langmaack on the Occasion of His Retirement
from His Professorship at the University of Kiel). pp. 114–136. Springer-Verlag,
Berlin, Heidelberg (1999)

30. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

31. Piróg, M., Polesiuk, P., Sieczkowski, F.: Typed equivalence of effect handlers and
delimited control. In: 4th International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik (2019)

32. Plotkin, G.: Call-by-name, call-by-value and the λ-calculus. Theoretical computer
science 1(2), 125–159 (1975)

33. Plotkin, G., Power, J.: Algebraic operations and generic effects. Applied categorical
structures 11(1), 69–94 (2003)

34. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: European Symposium
on Programming. pp. 80–94. ESOP ’09, Springer (2009)

35. Rémy, D.: Type Inference for Records in Natural Extension of ML, p. 67–95. MIT
Press, Cambridge, MA, USA (1994)

36. Schuster, P., Brachthäuser, J.I., Ostermann, K.: Compiling effect handlers
in capability-passing style. Proc. ACM Program. Lang. 4(ICFP) (aug 2020).
https://doi.org/10.1145/3408975, https://doi.org/10.1145/3408975

37. Shan, C.c.: A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation 20(4), 371–401 (2007)

38. Xie, N., Brachthäuser, J.I., Hillerström, D., Schuster, P., Leijen, D.: Effect handlers,
evidently. Proceedings of the ACM on Programming Languages 4(ICFP), 1–29
(2020). https://doi.org/10.1145/3408981

39. Zhang, Y., Myers, A.C.: Abstraction-safe effect handlers via tunneling. Proc. ACM
Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290318, https:

//doi.org/10.1145/3290318

40. Zhang, Y., Salvaneschi, G., Myers, A.C.: Handling bidirectional control flow
4(OOPSLA) (nov 2020). https://doi.org/10.1145/3428207, https://doi.org/10.
1145/3428207

https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207
https://doi.org/10.1145/3428207

20 Y. Cong

A Correctness of Macro Translations between λh and λ−
h

Lemma 1 (Commutativity of Translation and Substitution). Let ≡ be
syntactic equality.

– For all V and V ′ in λh, we have JV [V ′/x]Kc′ ≡ JV Kc′ [JV ′Kc′/x].
– For all M and V in λh, we have JM [V/x]Kc ≡ JMKc[JV Kc′/x].

Proof. By mutual induction on the structure of V and M .

Theorem 1 (Correctness of Macro Translations). Let = be the least con-
gruence relation that includes the reduction in λh and λ−h .

1. If M = N in λh, then JMKm = JNKm in λ−h .
2. If M = N in the user fragment of λ−h , then JMKm = JNKm in λh.

Proof. We first prove the cases where M N . We then derive the goal by
congruence. Here we show the interesting cases for the first part.

Part 1

Case 1 (βdo).

Jhandle F [do V] with {x.Mr; x, k.Mh}Km
≡ handle (let y = JF Km[do 〈op, JV Km〉] in do 〈ret, y〉) with
{p, k → case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}
 case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}}[〈op, JV Km〉/p, f/k]

where f = λz. handle (let y = JF Km[z] in do 〈ret, y〉) with
{p, k → case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}}

 casel l of {ret→ JMrKm; op→ JMhKm}[op/l, JV Km/x, f/k]

 JMhKm[JV Km/x, f/k]

≡ JMh[V/x, λy. handle F [y] with {x.Mr; x, k.Mh}/k]Km

Case 2 (βh).

Jhandle return V with {x.Mr; x, k.Mh}Km
≡ handle (let y = return JV Km in do 〈ret, y〉) with
{p, k → case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}}
 handle do 〈ret, JV Km〉 with
{p, k → case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}}
 case p of 〈l, x〉 → {casel l of {ret→ JMrKm; op→ JMhKm}}[〈ret, JV Km〉/p]
 casel l of {ret→ JMrKm; op→ JMhKm}[ret/l, JV Km/x]

 JMrKm[JV Km/x]

≡ JMr[V/x]Km

Understanding Algebraic Effect Handlers via Delimited Control Operators 21

Part 2

Case 1 (βdo).

Jhandle F [do V] with {x, k.Mh}Km
≡ handle JF Km[do JV Km] with {x. return x; x, k. JMhKm}
 JMhKm[JV Km/x, f/k]

where f = λy. handle JF Km[y] with {x. return x; x, k. JMhKm}
≡ JMh[V/x, λy. handle F [y] with {x, k.Mh}/k]Km

Case 2 (βh).

Jhandle return V with {x, k.Mh}Km
≡ handle return JV Km with {x. return x; x, k. JMhKm}
 return x[JV Km/x]

≡ Jreturn V Km

Reducing the Power Consumption of IoT with
Task-Oriented Programming

Sjoerd Crooijmans, Mart Lubbers[0000−0002−4015−4878], and
Pieter Koopman[0000−0002−3688−0957]

Institute for Computing and Information Sciences, Radboud University Nijmegen,
The Netherlands sjoerd@scrooijmans.nl {mart,pieter}@cs.ru.nl

– Extended Abstract –

Abstract Limiting the energy consumption of IoT nodes is a hot topic
for green computing. For battery-powered devices this necessity is ob-
vious. The enormous growth of the number of IoT nodes makes energy
efficiency important for every node in the IoT. In this paper, we show how
we can automatically compute execution intervals for our Task Oriented
Programs for the IoT. We do allow an arbitrary number of tasks on the
IoT nodes and achieve significant reductions of the energy consumption
by bringing the microprocessor in sleep mode as much as possible. We
have seen energy reductions of an order of magnitude without imposing
any constraints on the tasks to be executed on the IoT nodes.

Keywords: Sustainable IoT · Green Computing · Task Oriented Pro-
gramming.

1 Introduction

The Internet of Things (IoT) is omnipresent and powered by software. Depending
on who you ask, the estimated number of connected IoT endpoint devices reaches
between 25 and 100 billion in 2021. IoT systems are traditionally designed ac-
cording to multi-layered or tiered architectures. As a consequence, discrete pro-
grams written in distinct languages with different abstraction levels power the
individual layers, forming a heterogeneous system. The variation in components
makes programming IoT systems complicated, error-prone and expensive.

The edge layer of IoT contains the small devices that sense and interact with
the world and it is crucial to lowering their energy consumption. While individual
devices consume little energy, the sheer number of devices in total amounts to
a lot. Furthermore, many IoT devices operate on batteries and higher energy
consumption increases the amount of e-waste [5]. Moreover, IoT devices may be
hard to reach, so replacing or recharging batteries is often difficult.

To reduce the power consumption of an IoT device, the specialised low-
power sleep modes of the microprocessors can be leveraged. Different sleep modes
achieve different power reductions because of their different run time character-
istics. These specifics range from disabling or suspending WiFi; stopping power-
ing (parts) of the RAM; disabling peripherals or even completely turning off the

2 S. Crooijmans et al.

processor, requiring an external signal to wake up again. Determining when ex-
actly and for how long it is possible to sleep is expensive in the general case and
often requires annotations in the source code, a Real Time Operating System
(RTOS) or a handcrafted scheduler.

Task-Oriented Programming (TOP) is a novel declarative programming pa-
radigm with the potential to solve many of the aforementioned problems. In
this paradigm, tasks are the basic building blocks and they can be combined
using combinators to describe workflows [7]. This declarative specification of the
program only describes the what and not the how of execution. The system ex-
ecuting the tasks takes care of the gritty details such as the user interface, data
storage and communication [8]. An example of a TOP language is the iTask
system, a general-purpose framework for specifying multi-user distributed web
applications for workflows [6]. iTask is implemented as an Embedded Domain
Specific Language (EDSL) in the functional programming language Clean [1].

mTask lies on the other side of the spectrum and aims to solve semantic
friction in IoT. It is a domain-specific TOP language and system specifically for
IoT devices, implemented as an EDSL in iTask. Where iTask abstracts away from
details such as user interfaces, data storage and persistent workflows, mTask
offers abstractions for edge layer-specific details such as the heterogeneity of
architectures, platforms and frameworks; peripheral access and multi-tasking.
Yet, it lacks abstractions for energy consumption and scheduling. In mTask,
tasks are implemented as a rewrite system, where the work is automatically
segmented in small atomic bits and stored as a task tree. Each cycle, a single
rewrite step is performed on all task trees, during rewriting, tasks do a bit
of their work and progress steadily, allowing interleaved and seemingly parallel
operation. After a loop, the Run Time System (RTS) knows which task is waiting
on which triggers and is thus able to determine the next execution time for each
task automatically. Utilising this information, the RTS can determine when it
is possible and safe to sleep and choose the optimal sleep mode according to
the sleeping time. For example, the RTS never attempt to sleep during an I2C
communication because I/O is always contained within a rewrite step.

1.1 Research contribution

This paper shows that with minor changes to the mTask language from the
perspective of the TOP programmer, the energy consumption of the program’s
execution can be significantly reduced. We show that with an intensional analysis
of the task trees at run time, the mTask scheduler can automatically determine
the optimal sleep time and sleep mode. Not all tasks have a default rewrite
rate that works in all situations so variants of tasks are added in which the
programmer can fine-tune the polling rate. Furthermore, we add an interface
to (hardware) interrupts to the mTask language, allowing the program to be
notified in case of an external event, resulting in more reactive programs.

Reducing the Power Consumption of IoT with Task-Oriented Programming 3

2 Task-Oriented Programming

TOP is a high-level declarative programming paradigm to specify distributed
interactive multi-user systems [6,7]. The developers describe in TOP the tasks
to be done by systems or users in the form of abstract tasks. Implementation
details, like the representation of date during communication, are handled by
the system rather than by the TOP programmer. Tasks describe a unit of work
ranging from reading a single sensor to an entire IoT system. A task is a rewrite
system that produces a result after each step. Possible task results are:

NoValue if the task has no observable value for other tasks. For example, a
web-editor that is empty or incomplete is a task with a NoValue result.

Unstable if the task has an intermediate observable value. This value is by
construction properly typed and can change in the future. Examples are a
properly filled out web-editor and a sensor reading.

Stable if the task has a final observable value. This value is by construction
properly typed and fixed. Examples are a properly filled out web-editor after
pressing the Continue button and a task that determines that a temperature
sensor has passed a given threshold.

Basic tasks are the primitive building blocks of a TOP program. Typical
examples are web-editors, reading sensors, waiting some time and controlling
peripherals. Tasks can be composed into bigger tasks by combinators. There
are combinators for the parallel and sequential composition of tasks. The step
combinator is used to specify actions, selecting a new task, based on the current
value of some task.

Apart from task results, tasks can also communicate via Shared Data Sources
(SDSs). There are basic tasks to read, write and update such a typed SDS.

2.1 mTask

TOP is also very suited to program nodes in the IoT. However, typical nodes
in the IoT are cheap and small microprocessors with very limited amounts of
processing power and memory. Such a system cannot run a web-server nor a
browser as a client to execute an iTask program. This is also not necessary,
typical IoT nodes just control a few sensors and actuators. To enable TOP
on small microprocessors we have created mTask [3,4]. The Domain Specific
Language (DSL) mTask is also embedded in Clean. In contrast to iTask, it is
not a shallowly embedded DSL but it is a tagless DSL [2]. The target language of
iTask is equal to the host language Clean, this is called a homogeneous system [9].
The target code of mTask is byte code which is shipped to a microprocessor in
the IoT and interpreted by the mTask runtime system running there. Hence,
mTask is a heterogeneous EDSL. The big advantage of this approach is that we
can carefully control which parts of the application is mTask code and needs to
be shipped to the IOT node. This prevents that all Clean language machinery
ends up in such a small system. Moreover, we can dynamically ship tasks to the

4 S. Crooijmans et al.

IoT nodes without the need to reprogram the flash memory of those systems.
Reprogramming this memory is slow and can be done only a few thousand times.

The archetypal example of programs running on microprocessors is the blink
example that blinks the single bit display, just a LED, of such systems. In List-
ing 1.1 we give a slightly more complex example in mTask that blinks two LEDs
at their own slowly changing speed.

blinkTask :: Main (MTask v Bool) | mtask v
blinkTask=

declarePin BuiltinLEDPin PMOutput λled1 �
declarePin d0 PMOutput λled2 �
fun λblink= (λ(led,wait,state) �
delay wait
>> |. writeD led state
>> |. blink (led, time +. (lit 1), Not state)

In {main= blink (led1, lit 6174, true) .||. blink (led2, lit 73, true)}

Listing 1.1. An mTask to blink the LED

The Clean function blinkTask contains the mTask code for the blink task.
It starts by declaring two led objects to represent the output General Purpose
Input/Output (GPIO) pin to control the LED as output. Next, it declares a
mTask function called blink. This function has the led, delay time and new
state of the LED as arguments. The task in this function is composed of three
subtasks. First, it waits time millisecond by delay. Second, it writes the give
state to the declared output led. Finally, it calls itself recursively with the
inverted state as the argument. In the main expression two of these blink task
are composed in parallel with the .||. combinator. The lit in the arguments of
the subtasks lifts the given constant from the host language to the EDSL.

There are some important differences to the usual C-programs controlling
microprocessors. First, tail-recursive functions are perfectly save in mTask. Next,
the delay task is not blocking the entire program, but just producing a NoValue

result until the given time has passed.

3 Scheduling Tasks Efficiently

The mTask code is dynamically transformed to byte code that is shipped to a
microprocessor that is selected at run time by an iTask program. The byte code
is interpreted by a preloaded program on the microprocessor. This interpreter
performs a series of rewrites of the mTask code. In each rewrite, all leaves of
the task expression are evaluated. Whenever enabled by the current value of its
arguments a mTask combinator evaluates to its results. When a reduction is not
yet possible the mTask expression is recreated with the new arguments. This
explains for instance why the delay in Listing 1.1 is not blocking. This is very
similar to the implementation of iTask. In iTask, the task expression is evaluated
again at an event, like an edit event form a web-editor. In mTask, we do not
have editor events. Most sensors work with polling rather than on an event basis.
Hence, the mTask interpreter evaluates the task expression in a tight loop. Since

Reducing the Power Consumption of IoT with Task-Oriented Programming 5

no other programs are running on the microprocessor and its cycles have to
be used by executing some instructions, such a frequent evaluation of the task
expression is perfectly fine.

Microprocessors offer various ways to reduce their power consumption. These
range from switching off parts of the system that are temporarily not needed,
such as the WiFi radio, to putting the entire system into some sleep mode.
Different branches of microprocessors offer diverse sleeping modes. In this paper,
we will distinguish light sleep where the memory stays powered and hence its
contents will be unaffected by sleeping and deep sleep where also the memory
is switched off and its content will be lost. Some microprocessors have parts of
the memory that will be saved in deep sleep. Since that is very brand specific
we will ignore that here.

In this paper, we introduce a way to reduce the power consumption of a
microprocessor implementing mTask by sleeping as much as possible. When
there is no mTask to be executed the system goes to deep sleep mode. It just
wakes up every now and then to keep the WiFi connection active and checks for
a new mTask to be executed. When there are one or more mTasks to be executed
it tries to predict when it is useful to evaluate the mTask expression again. For
instance, evaluating a delay(time) expression can be delayed time milliseconds
without a problem. No progress will be made before the delay time has passed.
Also for many sensors, it is possible to reduce the evaluation rate. In most
applications, a temperature measured by a sensor will not change significantly
within a couple of seconds. We can safely delay the reading of such a sensor.

3.1 Evaluation Interval

To implement the delayed evaluation of tasks we associate dynamically an eval-
uation interval with each task. The interval ⟨low, high⟩ indicates that the eval-
uation can be safely delayed by any number of milliseconds in that range. Such
an interval is just a hint for the runtime system. It is not a guarantee that the
evaluation will take place in the given interval. When other parts of the task
expression desire an earlier evaluation also this part of the task can be evaluated
before the lower bound. When the system is very busy with other work, the task
might be executed after the upper bound of the interval.

The delay(time) primitive guarantees that the task will be delayed at least
time milliseconds. Since mTask is not a hard real-time system also this delay
might be higher than the given time since the microprocessor might be busy
with other things, like handling WiFi communication.

3.2 Deriving Refresh Rates

The refresh rates are calculated automatically from the current task expression.
This has as advantage that the programmer does not have to deal with them and
that they are available in each and every mTask program. We start by assigning
default refresh rates to basic tasks.

6 S. Crooijmans et al.

task default interval

reading Shared Data Source ⟨0, 2000⟩
slow sensor, like temperature ⟨0, 2000⟩
gesture sensor ⟨0, 1000⟩
fast sensor, like sound or light ⟨0, 100⟩
reading GPIO pins ⟨0, 100⟩

Table 1. Default refresh rates of basic tasks.

Based on these refresh rates the system can be automatically derived refresh
rates for composing mTask expressions.

R :: (MTask v a) � ⟨Int, Int⟩
R(t1 .||. t2) = R(t1) ∩safe R(t2) (1)

R(t1 .&&. t2) = R(t1) ∩safe R(t2) (2)

R(t1 >> |. t2) = R(t) (3)

R(t >>= . f) = R(t) (4)

R(t >> ∗. [a1 . . . an]) = R(t) (5)

R(rpeat t) = R(t) (6)

R(rpeatEvery d t) =

{
R(t) if t is UnStable
⟨d, d⟩ otherwise

(7)

R(delay d) = ⟨d, d⟩ (8)

R(t) =

{
⟨∞,∞⟩ if t is Stable
⟨rl, ru⟩ otherwise

(9)

We use the operator ∩safe to compose refresh ranges. When the ranges overlap
the result is the overlapping range. Otherwise, the range with the lowest numbers
is produced. The rationale is that subtasks should not be delayed longer than
their refresh range. Evaluating a task earlier should not change its result but
can consume more energy.

∩safe :: ⟨Int, Int⟩ ⟨Int, Int⟩ � ⟨Int, Int⟩
R1 ∩safe R2 = R1 ∩R2 if R1 ∩R2 ̸= ∅ (10)

⟨l1, h1⟩ ∩safe ⟨l2, h2⟩ = ⟨l2, h2⟩ if h2 < l1 (11)

R1 ∩safe R2 = R1 otherwise (12)

We will briefly discuss the various cases of deriving refresh rates.

Parallel Combinators For the parallel composition of tasks we compute the
intersection of the refresh intervals of the components as outlined in the defin-
ition of ∩safe. The operator .||. in Equation 1 is the or -combinator; the first

Reducing the Power Consumption of IoT with Task-Oriented Programming 7

subtask that produces a stable value determines the result of the composition.
The operator .&&. in Equation 2 is the and -operator. The result is the tuple
containing both results when both subtasks have a stable value.

Sequential Combinators For the sequential composition of tasks we only have
to look at the refresh rate of the current task on the left. The opertor >> |. in
Equation 3 is sequential composition similar to the monadic sequence operator
>> |. The operator >>=. in Equation 4 provides the stable task result to the
function on the right-hand side, similar to the monadic bind. The operator >>∼.

steps on unstable value and is otherwise equal to >>=.. The step combinator
>>*. in Equation 5 contains a list of actions that specify a condition and a new
task.

Repeat Combinators The repeat combinators repeats their argument indefin-
itely. The combinator rpeatEvery adds the given delay between those repetitions.
The refresh rate is equal to the refresh rate of the current argument task. Only
when rpeatEvery waits between the iterations of the argument the refresh inter-
val is equal to the remaining delay time.

Other Combinators The refresh rate of the delay in Equation 8 is equal to
the remaining delay. Refreshing stable tasks can be delayed indefinitely, their
value will never change. For other basic tasks, the values from Table 3.2 apply.
The values rl and ru in Equation 9 are the lower and upper-bound of the rate
mentioned there.

As example we define a mTask that updates the SDS tempSDS in iTask once
per minute.

delayTime=: lit (60 * 1000) // 1 minute in milliseconds

devTask :: Main (MTask v Real) | mtask, dht, liftsds v
devTask=
DHT (DHT_pin DHT11) λdht=
liftsds λlocalSds= tempSDS
In {main= rpeatEvery delayTime (temperature dht >>∼. setSds localSds)}

Listing 1.2. Updating a SDS in iTask once per minute.

3.3 User Defined Refresh Rates

In some applications, it is necessary to read sensors at a different rate than the
default rate given in Table 3.2. This is achieved by defining such an object with a
custom refresh rate. The required rate is an additional argument of its definition.

class dht v where
temperature‘ :: (TimingInterval v) (v DHT) � MTask v Real
temperature :: (v DHT) � MTask v Real
humidity‘ :: (TimingInterval v) (v DHT) � MTask v Real

8 S. Crooijmans et al.

humidity :: (v DHT) � MTask v Real

class dio p v | pin p where
readD‘ :: (TimingInterval v) (v p) � MTask v Bool | pin p
readD :: (v p) � MTask v Bool | pin p

Listing 1.3. Definition for DHT sensors and reading digital values from GPIO pins
with a custom timing interval.

The timing intervals are defined by a tailor-made algebraic data type.

:: TimingInterval v
= Default
| BeforeMs (v Int) // yields ⟨0, x⟩
| BeforeS (v Int) // yields ⟨0, x× 1000⟩
| ExactMs (v Int) // yields ⟨x, x⟩
| ExactS (v Int) // yields ⟨0× 1000, x× 1000⟩
| RangeMs (v Int) (v Int) // yields ⟨x, y⟩
| RangeS (v Int) (v Int) // yields ⟨x× 1000, y × 1000⟩

Listing 1.4. The ADT for timing intervals in mTask

As example we define a mTask that updates the SDS tempSDS in iTask in a
tight loop. The temperature‘ reading requires that this happens at least once
per minute. Without other tasks on the IoT node, the temperature SDS will be
updated once per minute. Other tasks can cause a slightly more frequent update.

delayTime=: BeforeSec (lit (60 * 1000)) // 1 minute in milliseconds

devTask :: Main (MTask v Real) | mtask, dht, liftsds v
devTask=
DHT (DHT_pin DHT11) λdht=
liftsds λlocalSds= tempSDS
In {main= rpeat (temperature‘ delayTime dht >>∼. setSds localSds)}

Listing 1.5. Updating a SDS in iTask at least once per minute.

4 Implementing Refresh Rates

The refresh rates from the previous section tell us how much the next evaluation
of the task can be delayed. An IoT node executes multiple tasks interleaved.
In addition, it has to communicate with a server to collect new tasks and up-
dates of SDSs. Hence, we cannot use those refresh intervals directly to let the
microprocessor sleep. Our scheduler has the following objectives.

– Meet the deadline whenever possible. Only too much work on the device
might cause an overflow of the deadline.

– Achieve long sleep times. Waking up from sleep consumes some energy and
takes some time. Hence, we prefer a single long sleep over splitting this
interval into several smaller pieces.

– The scheduler tries to avoid unnecessary evaluations of tasks as much as
possible. A task should not be evaluated now whenever its execution can
also be delayed until the next time that the device is active.

Reducing the Power Consumption of IoT with Task-Oriented Programming 9

– The optimal power state should be selected. Although a system uses less
power in a deep sleep mode, it also takes more time and energy to wake up
from deep sleep. When the system knows that it can sleep only a short time
it is better to go to light sleep mode since waking up from light sleep is faster
and consumes less energy.

For the implementation, it is important to note that the evaluation of a
task takes time. Some tasks are extremely fast, but other tasks require long
computations and time-consuming communication with peripherals as well as
with the server.

A naive implementation of rpeatEvery could just execute the given task once,
wait the given delay and call itself recursively.

rpeatEvery :: (v Int) (MTask v a) � MTask v a
rpeatEvery d t = t >> |. delay d >> |. rpeatEvery d t

Listing 1.6. A naive implementation of rpeatEvery.

However, such an implementation will cause a considerable time drift. When it
takes τ seconds to execute t the repeat time is actually τ+d̃. The solution is to
determine a start time and to use a waitUntil primitive instead of the delay.

rpeatEvery :: (v Int) (MTask v a) � MTask v a
rpeatEvery d t = getTime>>=. λtime.t >> |. waitUnitl (time +. d) >> |. rpeatEvery d t

Listing 1.7. An implementation of rpeatEvery without drift.

These start times are used at many places in our scheduler. The algorithm R
computes evaluation rates of Individual tasks. This is a relative interval that
should start at the time when that task is created. For the scheduler we transform
these intervals to absolute evaluation intervals; the lower and upper bound of
the start time of that task measured in the time of the IoT node. We obtain
those bounds by adding the start time of the evaluation to the evaluation rate
computed by R.

4.1 Evaluation Rounds

To reduce the energy consumption of an IoT device as much as possible we put
the microprocessor in its deepest sleep mode as long as possible. Since the current
state of the task to be reduced has to be remembered most microprocessors can
only go to a light sleep mode. It is fine to switch off the processor and the WiFi
radio, but the memory should stay active. There are various special ways to store
the current state during deep sleep, like adding FRAM memory and using the
real-time clock memory of an ESP32. Currently, we do not use such an advanced
method and limit the system to light sleep.

The algorithm R computes the evaluation rate of the current tasks. For the
scheduler, we transform this interval to an absolute evaluation interval; the lower
and upper bound of the start time of that task measured in the time of the IoT
node. We obtain those bounds by adding the start time of the evaluation to the
evaluation rate computed by R.

10 S. Crooijmans et al.

Apart from the task to execute, the IoT device has to maintain the connection
with the server and check there for new tasks and updates of Shared Data
Sources. When the microprocessor is active it checks the connection and updates
from the server and executes the task if it is in its execution window. Next, the
microprocessor goes to light sleep for the minimum of server-interval and the
task delay.

5 Scheduling Tasks

In general, the microprocessor node executes multiple mTasks. When there are
no tasks to be executed the microprocessor can go to deep sleep since there is
no task-specific data to be archived. The microprocessor wakes up from time
to time to maintain the connection with the server and to check for new tasks
allocated to this microprocessor.

In general, there are multiple tasks to be executed. We compute an absolute
timing interval for each of these tasks as outlined above. We maintain a priority
queue with the mTasks ordered at their absolute earliest start time. Execution of
all tasks in the queue is delayed as much as possible. That is until the earliest last
start time of all tasks in the queue or until the system has to become active for
communication with the server. When the execution of a task has to be started,
all tasks with their earliest start time before the current time are executed.

evalutionRound :: (Queue MTask) � (Queue MTask)
evalutionRound queue= round queue emptyQueue
where

round queue seen=
if (isEmpty queue)

seen
let (task, queue2) = pop queue in
if (currentTime < earliest task)

(insert seen queue)
let task2= evaluate task in
round queue2 (if (isStable task2) seen (insert task2 seen))

Listing 1.8. Pseudo code to execute mTasks

It makes sense to execute tasks before their latest start time since waking up
the entire system takes additional energy. A new execution interval is computed
after the execution of a task for a single step. Based on this interval the new
task is inserted in the priority queue. After stepping all tasks with an execution
interval that contains the current time, the new sleeping time is determined.
Note that this sleeping time can also be zero if one or more of these tasks require
immediate execution. When the energy consumption of the computed sleeping
time is higher than the energy required to wake up the system after the sleep,
the microprocessor is brought into sleeping mode. When it is not worthwhile to
go to sleeping mode the system executes tasks just as before the introduction of
this energy optimisation.

Reducing the Power Consumption of IoT with Task-Oriented Programming 11

6 Running Tasks on Interrupts

In this chapter, we show that we can also execute tasks based on interrupts.
The interrupts we consider are generated from changes in the value of GPIOs
triggered by sensors. These interrupts can wake up the microprocessor them-
selves. This is more energy-efficient than waking up regularly and polling the
GPIOs. Moreover, it prevents missing input from sensors while the micropro-
cessor is sleeping. The mTask system adds the task associated with the interrupt
to the priority queue for immediate execution, i.e. execution interval ⟨0, 0⟩.
lightSwitch :: Main (MTask v Bool) | mtask v
lightSwitch
= declarePin ButtonPin PMInput λbutton�
declarePin BuiltinLEDPin PMOutput λled�
fun λswitch=(λx�
writeD led x
>> |. delay (lit 50) // Debounce
>> |. interrupt Falling button
>> |. switch (Not x)

)
In {main=switch (lit False)}

Listing 1.9. Example of a toggle switch with interrupts

7 Resulting Power Reductions

Measurements of simple examples show a drop in energy consumption from 27
up to 88%.

8 Conclusion

In this paper, we show how we can automatically associate execution intervals to
tasks. Based on these intervals we can delay the executions of those tasks. When
all task executions can be delayed, the microprocessor executing those tasks
can go to sleep mode to reduce its energy consumption. This is a rather hard
problem that must be solved dynamically since we make no assumptions on the
number and nature of the tasks that will be allocated to an IoT node. The actual
reduction of the energy is of course highly dependent on the number and nature
of the task shipped to the IoT node. Our examples show a reduction in energy
consumption of two orders of magnitude. Those reductions are a necessity for
IoT nodes with battery power Given the exploding number of IoT nodes, such
savings are also mandatory for other nodes to limit the total power consumption
of the IoT.

References

1. Brus, T.H., van Eekelen, M.C.J.D., van Leer, M.O., Plasmeijer, M.J.: Clean — A
language for functional graph rewriting. In: Kahn, G. (ed.) Functional Programming

12 S. Crooijmans et al.

Languages and Computer Architecture. pp. 364–384. Springer Berlin Heidelberg,
Berlin, Heidelberg (1987)

2. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Pro-
gram. 19(5), 509–543 (2009). https://doi.org/10.1017/S0956796809007205, ht-
tps://doi.org/10.1017/S0956796809007205

3. Koopman, P., Lubbers, M., Plasmeijer, R.: A Task-Based DSL for
Microcomputers. In: Proceedings of the Real World Domain Spe-
cific Languages Workshop 2018 on - RWDSL2018. pp. 1–11. ACM
Press, Vienna, Austria (2018). https://doi.org/10.1145/3183895.3183902,
http://dl.acm.org/citation.cfm?doid=3183895.3183902

4. Lubbers, M., Koopman, P., Ramsingh, A., Singer, J., Trinder, P.: Tiered versus
tierless iot stacks: Comparing smart campus software architectures. In: Pro-
ceedings of the 10th International Conference on the Internet of Things. IoT
’20, Association for Computing Machinery, New York, NY, USA (2020). ht-
tps://doi.org/10.1145/3410992.3411002, https://doi.org/10.1145/3410992.3411002

5. Nižetić, S., Šolić, P., López-de-Ipiña González-de-Artaza, D., Patrono, L.:
Internet of things (iot): Opportunities, issues and challenges towards a
smart and sustainable future. Journal of Cleaner Production 274, 122877
(2020). https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122877, ht-
tps://www.sciencedirect.com/science/article/pii/S095965262032922X

6. Plasmeijer, R., Achten, P., Koopman, P.: iTasks: Executable Specifications of Inter-
active Work Flow Systems for the Web. In: Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2007). pp. 141–152.
ACM, Freiburg, Germany (Oct 1–3 2007)

7. Plasmeijer, R., Lijnse, B., Michels, S., Achten, P., Koopman, P.: Task-oriented
programming in a pure functional language. In: Proceedings of the 14th Sym-
posium on Principles and Practice of Declarative Programming. p. 195–206. PPDP
’12, Association for Computing Machinery, New York, NY, USA (2012). ht-
tps://doi.org/10.1145/2370776.2370801, https://doi.org/10.1145/2370776.2370801

8. Stutterheim, J., Achten, P., Plasmeijer, R.: Maintaining Separation of Con-
cerns Through Task Oriented Software Development. In: Wang, M., Owens, S.
(eds.) Trends in Functional Programming, vol. 10788, pp. 19–38. Springer In-
ternational Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-89719-6,
http://link.springer.com/10.1007/978-3-319-89719-6 2

9. Tratt, L.: Domain specific language implementation via compile-time meta-
programming. ACM Trans. Program. Lang. Syst. 30(6) (oct 2008). ht-
tps://doi.org/10.1145/1391956.1391958, https://doi.org/10.1145/1391956.1391958

Semantic equivalence of task-oriented programs in
TopHat

Tosca Klijnsma1 and Tim Steenvoorden2

1 Radboud University, Nijmegen, The Netherlands. tosca.klijnsma@gmail.com
2 Open University, Heerlen, The Netherlands. tim.steenvoorden@ou.nl

Abstract. Task-oriented programming (top) is a new programming paradigm
for specifying multi-user workflows. The iTasks framework is an implementa-
tion of top in the functional programming language Clean. To reason formally
about top programs, a formal language called TopHat has been designed, to-
getherwith its operational semantics. For proving properties about task-oriented
programs, it is desirable to be able to say when two TopHat-programs are se-
mantically equivalent. This paper aims to answer this question. We show that
a task can be in either one of five conditions after fixation, and for every two
tasks in the same condition, we define what it means for them to be semantically
equivalent. Using this definition, we study a number of transformation laws for
TopHat-programs. Amongst those, we show that the Task operation on types
in TopHat cannot be a monad.

Keywords: Task-oriented programming · Program equivalence · Formal se-
mantics.

1 Introduction

Task-oriented programming (top) is a relatively new programming paradigm designed
for developing distributed interactive multi-user workflow systems. In this program-
ming paradigm, the concept of a task plays a central role. A task is a unit of work
assigned to some user, and consists of two parts: a description of the work that should
be done, and a typed interface that defines the type of the task value that it returns.
Tasks are described in an abstract, declarative manner, and from this abstract descrip-
tion, a top engine automatically generates a gui. It also takes care of the client-server
communication and user authentication that is needed for users to work together on
tasks. top allows programmers to define workflows which describe what tasks should
be executed by its users, without having to worry about how this is achieved.

User collaboration is a central concept in top. The different ways in which users
can collaborate are captured by task combinators. By using these combinators, top-
programmers can construct larger tasks from smaller ones in several ways. There is
sequential composition, which allows tasks to be executed one after the other. And there
is parallel composition, which allows tasks to be executed in parallel at the same time.
For parallel composition, it is possible to either combine the results, or to conditionally
continue with either one of two tasks.

In order to collaborate, users also need to be able to communicate with each other,
and with the system. Using task combinators, it is possible to pass along data from
one task onto the next. For communication with the outside world, there are editors.
They provide interaction with the environment via input events. Editors are typed
containers which remember the last value that has been sent to them, and users can
communicate with the system through these editors. Furthermore, editors allow users
to view and edit shared data, which are mutable references whose changes are imme-
diately visible to all other tasks watching them.

Another important element of top is that task are typed. This is important to de-
termine the type of the values that are communicated to other tasks and to the envi-
ronment. Not all tasks have a value, and a task does not just produce a value when it is
completed. Instead, a task’s value is continually updated while the work takes place,
and can be observed at any point during execution. Moreover, it may be possible that
a task is never completed, and that its value never reaches a stable condition. A task’s
value reflects a task’s current progress. They can be inspected by other tasks to base
decisions on, which in turn can impact the things users can see or do.

Finally, the top language ismodular : tasks are composed of smaller tasks, and can
be arguments to or results of functions. This allows programmers to re-use tasks, and
to model their own collaboration patterns using higher-order tasks [Plasmeijer et al.,
2012].

Related work

top describes in an abstract waywhat work should be done by the system and its users.
It does not describe how this should be done, this question should be answered by a
top engine. The iTasks engine [Achten et al., 2013] is an implementation of top, writ-
ten in the pure and lazy functional programming language Clean [Plasmeijer et al.,
2002]. It is implemented as a shallowly embedded domain-specific language, which
means that it inherits features from its host language Clean. Amongst these features
is a strong typing system, and because Clean is a functional language, it allows task
combinators to be expressed as functions. From the high level description of the tasks,
iTasks generates a web application that is able to execute the described tasks. It takes
care of generating a gui, and of coordinating the tasks in a distributed manner by us-
ing a client-server architecture. The server side of an iTasks application runs a web
service to which users on a wide range of different devices can connect, and the client
side realises the front-end components. This way, programmers of iTasks-programs
need not be concerned by lower-level implementation details. iTasks has shown it-
self effective in the past for the implementation of interactive, distributed, workflow
applications [Lijnse et al., 2012, Stutterheim et al., 2017].

Because iTasks has been designed for developing real-world applications, reason-
ing formally about iTasks programs is hard [Koopman et al., 2008]. Steenvoorden et al.
[2019] introduces TopHat, a formal language plus operational semantics for reasoning
about task-oriented programs. The semantics of TopHat have been machine verified3

3 https://github.com/timjs/tophat-proofs

using the dependently typed programming language Idris [Brady, 2013]. These for-
mal semantics have been used to prove user defined properties of tasks using symbolic
execution [Naus et al., 2019]. An example of this are the circumstances when a a tax
subsidy request for solar panels should be granted. Symbolic execution has also been
applied to generate next step hints for end users [Naus and Steenvoorden, 2020]. For
example, does the given data during a subsidy request indeed lead to subsidy greater
then zero?

Motivation

When two tasks are equivalent is a long standing open research question. The formal
semantics of TopHat are a good starting point to investigate this question. TopHat
is a domain specific language embedded in the simply typed 𝜆-calculus. The semantic
equivalence in context of the (simply typed) 𝜆-calculus has been extensively studied
[Pitts, 2000, Sewell, 2017]. As TopHat is build on top of the simply typed 𝜆-calculus, we
can relay on this work for equivalence in the host language. However, this knowledge
is not immediately transferable to the world of tasks. There, need to take the semantics
of task constructs into account.

Example 1 (Task equivalence). The next two tasks both ask end users to enter an in-
teger, and thereafter show the absolute value of the given integer:

𝑡1 := □Int ▶ 𝜆𝑥 : Int. if𝑥 < 0 then□◦ (−𝑥) else□◦𝑥
𝑡2 := □Int ▶ 𝜆𝑦 : Int. if𝑦 ≥ 0 then□◦𝑦 else□◦ (−𝑦)

It should be clear that these two tasks are equivalent.

If we can define such a notion of semantic equivalence for task-oriented programs,
what interesting properties can we prove (or disprove)? If we know that one task-
oriented program is semantically equivalent to another, then we know that we can
substitute one for the other, without changing the meaning of the program. Which
in turn could be useful for doing compiler optimizations. An example of such opti-
misations is whether the monad laws hold for the step combinator (▶) used in above
example. Showing that certain equalities hold for task-oriented programs could also
prove useful for the iTasks system in the future.

Structure

The remainder of this paper is structured as follows. Section 2 will explain the compo-
nents of the TopHat language, together with some examples. We will follow the up-
dated semantics presented in Steenvoorden [2022]. In the following section, Section 3,
we give a short overview of what contextual equivalence means. Then, in Section 4, we
give a definition for the semantic equivalence of two expressions in our host language,
and in Section 5 we show that a task can be in either one of five conditions. For every
two tasks in the same condition, we define what it means for them to be semantically
equivalent in Section 6. Additionally, Section 7 presents a set of laws that we believe
hold true or false for TopHat-programs according to our definition. Finally, Section 8
will conclude this paper.

2 The TopHat language

TopHat is a formal language for reasoning about task-oriented programs. It is de-
scribed by a layered operational semantics, consisting of multiple big-step semantic
functions for reducing expressions, and two labelled transition systems for handling
user inputs. Its main layers are evaluation, fixation, and interaction. To make clear
which features come fromtop andwhich features come from functional programming,
TopHat is separated into a task language and an underlying host language [Steenvo-
orden et al., 2019, Steenvoorden, 2022].

The host language of TopHat is a simply typed 𝜆-calculus, extended with with
basic types 𝛽 , references ℎ, and the task type constructor Task. Basic types are the unit
type; primitive types for booleans, integers, and strings; and pairs of other basic types.
We will present the main components of the task language, which is embedded into
the host language, in the next subsections.

2.1 Editors

Editors allow end users to interact with the system by entering and changing informa-
tion. When a user sends an input event to an editor, the editor will update its current
value to reflect the change. There are no output events. Instead, the current value of
an editor can be observed and used in subsequent tasks. All editors and input events
are keyed by a unique key 𝑘 . This is to identify which editor needs to handle which
user input. There are three types of editors in TopHat:

– Empty editors or unvalued editors (□𝑘𝛽) are editors that currently hold no value.
They can be seen as an input prompt to the user to enter data. Empty editors
are annotated with a basic type 𝛽 , which means that only basic values of type 𝛽
are accepted by the editor. Once an empty editor receives a valid input event, it
becomes a filled editor containing the new data.

– Filled editors or valued editors (⊟𝑘𝑏) are editors that currently hold the basic value𝑏.
Filled editors can be seen as either outputting a value, or as an input prompt that
comes with a default value. They can never be cleared, only updated with new
values of the same type.

– Shared editors (⊞𝑘ℎ) watch heap locations ℎ. They allow the user to view and
change shared values. Whenever a shared editor is updated, all shared editors
watching the same heap location ℎ will be updated as well.

Filled editors and shared editors both have read-only variants (□◦𝑘𝑏, ⊞◦ℎ). End users
can see the value in a read-only editor, but not change it. As editors can only handle
basic values of type 𝛽 , there is also a lift combinator (■𝑣) which lifts any value 𝑣 into
the task world.

2.2 Sequential composition

The step combinator (▶) allows the result from one task to determine the next task.We
call this sequential composition. The step combinator expects a task 𝑡 of type Task 𝜏1 on

the left hand side, and a continuation 𝑒 on the right hand side, which is a function from
from 𝜏1 to a successor task of type Task 𝜏2. Steps are guarded. A step can only be taken
if two conditions are met: (1) the task on the left-hand side has an observable value;
and (2) the evaluation of the continuation on the right-hand side with this value does
not fail. A failing task () stands for an impossible task. A task that is failing never has
a value and never accepts input.

Example 2 (Coffee machine). Consider the following task-program:
let coffeeMachine : Task Drink = □Int ▶ 𝜆x.
if x ≡ 1 then ■Coffee else if x ≡ 2 then ■Tea else

This program describes a coffee machine that can either serve coffee or tea. Coffee
is served when one coin is inserted, and tea is served when two coins are inserted.
For any other number of coins, the step remains guarded by the failing task (). This
means that the coffee machine returns nothing and waits until a correct number of
coins is inserted.

The transform combinator (•) maps a function over a task. It takes a function of
type 𝜏1 → 𝜏2 on the left-hand side, and a task of type Task 𝜏1 on the right-hand side,
resulting in a task of type Task 𝜏2. If we want to apply the function and use the re-
sult, we would need to use the transform combinator in combination with the step
combinator, as we can see in the example below.

Example 3 (Traffic light). Let us consider a simple example:
let trafficLight : Task Light =
((𝜆x. if x then Green else Red) • □Bool) ▶ 𝜆y. □◦y

This program describes a traffic light whose light is initially turned off, but given the
right input, it can either become red or green. So long as no input is given, the trans-
form task on the left-hand side of the step combinator has no value, and the step
remains guarded. Once an input is entered, transform returns the value Green if True
was entered, and Red if Falsewas entered, upon which the step proceeds and displays
the result.

2.3 Parallel composition

Pairing (▶◀) combines the result of two tasks, but only if both branches have a value.
If the left task is of type Task 𝜏1, and the right task is of type Task 𝜏2, then their pairing
is of type Task (𝜏1 × 𝜏2). However, if one or both branches have no value, then the
resulting task also has no value.

Choosing (◀▶) chooses one of two branches. Therefore, both branches should be
of the same type Task 𝜏 . This combinator is left-biased: it returns the leftmost task that
has a value. If neither task has a value, then the resulting task also has no value. See
also Fig. 2 for the definition of the value observation for pairing and choice.

These combinators allow user to work on two tasks in parallel, but unlike the name
suggests, parallel does not mean that there is non-determinism. The order of execution
is determined by the order of user inputs send. Instead, parallel here means that the
order in which we execute the tasks, and their subtasks, does not matter.

Example 4 (Breakfast). Let us consider the following task, which makes use of both
parallel combinators:

let make : 𝜏 → Task 𝜏 = 𝜆x. □Unit ▶ 𝜆y. □◦x in
let makeBreakfast : Task (Drink × Food) =
((make Tea ◀▶ make Coffee) ▶◀ make Egg) ▶ eatBreakfast

This program describes a simple workflow for making breakfast. Breakfast consists
of something to drink (tea or coffee), and something to eat (eggs). The drink and the
food are prepared in parallel (▶◀), which means that the order in which they are made
does not matter. For the drink, users have a choice (◀▶) whether they want tea or
coffee with their breakfast. For the food, users will always make an egg. We will use
the functionmake to simulate that the user must first perform an action (i.e. send user
input) before an item is prepared and the task has a value. Only when both the drink
and food are ready, can the step be taken and can we enjoy our breakfast.

2.4 Observations

Not just can fail, tasks with failing subtasks can also fail. For example, the pairing
 ▶◀ is also a failing task, and is equivalent to . To capture what tasks are failing
we introduce the failing observation F , which is defined in Fig. 1. Failing is especially
useful when used in combination with the step combinator, as we have seen in Exam-
ple 2.

F : Task → Boolean

F () = True

F (𝑒1 • 𝑡2) = F (𝑡2)
F (𝑡1 ▶ 𝑒2) = F (𝑡1)
F (𝑡1 ▶◀ 𝑡2) = F (𝑡1) ∧ F (𝑡2)
F (𝑡1 ◀▶ 𝑡2) = F (𝑡1) ∧ F (𝑡2)

F (_) = False

I : Normalised task → P(Input)

I(□𝑘𝛽) = {𝑘!𝑏′ | 𝑏′ : 𝛽}
I(⊟𝑘𝑏) = {𝑘!𝑏′ | 𝑏′ : 𝛽} where ⊟𝑏 : Task𝛽
I(⊞𝑘ℎ) = {𝑘!𝑏′ | 𝑏′ : 𝛽} where ⊞𝑙 : Task𝛽

I(𝑒1 • 𝑡2) = I(𝑡2)
I(𝑡1 ▶ 𝑒2) = I(𝑡1)
I(𝑡1 ▶◀ 𝑡2) = I(𝑡1) ∪ I(𝑡2)
I(𝑡1 ◀▶ 𝑡2) = I(𝑡1) ∪ I(𝑡2)

I(_) = ∅

Fig. 1. Failing and inputs observations on tasks

Once a TopHat program is normalised, it is possible to send input to it. The input
event 𝑘!𝑏 indicates that the input 𝑏 should be entered into the editor with key 𝑘 . To do
this, it is useful to know what inputs a given task accepts. The observation function I
returns the set of input events that are currently possible for a given task. Its definition
is given in Fig. 1. For the three read-write editors, I returns all input events 𝑘!𝑏 where
𝑏 is of the correct type. For task combinators, I is defined recursively. For all other
tasks, I returns the empty set. We consider an input event 𝜄 a valid input event for the
task 𝑡 iff 𝜄 ∈ I(𝑡).

To be able to normalise tasks, we need to have a way to determine the value of
tasks. For this, we introduce the task observation V . Given a task 𝑡 : Task 𝜏 and its
current state 𝜎 , this function returns the task’s value 𝑣 of type 𝜏 . It is also possible that
a task’s value is undefined, in which case we write V(𝑡, 𝜎) = ⊥. The definition of V
is given in Fig. 2.

V : Normalised task × State ⇀ Value

V(□𝑘𝛽, 𝜎) = ⊥
V(⊟𝑘𝑏, 𝜎) = 𝑏

V(□◦𝑘𝑏, 𝜎) = 𝑏

V(⊞𝑘ℎ, 𝜎) = 𝜎 (ℎ)
V(⊞◦𝑘ℎ, 𝜎) = 𝜎 (ℎ)

V(■𝑣, 𝜎) = 𝑣

V(, 𝜎) = ⊥

V(𝑡1 ▶ 𝑒2, 𝜎) = ⊥

V(𝑒1 • 𝑡2, 𝜎) =

{
𝑣 ′2 when V(𝑡2, 𝜎) = 𝑣2 ∧ 𝑒1 𝑣2

↦→

𝑣 ′2
⊥ otherwise

V(𝑡1 ▶◀ 𝑡2, 𝜎) =

{
{𝑣1, 𝑣2} when V(𝑡1, 𝜎) = 𝑣1 ∧V(𝑡2, 𝜎) = 𝑣2
⊥ otherwise

V(𝑡1 ◀▶ 𝑡2, 𝜎) =


𝑣1 when V(𝑡1, 𝜎) = 𝑣1
𝑣2 when V(𝑡1, 𝜎) = ⊥ ∧V(𝑡2, 𝜎) = 𝑣2
⊥ otherwise

Fig. 2. Value observation on tasks

2.5 Semantics

Evaluating terms in the host language to values is handled by the big-step evaluation

semantics, where a value is an expression in the host language that cannot be reduced
further. Values 𝑣 can be lambda functions, pairs of values, unit, constants, locations,
or tasks. Basic values 𝑏 are a subset of values 𝑣 that are of basic type 𝛽 . We denote the
evaluation of expression 𝑒 to the value 𝑣 by 𝑒

↦→

𝑣 .
After evaluation is done, a task is ready to be fixated. Fixation is a big-step seman-

tics that is responsible for reducing tasks until they are ready to accept input. We write
𝑡, 𝜎, 𝛿 ⇓ 𝑡 ′, 𝜎 ′ to denote the fixation of task 𝑡 in state 𝜎 given the dirty set 𝛿 , results into
task 𝑡 ′ in state 𝜎 ′. The set 𝛿 ′ contains all heap locations whose value has been changed
while fixation took place. The state 𝜎 is a mapping from heap locations to basic val-
ues. It keeps track of all references created so far, and what value they currently hold.
Fixation makes use of normalisation, which is a helper semantics.

Input events are handled by the interaction semantics. For the interaction seman-
tics, we write 𝑡, 𝜎

𝜄
=⇒ 𝑡 ′, 𝜎 ′ to denote that task 𝑡 in state 𝜎 transitions to task 𝑡 ′ in state

𝜎 ′ after the user input 𝜄. The interaction semantics makes use of a helper handling
semantics, and the previously mentioned fixation semantics to make sure that, after
user interaction, a task is fully reduced and ready to accept the next input. For further
details we refer to Steenvoorden [2022].

3 Contextual equivalence

Our goal is to examinewhen twoTopHat-programs are semantically equivalent. How-
ever, let us first consider what it means in general for two programs 𝑒1 and 𝑒2 to be

semantically equivalent, denoted by 𝑒1 ≃ 𝑒2. According to Sewell [2017], a good defi-
nition of semantic equivalence should satisfy the following properties:

1. Programs that result in values that are observably different should not be equiva-
lent.

2. Programs that terminate should not be equivalent to programs that do not termi-
nate.

3. The relation ≃ should be an equivalence relation: it is reflexive, symmetric and
transitive.

4. The relation ≃ should be a congruence. That is if 𝑒1 ≃ 𝑒2, then for all program
contexts 𝐸 [·], we like to have 𝐸 [𝑒1] ≃ 𝐸 [𝑒2]. Here we fill the hole · with any well
typed expression,

5. The relation ≃ should contain as many programs as possible subject to the above
properties.

It should be obvious that the first three properties are essential. The fourth prop-
erty about congruence states that if two programs 𝑒1 and 𝑒2 are semantically equiv-
alent, then we should be able to use 𝑒1 and 𝑒2 interchangeably within any program
without changing its meaning. Finally, the last property ensures that ≃ is not just the
empty relation. We will keep these properties in mind when giving our definitions
of semantic equivalence. Throughout this text, we use the symbol ≃ for the semantic
equivalence of two expressions in the host language, and the symbol � for the seman-
tic equivalence of two tasks.

Next, in Section 4, we give a definition for the semantic equivalence of two ex-
pressions in our host language, the simply typed 𝜆-calculus. Then, in Section 5, we
introduce five conditions tasks can be in. Using these conditions, we define the se-
mantic equivalence of two tasks in Section 6. Finally, Section 7 presents a set of laws
that we believe hold true for TopHat-programs with our definition.

4 Expression equivalence

Before we consider semantic equivalence of tasks, we first look at semantic equiva-
lence of expressions in the host language. Let us start with an example.

Example 5 (Expression equivalence). Consider the following two expressions:

𝑒1 := 𝜆𝑥 : Int. if𝑥 < 0 then−𝑥 else𝑥
𝑒2 := 𝜆𝑦 : Int. if𝑦 ≥ 0 then𝑦 else−𝑦

It should be obvious that these two functions are equivalent: they both return the abso-
lute value of their argument. Therefore, we should be able to use them interchangeably
within any TopHat-program without changing its behavior. So even though the func-
tions 𝑒1 and 𝑒2 are different, we will never detect a difference between themwhen they
are being used within a TopHat-program, because for all possible arguments, 𝑒1 and
𝑒2 evaluate to the same result.

When deciding if two expressions in the host language are equivalent, it is not
enough to just look at the resulting value after evaluation. We need to consider all
contexts that an expression can be used in. This leads to the definition of contextual
equivalence. Pitts [2000] defines contextual equivalence informally as follows:

Two phrases of a programming language are contextually equivalent if any
occurrences of the first phrase in a complete program can be replaced by the
second phrase without affecting the observable results of executing the pro-
gram.

This kind of equivalence is also called operational, or observational equivalence.
To formally define such a notion of contextual equivalence for a given programming
language, we must answer two questions: 1. What is a complete program? 2. What are
the observable results?Depending on the answers to these two questions, this can result
in different definitions of semantic equivalence for the same programming language
[Pitts, 2000]. For expressions in TopHat, we answer these two questions as follows:

1. We will consider an expression in the host-language a complete program if it does
not contain any free variables.

2. The only observation we are interested in is the resulting value after evaluation.

We need away to substitute an expression in a program by another. For this, we use
the notion of an expression context. An expression context 𝐸 [·] is a complete program
that can contain holes, denoted by the symbol ·, which can be filled. We write 𝐸 [𝑒]
for the expression that results from replacing all occurrences of · in 𝐸 by 𝑒 . So, we will
replace all holes with the same expression 𝑒 . In the most common case, there will be
just one hole in 𝐸 to be filled. Fig. 3 gives the grammars for expression- and task-
contexts.

𝐸 ::= Contexts

| · hole
| 𝜆𝑚 : 𝜏 . 𝐸 abstraction
| 𝐸1 𝐸2 application
| 𝑥 variable
| ℎ heap location

| if𝐸1 then𝐸2 else𝐸3 conditional
| {} unit
| {𝐸1, 𝐸2} tuple

| 𝑐 constant
| 𝑃 pre-task context

𝑃 ::= Pre-task contexts

| □𝜈𝛽 unvalued editor
| ⊟𝜈𝐸 valued editor
| ⊞𝜈𝐸 shared editor
| □◦ 𝜈𝐸 valued read-only editor
| ⊞◦ 𝜈𝐸 shared read-only editor

| 𝐸1 • 𝐸2 transform
| 𝐸1 ▶◀ 𝐸2 pair
| ■𝐸 lift
| 𝐸1 ◀▶ 𝐸2 choose
| fail
| 𝐸1 ▶ 𝐸2 step

| share 𝐸 share
| 𝐸1 := 𝐸2 assign

Fig. 3. Context grammar

If we would allow contexts 𝐸 to be of every available type, we would have the same
problem as introduced in Example 5. Then, 𝐸 can also be a lambda function and we can
only determine that two lambda functions are equivalent by considering all contexts
that they can be used in. To avoid a circular definition, our definition of expression
equivalence will only quantify over contexts of basic types 𝛽 . Indeed, we can only
directly observe the equivalence of two basic values.

Taking this together, this leads to the following definition of expression equiva-
lence:

Definition 1 (Expression equivalence (≃)). Given two expressions 𝑒1, 𝑒2 : 𝜏 where

𝜏 ≠ Task 𝜏 ′ for some 𝜏 ′, we say that 𝑒1 and 𝑒2 are semantically equivalent, written 𝑒1 ≃ 𝑒2
if for all contexts 𝐸 [·] : 𝛽 where · : 𝜏 , and for all values 𝑏 : 𝛽 we have that 𝐸 [𝑒1]

↦→

𝑏 if

and only if 𝐸 [𝑒2]

↦→

𝑏

Actually proving that two expressions are contextually equivalent is hard, as we
would need to quantify over all contexts. That is, we would need to consider all pos-
sible ways that a program can use an expression. However, showing that two expres-
sions 𝑒1 and 𝑒2 are contextually inequivalent is straightforward. All we have to do is
find one context 𝐸 [·] : 𝛽 such that 𝐸 [𝑒1]

↦→

𝑏1 and 𝐸 [𝑒2]

↦→

𝑏2 with 𝑏1 ≠ 𝑏2.

Example 6 (Expression inequivalence). The expressions

𝑒1 := 𝜆𝑥 : Int. if𝑥 < 0 then 2 else 3
𝑒2 := 𝜆𝑥 : Int. if𝑥 > 0 then 3 else 2

are not contextually equivalent. Take the context 𝐸 [·] : Int with 𝐸 [·] = · 0, then:

𝐸 [𝑒1] = (𝜆𝑥 : Int. if𝑥 < 0 then 2 else 3) 0

↦→

3
𝐸 [𝑒2] = (𝜆𝑥 : Int. if𝑥 > 0 then 3 else 2) 0

↦→

2

So we found a context for which both expressions evaluate to a different (basic) value.

5 Task conditions

For expression equivalence, we needed contexts to determine the equivalence of two
lambda functions, whose results can only be observed after evaluation. For tasks how-
ever, we do not need contexts to view their results. A task’s value can be determined
at any point during execution by using the V observation, whereupon it either has a
value, or it is undefined. Note that, we will restrict ourselves to tasks which result in
a basic value, as these are results which are directly comparable.

On the other hand, tasks do allow user interaction, and depending on what inputs
are sent, the resulting task may be different. So while lambda functions can produce
different results depending on their arguments, so can tasks produce different results
depending on what inputs are send to them. So, in a sense, for tasks the contexts are
user input.

To satisfy the first property at the beginning of ??, that programs resulting in values
which are observably different must not be equivalent, we will use the observations

on tasks, as introduced in Section 2.4. Before we observe a task however, we should
first fully fixate the tasks whose equivalence we want to determine. We use the fixing
semantics (⇓) to ensure that tasks are fully fixated. Fixation keeps track of a state 𝜎 .
For semantic equivalence, we do not want that fixation results in two different states.
So, given two tasks 𝑡1, 𝑡2 : Task 𝛽 , we want that for all states 𝜎 , fixation of 𝑡1 and 𝑡2 end
in the same state 𝜎 ′:

𝑡1, 𝜎,∅ ⇓ 𝑡 ′1, 𝜎
′ ⇐⇒ 𝑡2, 𝜎,∅ ⇓ 𝑡 ′2, 𝜎

′

After fixation, we need to decide what observations 𝑡 ′1 and 𝑡 ′2 must have in common
for them to be considered equivalent. Let us recall what observations can be made on
tasks. The value functionV returns the value 𝑣 of a task, or ⊥ if it is undefined; there
is the failing function F which returns whether a task is failing; and there is the inputs
function I which returns the set of all possible input events that a task accepts, that
is, their input space. The value and failing functions are used in the normalisation
rules of TopHat, and different observations for these functions can result in different
derivation rules being triggered. Therefore, we can say that tasks for which the value
or failing function return a different result must not be semantically equivalent.

Similarly, tasks whose inputs function I return a different set of input events can
also not be semantically equivalent, because that would mean that the types of inter-
action that can be done with the tasks are different. Recall that input events should be
named by the same key as the editor it is meant for. So if we require thatI(𝑡 ′1) = I(𝑡 ′2),
then this also implies that 𝑡 ′1 and 𝑡 ′2 must have the same keys for all their editors. If
this is not the case, we can never have that I(𝑡 ′1) = I(𝑡 ′2), and the tasks cannot be
semantically equivalent.

Given these impressions, we say that at least the following property must hold for
𝑡 to be equivalent to 𝑡 ′:

F (𝑡) = F (𝑡 ′) andV(𝑡, 𝜎) = V(𝑡 ′, 𝜎) and I(𝑡) = I(𝑡 ′)

For any of these task observations, we can distinguish two cases: either a task fails or
does not fail, it either has a value or its value is undefined, and it either accepts input
or it accepts no more input. Based on these case distinctions, we say that a task is in
either one of five conditions after fixation. These task conditions, and some examples,
are shown in Table 1. In the next subsections, we will discuss each condition in more
detail and give some examples.

5.1 Failing tasks

A failing task 𝑡 is a task for which the failing function F (𝑡) yields true.
In the original TopHat paper [Steenvoorden et al., 2019], Theorem 6.5 states that a

task fails if and only if it accepts nomore user input. However, with the introduction of
the lift combinator (■) in Steenvoorden [2022], this is no longer the case. For example,
■𝑒 does not fail, and neither does it accept user input. The same holds for read-only
editors (□◦ ,⊞◦). What we still can say however, is that if a task is failing, we know
that it has no value and accepts no more user input. We have proven this property in
Proposition 12 in the appendix.

F V I Condition Examples

✓ − − Failing , ▶◀ , ◀▶ , (𝜆𝑥.𝑥) • , ▶ 𝜆𝑥. □◦ 𝑥

− ✓ − Finished steady □◦2, □◦2 ▶◀ □◦3, □◦{2, 3}, (𝜆𝑥.𝑥 + 1) • □◦2
− ✓ ✓ Finished unsteady ⊟2, ⊟2 ▶◀ ⊟3, ⊟{2, 3}
− − ✓ Running □Int ▶◀ , ⊟2 ▶ 𝜆𝑥 .
− − − Stuck □◦2 ▶ 𝜆𝑥. , □◦2 ▶◀ , ▶◀ □◦2
Checkmarks for F , V and I for a task 𝑡 and a state 𝜎 indicate that
F (𝑡) = True,V(𝑡, 𝜎) = 𝑣 for 𝑣 ≠ ⊥, and I(𝑡) ≠ ∅ respectively.

Table 1. Conditions for fixated tasks

Proposition 1 (Failing tasks stay failing). If 𝑡 is a failing task, then it stays failing.
Or, more formally: for all fixated tasks 𝑡 : Task 𝜏 and states 𝜎 , we have that if F (𝑡), there
is no input 𝜄 such that 𝑡, 𝜎

𝜄
=⇒ 𝑡 ′, 𝜎 ′′

.

Proof. Once a task fails, it will always remain failing, because by Corollary 3 from the
appendix no more user interaction is possible, and by assumption, the task is already
fixated.

Failing can thus be regarded as one type of termination, and we will consider all
tasks that fail to be equivalent. Hence, we will say that the tasks , ▶◀ , ◀▶ ,
(𝜆𝑥 . 𝑥) • , ▶ 𝜆𝑥. □◦ 𝑥 , and all other failing tasks, are semantically equivalent to each
other.

5.2 Finished tasks

A finished task 𝑡 is a task which yields a value V(𝑡, 𝜎) = 𝑣 for 𝑣 ≠ ⊥. This value can
either be steady when no more user input is possible, or unsteady when the task still
accepts user input. An example of a finished task with a steady value is the task □◦𝑘42.
Because this task accepts no more user input, its value will always remain equal to 42.
An example of a finished task with an unsteady value is the task ⊟𝑘42. This task still
accepts user input, and thus its value can keep on changing. Even though both tasks
yield the same value, they should not be equivalent, since one’s value can be changed
and the other one’s value cannot.

Definition 2 (Finished, steady, andunsteady task). We call a fixated task 𝑡 : Task 𝜏
in state 𝜎 finished if and only if V(𝑡, 𝜎) = 𝑣 , for 𝑣 ≠ ⊥. Furthermore, we call a finished

task steady if and only if I(𝑡) = ∅, and unsteady in the other case.

A steady task can thus never be semantically equivalent to an unsteady task, even
if their values are (initially) the same. But just looking at the resulting values, and
whether the resulting value is steady or not, is not enough to determine semantic
equivalence of finished tasks. Consider for example the following tasks:

𝑡1 := □◦{2, 3} 𝑡3 := ⊟𝑘1 {2, 3}
𝑡2 := □◦2 ▶◀ □◦3 𝑡4 := ⊟𝑘1 2 ▶◀ ⊟𝑘23

These are all finished tasks with value {2, 3}. Tasks 𝑡1 and 𝑡2 are both steady, and
thus 𝑡1 � 𝑡2. We have already concluded that steady tasks cannot be equivalent to
unsteady tasks, so 𝑡1 � 𝑡3, 𝑡1 � 𝑡4, 𝑡2 � 𝑡3, and 𝑡2 � 𝑡4. But we will also say that 𝑡3 � 𝑡4,
because we have that:

I(𝑡3) = {𝑘1!𝑏1 | 𝑏1 : Int × Int}
I(𝑡4) = {𝑘1!𝑏1 | 𝑏1 : Int} ∪ {𝑘2!𝑏2 | 𝑏2 : Int}

Meaning that the types of interaction that can be done with 𝑡3 differ from the types of
interaction that can be done with 𝑡4. In the case of 𝑡3, the user can only alter the pair
in one go, whereas for 𝑡4, the user can partially update it. So for finished tasks, we also
need to require that I(𝑡) = I(𝑡 ′) if we want to conclude that 𝑡 � 𝑡 ′.

And yet this is still not enough... Consider the following two tasks:

𝑡5 := (𝜆𝑥. if𝑥 < 0 then−𝑥 else𝑥) • ⊟𝑘42
𝑡6 := ⊟𝑘42

Both tasks have the value 42 and accept the same input. However for negative values,
the resulting values diverge, because the transform function in task 𝑡5 ensures that its
output is always positive. So if a task still accepts user input, not only do we need to
look at a task’s current value, but we also need to consider all values that a task can
have after user interaction.

We will regard finished tasks as another type of condition a task can be in after
fixation. Of course, if the value is unsteady, the task is not terminated in the true sense
of the word, since there is still user interaction possible. In fact, the task will never
terminate: a finished task will always remain a finished task with the same input space,
only its value may change.

Proposition 2 (Finished tasks stay finished). If 𝑡 is a finished task, then for all

inputs 𝜄 ∈ I(𝑡): if 𝑡, 𝜎 𝜄
=⇒ 𝑡 ′, 𝜎 ′

, then 𝑡 ′ is again a finished task. Moreover, we also have

that I(𝑡 ′) = I(𝑡).

Proof. Because 𝑡 is finished, it is fixated and has a value by Definition 2. Therefore, by
Proposition 14 from the appendix, we know that 𝑡 is a static task. That is, it is a task
which does not change the combinators it utilises. Using the properties of static tasks,
as proved in the appendix, we know 𝑡 stays static by Corollary 4, and its inputs will
stay the same over interactions by Corollary 5.

5.3 Stuck tasks

A stuck task 𝑡 is a task which does not fail, does not have a value, and does not accept
user input. Examples of stuck tasks are □◦2 ▶ 𝜆𝑥 . , □◦2 ▶◀ , and ▶◀ □◦2. The first
example is stuck because the right-hand side always fails, and thus the step can never
be taken. For pairing, we have that both sides must fail before ▶◀ fails, and both sides
must have a value before ▶◀ has a value. So, if one side fails and the other side has a
value, then neither observation is true, and the task is stuck.

Definition 3 (Stuck task). We call a fixated task 𝑡 : Task 𝜏 in state 𝜎 stuck if and only
if ¬F (𝑇),V(𝑡, 𝜎) = ⊥, and I(𝑡) = ∅.

A stuck taskwill always remain stuck, because nomore user interaction is possible,
and by assumption it is already fully fixated.

Proposition 3 (Stuck tasks stay stuck). If 𝑡 is a stuck task, then it stays stuck. Or,

more formally: for all fixated tasks 𝑡 : Task 𝜏 and states 𝜎 , we have that if I(𝑡) = ∅,
there is no input 𝜄 such that 𝑡, 𝜎

𝜄
=⇒ 𝑡 ′, 𝜎 ′

.

Similar to failing, we will consider stuck tasks as another type of termination, and
we will say that all stuck tasks are semantically equivalent to each other.

5.4 Running tasks

A running task 𝑡 is a task which does not fail, does not have a value, but still accepts
user input. Because there is still user interaction possible, it may be the case that with
the right input, it transitions to one of the previously described task conditions. The
simplest example of a running task is the empty editor □𝑘𝛽 , which becomes a finished
(unsteady) task once it receives a valid input event. There also exist running tasks that
only transition to another task condition for some inputs, or for no inputs at all. For
example, the tasks □𝑘 Int▶𝜆𝑥 . , □𝑘 ▶◀ , and ▶◀⊟𝑘2 are all running tasks which will
forever remain running; and the task □𝑘 Int ▶ 𝜆𝑥. if𝑥 ≤ 2 then□◦𝑥 else will only
transition to another task condition for some inputs, but not for others.

Definition 4 (Running task). We call a fixated task 𝑡 : Task 𝜏 in state 𝜎 running if

and only if ¬F (𝑇), V(𝑡, 𝜎) = ⊥, and I(𝑡) ≠ ∅.

To determine the equivalence of two running tasks, we therefore need to look at
all possible user interactions, and check that they affect the two tasks in the same way.
To do this, we need a way to talk about sequences of input events, instead of just single
input events. We give the following definition for this:

Definition 5 (Input sequences). An input sequence 𝐼 = 𝜄1 · . . . · 𝜄 𝑗 is a finite sequence
of input events. Given a task 𝑡0 : Task 𝜏 and a state 𝜎0, we say that 𝐼 is a valid input

sequence for 𝑡0 in 𝜎0 if and only if:

𝑡0, 𝜎0
𝜄1
=⇒ 𝑡1, 𝜎1

𝜄2
=⇒ . . .

𝜄 𝑗
=⇒ 𝑡 𝑗 , 𝜎 𝑗

with 𝜄𝑖 ∈ I(𝑡𝑖−1), for all 𝜄 ∈ {1, . . . , 𝑗}.
We will use the shorthand notation 𝑡0, 𝜎0

𝐼
=⇒∗ 𝑡 𝑗 , 𝜎 𝑗 to denote the above derivation.

We also consider the empty input sequence, denoted by 𝜖 , to be a valid input sequence,

and for all tasks 𝑡 and states 𝜎 we have that: 𝑡, 𝜎
𝜖

=⇒∗ 𝑡, 𝜎 .

Wewill make a distinction between running tasks that forever remain running, no
matter what inputs you send to it; and running tasks for which there exists at least
one input sequence which escapes, i.e. which transitions to another task condition.We
will call the former class looping tasks, and the latter class branching tasks, formally:

Definition 6 (Looping and branching). We call a running task 𝑡 : Task 𝜏 in state 𝜎

looping if and only if for all valid input sequences 𝐼 we have that 𝑡, 𝜎
𝐼

=⇒∗ 𝑡 ′, 𝜎 ′
and 𝑡 ′ is

again a running task. If there exists at least one valid input sequence for which 𝑡 ′ is not
a running task, then we call 𝑡 branching.

For branching tasks, it is possible to transition to either a finished or a stuck task
condition. Take for example the task □𝑘 Int ▶ 𝜆𝑥. 𝑡 , which is a running task that tran-
sitions to 𝑡 after a valid input event. So long as 𝑡 is not failing, the step can be taken,
and so 𝑡 can be any non-failing task. It is also possible that for some input events, it
transitions to one task condition, and for others, that it transitions to a different task
condition. For example the task □𝑘 Int ▶ 𝜆𝑥. if𝑥 ≤ 2 then 𝑡 else 𝑡 ′ transitions to 𝑡 for
some inputs, and to 𝑡 ′ for other inputs. However, a running task can never transition
to a failing task.

Proposition 4 (Running tasks will not fail). If 𝑡 : Task 𝜏 is a running task, then

for all states 𝜎 and for all valid input sequences 𝐼 , we have that if 𝑡, 𝜎
𝐼

=⇒∗ 𝑡 ′, 𝜎 ′
then

¬F (𝑡 ′).

Proof. By assumption 𝑡 is running, and therefore itself not failing, and by the definition
of the normalisation rules, 𝑡 cannot make a transition to a failing task.

We say that two running tasks 𝑡1 and 𝑡2 in state 𝜎 are semantically equivalent if
for all valid input sequences 𝐼 we have that 𝑡1, 𝜎

𝐼
=⇒ 𝑡 ′1, 𝜎

′ ⇐⇒ 𝑡2, 𝜎
𝐼

=⇒ 𝑡 ′2, 𝜎
′, with

V(𝑡 ′1, 𝜎 ′) = V(𝑡 ′2, 𝜎 ′), and I(𝑡 ′1) = I(𝑡 ′2). That is, for all possible user interactions, 𝑡1
and 𝑡2 are not observably different. Because of Proposition 4, we do not need to check
whether the tasks fail or not.

6 Task equivalence

Fig. 4 shows all possible task states and their transitions. In this diagram, a looping task
is a taskwhich never leaves the running state, that is, which always takes the transition
back to the running state, no matter what input is given. A branching task is a running
task for which there exists at least one input sequence which will transition to either
stuck, steady, or unsteady. We will argue that this state diagram is complete.

First, we show that the five conditions discussed so far are mutually exclusive and
exhaustive.

Proposition 5 (Condition exclusivity). For all well typed fixated tasks 𝑡 and states

𝜎 , we have that 𝑡 is in one of the five conditions show in Fig. 4.

Proof. By Proposition 12, we know that if a task is failing, it has no observable value
and no possible inputs. This makes Failing the only condition a task can be in when
F (𝑡) = True. Otherwise, one of the four remaining conditions (Steady, Unsteady, Run-
ning, and Stuck) should hold. These four conditions are mutual exclusive by definition.

Now that we know the conditions in Fig. 4 are the only conditions for any fixated
task to be in, we show that the transitions in the state diagram are also complete.

Running

Failing Stuck

Steady Unsteady

Fig. 4. Possible task conditions and their transitions, where a transition is caused by user inter-
action (

𝜄
=⇒) for some input 𝜄.

Proposition 6 (Condition completeness). The state diagram in Fig. 4 is complete.

That is, for any two task conditions 𝐶 and 𝐶′
, there is a transition from 𝐶 to 𝐶′

if and

only if there exist two tasks 𝑡 ∈ 𝐶 and 𝑡 ′ ∈ 𝐶′
such that 𝑡, 𝜎

𝜄
=⇒ 𝑡 ′, 𝜎 ′

for some input

𝜄 ∈ I(𝑡) and states 𝜎 and 𝜎 ′
.

Proof. For the conditions in the state diagram of Fig. 4 we have:

– Running tasks can branch to all other conditions, except for the failing condition,
as stated in Proposition 4, or loop to itself.

– Failing tasks stay failing, by Proposition 1.
– Stuck tasks stay stuck, by Proposition 3.
– Finished tasks stay finished, by Proposition 2. Moreover, they keep their input

space. So steady tasks stay steady, because their input space stays empty, and un-
steady tasks stay unsteady, keeping their non-empty input space.

Hereby, we covered every possible transition in Fig. 4.

In the previous section, we mentioned that with the addition of internal editors
(■) and read-only editors (□◦ ,⊞◦) in this paper, it is no longer the case that a task 𝑡 is
failing if and only if it accepts no more user input, as is shown in Theorem 6.5 in the
original TopHat paper [Steenvoorden et al., 2019]. Were this theorem still true, we
could not have the stuck and steady states, because they contain tasks that do not fail
and do not accept user input. We will therefore claim that, if we remove ■, □◦ , and ⊞◦
from the TopHat language as presented here, we no longer have the stuck and steady
conditions.

Corollary 1 (Read-only tasks). If we remove the editors ■, □◦ , and ⊞◦ from TopHat,

we are left with only three possible task conditions after fixation: failing, running and

finished unsteady.

Based on the five task conditions, we give the following definition for the semantic
equivalence of two tasks:

Definition 7 (Task equivalence). Given two fixated tasks 𝑡1, 𝑡2 : Task 𝛽 of basic inner
type, and given a state 𝜎 , we say that 𝑡1 and 𝑡2 are semantically equivalent if one of the

following holds:

1. both tasks are failing;
2. both tasks are finished withV(𝑡1, 𝜎) = V(𝑡2, 𝜎), and this value is steady;
3. both tasks are finished withV(𝑡1, 𝜎) = V(𝑡2, 𝜎), and this value is unsteady, and for

all valid input sequences 𝐼 : 𝑡1, 𝜎
𝐼

=⇒ 𝑡 ′1, 𝜎
′ ⇐⇒ 𝑡2, 𝜎

𝐼
=⇒ 𝑡 ′2, 𝜎

′
with V(𝑡 ′1, 𝜎 ′) =

V(𝑡 ′2, 𝜎 ′);
4. both tasks are stuck;
5. both tasks are running, and for all valid input sequences 𝐼 : 𝑡1, 𝜎

𝐼
=⇒ 𝑡 ′1, 𝜎

′ ⇐⇒
𝑡2, 𝜎

𝐼
=⇒ 𝑡 ′2, 𝜎

′
withV(𝑡 ′1, 𝜎 ′) = V(𝑡 ′2, 𝜎 ′) and I(𝑡 ′1) = I(𝑡 ′2).

We write 𝑡1 � 𝑡2.

To determine a task’s condition, we use the task observation functions F ,V , and
I. For some task conditions, we also need to take the interactive setting of TopHat
into account. Namely, if the set of inputs given by I is not empty, as is the case for the
unsteady and running task states, we also need to check the task observations after
every possible input sequence.

Because we also allow input sequences to be empty, we can generalise the above
definition as follows:

Definition 8 (Generalised task equivalence). Given two fixated tasks 𝑡1, 𝑡2 : Task 𝛽
of basic inner type, and given a state 𝜎 , we say that 𝑡1 and 𝑡2 are semantically equivalent

(𝑡1 � 𝑡2) if for all valid input sequences 𝐼 we have that 𝑡1, 𝜎
𝐼

=⇒ 𝑡 ′1, 𝜎
′ ⇐⇒ 𝑡2, 𝜎

𝐼
=⇒

𝑡 ′2, 𝜎
′
with F (𝑡 ′1) = F (𝑡 ′2) ∧ V(𝑡 ′1, 𝜎 ′) = V(𝑡 ′2, 𝜎 ′) ∧ I(𝑡 ′1) = I(𝑡 ′2).

7 Laws on tasks

Now that we have a definition of semantic equivalence for TopHat-programs, we can
look at some interesting properties. This section gives some of the propertieswe expect
to hold for equivalence. We will give some reasons of why we think a certain equality
holds, or provide a counterexample to show the inequality of two expressions.

In TopHat, we can express functor laws over the type constructor Task as follows.

Proposition 7 (Laws on transform (•)).

id • 𝑡 � 𝑡 identity

(𝑒1 ◦ 𝑒2) • 𝑡 � 𝑒1 • (𝑒2 • 𝑡) composition

Proof. Given any fixated task 𝑡 and state 𝜎 , we have that

– F (id • 𝑡) = F (𝑡) by definition (see Fig. 1);
– I(id • 𝑡) = I(𝑡) by definition (see Fig. 1); and
– V(id • 𝑡, 𝜎) = V(𝑡, 𝜎), because if 𝑡 has no value, then neither does id • t, and if

V(𝑡, 𝜎) = 𝑣 for 𝑣 ≠ ⊥, thenV(id • 𝑡, 𝜎) = id 𝑣

↦→

𝑣 .

A similar argumentation can be made for the composition law. We therefore believe
that the Task operator on types is a functor.

For the TopHat pairing construct (▶◀), we can formulate laws which are inspired
by an alternative formulation of the laws of Haskell’s Applicative type class.

Proposition 8 (Laws on pair (▶◀)).

■{} ▶◀ 𝑡 � 𝑡 left identity

𝑡 ▶◀ ■{} � 𝑡 right identity

assoc • (𝑡1 ▶◀ (𝑡2 ▶◀ 𝑡3)) � (𝑡1 ▶◀ 𝑡2) ▶◀ 𝑡3 associativity

{𝑒1 _, 𝑒2 _} • (𝑡1 ▶◀ 𝑡2) � (𝑒1 • 𝑡1) ▶◀ (𝑒2 • 𝑡2) naturality

Proof. If we take 𝑡 = for the left and right identity laws, then in both cases we have
that the right-hand side is a failing task, but the left-hand side is not. Pairing requires
that both sides fail before it fails itself. Therefore, we will say that the Task constructor
on types does not form a monoidal functor.

However, the other two laws hold using a similar argumentation as in the proof of
Proposition 7. For associativity, we need the function assoc := 𝜆{𝑎, {𝑏, 𝑐}}.{{𝑎, 𝑏}, 𝑐}
to make sure that both sides have the same type. Also, the naturality law states that
first pairing two tasks and then mapping two functions is the same as first mapping
the functions separately and then pairing them.

For choosing (◀▶) we formulate the following properties, which are loosely based
on the laws of the Alternative type class in Haskell.

Proposition 9 (Laws on choose (◀▶)).

𝑡1 ◀▶ (𝑡2 ◀▶ 𝑡3) � (𝑡1 ◀▶ 𝑡2) ◀▶ 𝑡3 associativity

■𝑒 ◀▶ 𝑡 � ■𝑒 left catch

𝑡 ◀▶ ■𝑒 � ■𝑒 right catch

𝑒 • (𝑡1 ◀▶ 𝑡2) � (𝑒 • 𝑡1) ◀▶ (𝑒 • 𝑡2) distributivity

𝑡0 ▶◀ (𝑡1 ◀▶ 𝑡2) � (𝑡0 ◀▶ 𝑡1) ▶◀ (𝑡0 ◀▶ 𝑡2) left pair

(𝑡1 ◀▶ 𝑡2) ▶◀ 𝑡0 � (𝑡1 ◀▶ 𝑡0) ▶◀ (𝑡2 ◀▶ 𝑡0) right pair

𝑡0 ▶ 𝜆𝑥 .(𝑡1 ◀▶ 𝑡2) � (𝑡0 ▶ 𝜆𝑥 .𝑡1) ◀▶ (𝑡0 ▶ 𝜆𝑥 .𝑡2) left step

(𝑡1 ◀▶ 𝑡2) ▶ 𝑒 � (𝑡1 ▶ 𝑒) ◀▶ (𝑡2 ▶ 𝑒) right step

Proof. Associativity, left catch, and a number of distributivity laws can be proved in a
similar way as in Proposition 7. Catch only holds for the left side, because the choice
combinator is left-biased. The first distributivity law shows that mapping a function
over choice should be equivalent tomapping it separately over its component subtasks.
The last two distributivity laws for step (▶) show that stepping to or from a choice is
equivalent to choosing between steps.

Left and right distributivity for pairing (▶◀) do not hold. Suppose V(𝑡0, 𝜎) = ⊥,
V(𝑡1, 𝜎) = 𝑣1 and V(𝑡2, 𝜎) = 𝑣2. Then in both cases, we have that the left-hand side
of the inequality has no value, because pairing requires that both sides have a value

before it has a value itself. However, the right-hand side does have a value in both
cases, namely {𝑣1, 𝑣2}, because the choice combinator normalises 𝑡0 away, and we are
left with 𝑡1 ▶◀ 𝑡2 in both cases.

When considering the failing task (), we can formulate the following laws:

Proposition 10 (Laws on fail ()).

 ◀▶ 𝑡 � 𝑡 left identity

𝑡 ◀▶ � 𝑡 right identity

𝑒 • � annihilation

 ▶◀ 𝑡 � left zero

𝑡 ▶◀ � right zero

 ▶ 𝑒 � left annihilation

𝑡 ▶ 𝜆𝑥. � right annihilation

Proof. The failure task () acts as the left and right identity for the choice combinator
(◀▶). That means that can be cancelled out from the left- and right-hand side. For
pairing, left and right pair annihilation do not hold, becauseF (𝑡1▶◀𝑡2) = F (𝑡1)∧F (𝑡2).
Pairing therefore requires that both the left-hand and right-hand side fail before their
pairing fails, and thus if only one side fails, it cannot be equivalent to the failing task .

We defined all failing tasks to be semantically equivalent, thus annihilation for •,
and left step annihilation for ▶ trivially hold. Right step annihilation does not however.
Suppose that 𝑡 is not a failing task, then we also have that 𝑡 ▶ 𝜆𝑥 . is not a failing
task, because F (𝑡 ▶ 𝜆𝑥 .) = F (𝑡) by definition (see Fig. 1). Neither can we normalise
𝑡 ▶ 𝜆𝑥. , because the right-hand side fails . So if 𝑡 does not fail, then neither does
𝑡 ▶ 𝜆𝑥 . , and we cannot conclude that a non-failing task is semantically equivalent to
the failing task .

Steps (▶) in TopHat have a monadic flavour to them, and we can wonder whether
the step combinator is a bind operation. So, if we consider Task to be the monadic
constructor, ■ the return function, and ▶ the bind function, then we can express the
three monadic laws in TopHat as follows.

Proposition 11 (Laws on step (▶)).

■𝑥 ▶ 𝑔 � 𝑔 𝑥 left identity

𝑡 ▶ (𝜆𝑦.■𝑦) � 𝑡 right identity

(𝑡 ▶ 𝑔) ▶ ℎ � 𝑡 ▶ (𝜆𝑦.𝑔 𝑦 ▶ ℎ) associativity

Proof. With our definition of program equivalence, we can show that neither the left
nor the right identity laws hold. For the left identity, take for example 𝑔 := 𝜆𝑥 . , then
we have that 𝑔 𝑥 is a failing task, because 𝑔 𝑥 = (𝜆𝑥.) 𝑥

↦→

 . However, the left-hand
side ■𝑥 ▶𝑔 = ■𝑥 ▶ 𝜆𝑥 . is a stuck task, because it does not fail, and the step can never
be taken.

For the right identity law we can take for example 𝑡 := □𝑘 Int. If we send the input
event 𝑘!42 to both sides, then the left-hand side normalises to ■42, while the right-
hand side becomes⊟𝜈42. Aswe have already seen, these two tasks are not semantically
equivalent, because the value of ■42 is steady and cannot be changed any more, while
the value of ⊟𝜈42 is unsteady and can be updated through user input.

However, the associativity law holds. Given any fixated task 𝑡 and state 𝜎 , for F
and I we have that:

F
(
(𝑡 ▶ 𝑔) ▶ ℎ

)
= F (𝑡 ▶ 𝑔) = F (𝑡) = F

(
𝑡 ▶ (𝜆𝑦.𝑔 𝑦 ▶ ℎ)

)
I
(
(𝑡 ▶ 𝑔) ▶ ℎ

)
= I(𝑡 ▶ 𝑔) = I(𝑡) = I

(
𝑡 ▶ (𝜆𝑦.𝑔 𝑦 ▶ ℎ)

)
by definition (see Fig. 1). Furthermore, supposing that V(𝑡, 𝜎) = 𝑣 , and 𝑔 𝑣

↦→

𝑡 ′ with
¬F (𝑡 ′), then both sides normalise to 𝑡 ′▶ℎ in some state 𝜎 ′. On the other hand, if either
V(𝑡, 𝜎) = ⊥ or F (𝑡 ′), then the step cannot be taken, and we have thatV

(
(𝑡 ▶𝑔)▶ℎ

)
=

V
(
𝑡 ▶ (𝜆𝑦.𝑔 𝑦 ▶ ℎ)

)
= ⊥.

8 Conclusions

In this paper, we took TopHat as a foundation to reasoning about task-oriented pro-
grams. We gave a definition for the semantic equivalence of two TopHat-programs.
We split this definition into two classes: expression equivalence, and task equivalence.
For task equivalence, we showed that a task can be in either one of five conditions after
fixation, and for every two tasks in the same condition, we defined what it means for
them to be semantically equivalent. We also noted that for task conditions that still ac-
cept user input, it is important to take the interactive setting of TopHat into account,
and compare how both tasks react to user input. We presented a set of transformation
laws that we hold true for TopHat-programs. Especially, we showed that the Task type
constructor in TopHat is not a monad but it is a functor. Using these laws, develop-
ers and compilers can do safe transformations on task-oriented programs, while being
sure the semantic meaning of the program stays the same.

Future work

In future work, we would like to implement the transformation laws presented in
Section 7 in TopHat’s symbolic execution engine [Naus et al., 2019]. This could speed
up symbolic evaluation and give faster results on next step hints for end users. Also,
we would like to investigate the implications of our findings on the iTasks system,
which could benefit from implementing the transformation laws in the same way.

Acknowledgements

The authors like to thank Herman Geuvers for supervising the bachelor research on
which this article is based.

Bibliography

Peter Achten, Pieter W. M. Koopman, and Rinus Plasmeijer. An introduction to task
oriented programming. In Viktória Zsók, Zoltán Horváth, and Lehel Csató, edi-
tors, Central European Functional Programming School - 5th Summer School, CEFP

2013, Cluj-Napoca, Romania, July 8-20, 2013, Revised Selected Papers, volume 8606 of
Lecture Notes in Computer Science, pages 187–245. Springer, 2013. ISBN 978-3-319-
15939-3.

Edwin C. Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. J. Funct. Program., 23(5):552–593, 2013.

PieterW.M. Koopman, Rinus Plasmeijer, and Peter Achten. An executable and testable
semantics for itasks. In Sven-Bodo Scholz and Olaf Chitil, editors, Implementation

and Application of Functional Languages - 20th International Symposium, IFL 2008,

Hatfield, UK, September 10-12, 2008. Revised Selected Papers, volume 5836 of Lecture
Notes in Computer Science, pages 212–232. Springer, 2008. ISBN 978-3-642-24451-3.

Bas Lijnse, JanMartin Jansen, and Rinus Plasmeijer. Incidone: A task-oriented incident
coordination tool. In Proceedings of ISCRAM, 2012.

Nico Naus and Tim Steenvoorden. Generating next step hints for task oriented pro-
grams using symbolic execution. In Aleksander Byrski and John Hughes, editors,
Trends in Functional Programming - 21st International Symposium, TFP 2020, Krakow,

Poland, February 13-14, 2020, Revised Selected Papers, volume 12222 of Lecture Notes
in Computer Science, pages 47–68. Springer, 2020. ISBN 978-3-030-57760-5.

Nico Naus, Tim Steenvoorden, andMarkus Klinik. A symbolic execution semantics for
tophat. In Jurriën Stutterheim and Wei-Ngan Chin, editors, IFL ’19: Implementation

andApplication of Functional Languages, Singapore, September 25-27, 2019, pages 1:1–
1:11. ACM, 2019. ISBN 978-1-4503-7562-7.

Andrew M. Pitts. Operational semantics and program equivalence. In Gilles Barthe,
Peter Dybjer, Luís Pinto, and Jo ao Saraiva, editors, Applied Semantics, International

Summer School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced

Lectures, volume 2395 of Lecture Notes in Computer Science, pages 378–412. Springer,
2000. ISBN 3-540-44044-5.

Rinus Plasmeijer, Marko van Eekelen, and John van Groningen. Clean language report
version 2.1. Technical report, 2002.

Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter W. M. Koop-
man. Task-oriented programming in a pure functional language. In Principles and

Practice of Declarative Programming, PPDP’12, Leuven, Belgium - September 19 - 21,

2012, pages 195–206, 2012.
Peter Sewell. Semantics of programming languages, computer science tripos, part 1b,
2017. Accessed 29-November-2019.

Tim Steenvoorden. TopHat: Task-oriented programming with style. PhD thesis, 2022.
Tim Steenvoorden, Nico Naus, and Markus Klinik. Tophat: A formal foundation for
task-oriented programming. In Proceedings of the 21st International Symposium on

Principles and Practice of Programming Languages, PPDP 2019, Porto, Portugal, Octo-

ber 7-9, 2019, pages 17:1–17:13, 2019.

Jurriën Stutterheim, Peter Achten, and Rinus Plasmeijer. Maintaining separation of
concerns through task oriented software development. In Trends in Functional Pro-

gramming - 18th International Symposium, TFP 2017, Canterbury, UK, June 19-21,

2017, Revised Selected Papers, pages 19–38, 2017.

A Interplay

In this section we prove some properties of our observations functions introduced in
Section 2.4 and show that play well together.

A.1 Failing

First, we prove that our failing observation F indeed observes a task that does not
have a value, and does not have possible inputs. That is, the value observation V is
undefined, and the inputs observation I gives the empty set.

Proposition 12 (Failing tasks cannot have interaction). For all well typed nor-

malised tasks 𝑛 and state 𝜎 , we have that if F (𝑛) = True, then V(𝑛, 𝜎) = ⊥ and

I(𝑛) = ∅.

Proof. This proposition is mechanically proved by induction over 𝑛 in Idris, see
Task.Proofs.Failing.failingMeansNoInteraction.

Note that the converse statement, is not true: a task which does not have a value
and does not have possible inputs is not necessarily failing. The task □◦42 ▶◀ does
not have a value, because the right hand side of the pair combinator does not have
a value; and does not have possible inputs, because the left hand side is a read-only
editor. However, F (□◦42 ▶◀) = False, because the failing observation needs both
sides of the pair to be failing, but the left hand side clearly is not. This deviates from
the properties form earlier TopHat versions [Steenvoorden et al., 2019, Naus et al.,
2019].

A.2 Inputs

Next, we validate our inputs observation I. It calculates all possible inputs for a given
task. We need to show that the set of possible inputs it produces is both sound and
complete with respect to the handling (−→) and interaction (=⇒) semantics. By sound
we mean that all inputs in the set of possible inputs can actually be handled by the
semantics, and by complete we mean that the set of possible inputs contains all inputs
that can be handled by the semantics. Proposition 13 expresses exactly this property
for the handling semantics.

Proposition 13 (Inputs is sound and complete (wrt handle)). For all well typed

normalised tasks 𝑛, states 𝜎 , and inputs 𝜄, we have that 𝑖 ∈ I(𝑛) if and only if there exists
task 𝑡 ′, state 𝜎 ′

, and dirty set 𝛿 ′ such that 𝑛, 𝜎
𝜄−→ 𝑡 ′, 𝜎 ′, 𝛿 ′.

Proof. This theorem is mechanically proved by induction on 𝑛 in Idris, see
Task.Proofs.Inputs.inputIsHandled and Task.Proofs.Inputs.handleIsPossible.

Because of the structure of the interaction semantics (=⇒), Proposition 13 directly
gives us soundness and completeness of inputs with respect to interact.

Corollary 2 (Inputs is sound and complete (wrt normalise)). For all well typed

normalised tasks 𝑛, states 𝜎 , and inputs 𝜄, we have that 𝑖 ∈ I(𝑛) if and only if there exists
normalised task 𝑛′, and state 𝜎 ′

such that 𝑛, 𝜎
𝜄

=⇒ 𝑛′, 𝜎 ′
.

By combining Proposition 12 and Corollary 2, we know that failing tasks cannot
handle input.

Corollary 3 (Failing tasks cannot handle input). For all well typed normalised

tasks 𝑛 and states 𝜎 , we have that if F (𝑛), there is no input 𝜄 such that 𝑛, 𝜎
𝜄−→ 𝑡 ′, 𝜎 ′, 𝛿 ′.

A.3 Value

Last, we prove that, when we can observe a value from a task, this task is a static task.
By static tasks, we mean that the shape of the tree of task nodes and leaves are static
and cannot be dynamically altered at runtime.

𝑠 ::= Static tasks

| ⊟𝑘𝑏 valued editor
| ⊞𝑘ℎ shared editor
| □◦𝑘𝑏 valued read-only editor
| ⊞◦𝑘ℎ shared read-only editor

| 𝑣1 • 𝑠2 transform
| 𝑠1 ▶◀ 𝑠2 pair
| ■𝑣 lift

Fig. 5. Static tasks

Definition 9 (Static task). We call tasks static when they consist of a valued editor,

pairs of static tasks, or transforms of static tasks. That is, they confirm to the grammar

presented in Fig. 5.

Note that static tasks are a subset of normalised tasks.

Proposition 14 (Valued tasks are static). For all well typed normalised tasks 𝑛 and

states 𝜎 , we have that if V(𝑛, 𝜎) = 𝑣 , 𝑛 is static.

Proof. We have that V(𝑛, 𝜎) = 𝑣 : 𝛽 . When taking the definition of V into account
(as given in Fig. 2), we see that 𝑛 can only be in one of four shapes:

– a valued editor 𝑑 (that is 𝑑 ≠ □𝛽);
– a pair 𝑛1 ▶◀ 𝑛2, for which V(𝑛1, 𝜎) = 𝑣1 andV(𝑛2, 𝜎) = 𝑣2;
– a transform 𝑒1 • 𝑛2, for whichV(𝑛2, 𝜎) = 𝑣2;
– a lift ■𝑣 .

Especially, step (𝑛1 ▶ 𝑒2) and fail () are ruled out, because they have no value. Choice
(𝑛1 ◀▶ 𝑛2) is ruled out, because by rules N-Choose[Left,Right,None], the only way
that this combinator can survive normalisation is for both 𝑛1 and 𝑛2 to not have a
value, which should be the case here. Now, by induction, we have that 𝑛 is static and
meets the grammar in Fig. 5.

See also Task.Proofs.Static.valued_means_static in Idris.

As static tasks do not contain steps (𝑛1▶𝑒2) or choices (𝑛1◀▶𝑛2), their form cannot
be altered at runtime. That is, there is no way for end users to create new (sub)tasks.

Corollary 4 (Static tasks stay static). For all well typed normalised tasks𝑛 and states

𝜎 , we have that if 𝑛 is static, its shape cannot be altered at runtime.

In particular, we cannot create or delete editors at runtime. So the input events a
static task can process will always be the same.

Corollary 5 (Static tasks keep input observation). For all well typed normalised

tasks 𝑛 and states 𝜎 , we have that if 𝑛 is static, and 𝑛, 𝜎
𝜄

=⇒ 𝑛′, 𝜎 ′
for some 𝜄 ∈ I(𝑛) then

I(𝑡) = I(𝑡 ′).

Algorithm Design with the Selection Monad

Johannes Hartmann and Jeremy Gibbons

Department of Computer Science, University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract. The selection monad has proven useful for modelling exhaus-
tive search algorithms. It is well studied in the area of game theory as
an elegant way of expressing algorithms that calculate optimal plays for
sequential games with perfect information; composition of moves is mod-
eled as a ‘product’ of selection functions. This paper aims to expand the
application of the selection monad to other classes of algorithms. The
structure used to describe exhaustive search problems can easily be ap-
plied to greedy algorithms; with some changes to the product function,
the behaviour of the selection monad can be changed from an exhaus-
tive search behaviour to a greedy one. This enables an algorithm design
framework in which the behaviour of the algorithm can be exchanged
modularly by using different product functions.

Keywords: Selection monad · Functional programming · Algorithm de-
sign · Greedy algorithms · Monads.

1 Introduction

In 2010 Mart́ın Escardó and Paulo Oliva first describe the selection monad in
their paper Selection Functions, Bar Recursion, and Backward Induction [2],
where they explain bar recursion in terms of sequential games. They use the
selection monad to model bar recursion and further show how sequential games
can be solved using the selection monad. In subsequent work [3], they relate the
selection monad to several different applications, such as Double-Negation Shift
in the field of logic and proof theory and the Tychonoff Theorem in the field of
topology.

Selecting a candidate for a solution out of a collection of options, based on
some property function that tells us how good a candidate is, is a recurring pat-
tern in computer science. We can use selection functions of type (A -> R) -> A

to model this decision process. For example, when playing a sequential game,
making a move means deciding for a particular move out of all possible moves.
We can imagine a property function that somehow is able to compute how good
each move is, and we then select the best one. The general idea when using
selection functions is to model a problem in terms of a list of selection functions
[(A -> R) -> A]. These selection functions then can be combined into a single
selection function ([A] -> R) -> [A] with the help of the product for selection
functions. Further, it turns out that these selection functions form a monad, and

2 J. Hartmann, J. Gibbons

that the product for selection functions is given by the monadic sequence func-
tion. The product for selection functions hereby models an exhaustive search
algorithm, that trying out every possible solution to the problem and then se-
lecting the overall best one. This can be applied to find optimal strategies for
sequential games, where each individual selection function is modeling the choice
of which move to play next, and the sequential composition of all this individual
choices computes an optimal strategy for this game.

In this paper we describe alternative product implementations for selec-
tion functions, providing different computational behaviour. With these differ-
ent product implementations we are able to model both greedy algorithms and
limited-lookahead search algorithms. This enables us to extend the application
of selection functions to a wider range of problems.

In Section 2 we introduce selection functions in greater detail and provide
an intuition for and examples of the product for selection functions. Then in
Section 3 we provide an alternative product implementation that models a greedy
behaviour, and in Section 4 we will have a look at some examples of greedy
algorithms that are modeled with the greedy product for selection functions. In
Section 6 we introduce another variant of the product of selection function that
limits the number of steps it looks into the future. We conclude this paper and
discuss potential future work in Section 7.

2 Selection functions

Selection functions summarise the process of selecting an individual object out
of a collection of objects. Selecting something means making a choice, deciding
in favour of one object over all the other objects of the collection we are choosing
from. So in order to make a choice we need to be able to judge these objects,
and based on that judgement, decide on a particular object out of a set of all
possibilities.

As an example, let’s say we want to buy a car. Therefore we have a collection
of all available cars on the market, and we want to buy the best one. “Best” in
this case depends heavily on our personal perspective on cars, so let’s define
“best” as “fastest”. Then our personal selection process would be: look up top
speeds of every car in our collection of all available cars, and select the one
with the highest top speed. We can model this in the functional programming
language Haskell as follows:

myChoice :: Car

myChoice = maxWith allCars topSpeed

maxWith :: Ord b => [a] -> (a -> b) -> a

topSpeed :: Car -> Int

allCars :: [Car]

Here, maxWith is the function that selects an element from the given list to max-
imise the given property function. Of course, top speed is not the only property

Algorithm Design with the Selection Monad 3

one might take into account when buying a car; maxWith abstracts from the
property used for judging.

Given elements of type A and properties of type R, a selection function takes a
property function p :: A -> R for judging elements, and selects some element of
type A that is optimal according to the given property function. A good example
of such a selection function is the maxWith from above, partially applied to a
collection of objects, or the complementary minWith function. Escardó and Oliva
studied these selection functions and connected them to different research areas,
including game theory and proof theory [3].

2.1 Pairs of selection functions

As a next step, we want to look at how to combine two selection functions into
a new bigger selection function. We will call this pairing of selection functions.
To be consistent with the notation of previous literature we first define a type
synonym for selection functions:

type J r a = (a -> r) -> a

One way of thinking of a function of type J R A is as embodying a nonempty
collection of A elements: when told how to judge individual elements by R-values,
the function can deliver an optimal element by that measure.

Now we define the pair operator combining two selection functions to make
a new one [3]:

pair :: J r a -> J r b -> J r (a,b)

pair f g p = (a,b)

where

a = f (\x -> p(x,g(\y -> p(x,y))))

b = g (\y -> p(a,y))

This new selection function selects (A,B) pairs, and therefore awaits a property
function p :: (A,B) -> R that judges pairs. Suppose we are given such property
function; then an (A,B) pair needs to be produced as output. To do so, we need
to extract an A out of the first selection function f; we do so by constructing
a new property function that judges As. However, we only have something that
judges (A,B) pairs. The trick is, for every x :: A we would like to judge, we
extract a corresponding y :: B out of the second selection function and the pair
(x,y) with the given property function p. Once we have found our optimal a,
we can use it in the same way to select a corresponding b out of the selection
function g and returning both as a pair.

So intuitively, this pair operator for selection functions combines two given
selection functions in a way that the resulting selection function produces a
pair that is optimal for a property function that judges these pairs. The two
elements of this pair are extracted from the given selection functions in a way
that they are always judged in the context of a full pair. From the perspective of
selection functions as embodying a collection of objects, the pair for two selection
functions embodies the cartesian product of the two collections.

4 J. Hartmann, J. Gibbons

2.2 Password example

Let’s consider the following example, where we use the product of selection func-
tions to crack a secret password. This secret password consists of two different
tokens, a secret number between 1–9 and a secret character between a–z:

type Password = (Int, Char)

We are also given a property function that tells us if a given password is cor-
rect. We will treat this property function as a black box and not depend on its
implementation details:

p :: Password -> Bool

p (a,b) = a == 7 && b == 'p'

In order to crack this password we will now define two individual selection func-
tions for the two different parts of the password:

selectInt :: Ord r => J r Int

selectInt p = maxWith p [1..9]

selectChar :: Ord r => J r Char

selectChar p = maxWith p ['a'..'z']

Note here that both selection functions require a property function p to judge
Ints or Chars individually, which we don’t have at this stage. However, building
the pair with the above defined pair function will result in a combined selection
function that we can apply our property function to, and it indeed calculates
the correct solution:

> pair selectInt selectChar p

---> (7,'p')

(Recall that Haskell defines False < True, so this expression returns a pair that
satisfies p, provided that any of the given pairs does so.)

Because the only way to judge each individual component is by the given
property function that judges complete password pairs, the pair function needs
to create new property functions for its selection functions that are able to judge
individual objects in a broader context.

This example fits nicely with the intuition that each selection function already
embodies a set of objects, and that the pair function builds the cartesian product
of these two sets and judges each pair individually and returns an optimal pair.

2.3 Iterated product of selection functions

The next logical step is to expand this from pairs to n-ary products. Unfortu-
nately the standard Haskell type system is too restrictive to allow arbitrarily
typed products of selection functions, and therefore the closest we can get is
combining a list of selection functions for a common element type into a single
selection function [3]:

Algorithm Design with the Selection Monad 5

product :: [J r a] -> J r [a]

product [] _ = []

product (e : es) p = a : as

where a = e(\x -> p(x : product es (p . (x:))))

as = product es (p . (a:))

This particular implementation of product behaves similarly to the previous
pair function. Given a property function p :: [A] -> R that judges lists, this
function iterates through the list of selection functions in order to extract a
concrete object out of each of them and therefore building a property function
that considers both all previous decisions and all future decisions.

Note that for each recursive call a new property function is created that
prepends the current choice of object via (p . (a:)). Further, to extract an
object out of the current selection function e, a property function is created
that judges each element of the underlying set in context of all possible future
choices by recursively calling product within the property function.

2.4 Dependently typed version

Note that in this implementation we are not using the more restrictive type to
our advantage. In contrast to the tuples of the above defined pair operator, the
choice of lists comes with two drawbacks. First, the elements of the list must all
be of the same type and second, lists in Haskell can be of arbitrary length while
tuples are always of a fixed size.

The above presented product implementation does not take advantage of
the first drawback, and assumes the second restriction. It constructs property
functions that always judge elements in context with previous choices and po-
tential future choices, making the restriction that every element needs to be of
the same type irrelevant and assumes that the given property function is able
to judge lists of the exact same length as the given list of selection functions.

In a dependently typed language we would be able to type this particular
product implementation with a more expressive type that allows heterogeneous
lists that can contain elements of any type and also ensures that each list we are
dealing with has the correct length. An example implementation with this more
expressive type in the programming language Idris is not difficult to construct
[6].

We will later use this less expressive type to our advantage when we have a
look at greedy algorithms, where we omit lookahead into the future.

2.5 Extended password example

The previous password example can now easily be extended to make use of the
product function. We now want to crack a password of type String. We know
only that it contains characters from a–z and that its length is 8:

type Password = String

6 J. Hartmann, J. Gibbons

and we are given a property function as a black box again:

p :: String -> Bool

p x@[_,_,_,_,_,_,_,_] = x == "password"

p _ = undefined

Note that our property function is only defined for Strings of length 8.
We can now utilise the previous selectChar and construct a list that contains

this selection function exactly 8 times, once for each character of the password:

es :: Ord r => [J r Char]

es = replicate 8 selectChar

Utilising the previous product function will calculate the correct solution:

> product es p

---> "password"

This example again fits nicely the previously described intuition, where each
component of the solution can only be judged in context with the previous
selections as well as all possible future selections. This is underlined by the fact
that by design, the property function is only able to judge solutions of the correct
length, while being undefined for inputs of different lengths. The absence of any
exceptions strengthens our intuition, that individual objects are always judged
in full context.

2.6 Selection functions form a monad

Further, Escardó and Oliva show [3] that the type of selection functions forms a
strong monad. This strengthens the intuition that a selection function embodies
a collection of elements.

Selection functions with a fixed property type can be made instance of the
monad class with this bind function:

(>>=) :: J r a -> (a -> J r b) -> J r b

(>>=) e f = \p -> f (e (p . flip f p)) p

and this return function:

return :: a -> J r a

return a = _ -> a

Intuitively, the monad instance takes care that the underlying set elements are
always judged in context. For e >>= f, we first want to extract an object of type
A out of the given e, and then use f to transform it into a J R B. To extract an
object of type A out of e we need to build a new property function that judges
each element by how well it produces objects of type b by incorporating f into
the new property function.

With J R A being a monad, we can utilise the prelude’s monad functions to
our advantage. Escardó and Oliva claim [3] that their product implementation is
equivalent to the monadic sequence function from the Haskell prelude. A proof
of this is claim is given in the appendix.

Algorithm Design with the Selection Monad 7

2.7 History-dependent product of selection functions

As an extension to the previous product for selection functions, Escardó and
Oliva introduced [3] a history-dependent version of the product function. It
keeps track of previous decisions and allows therefore for more dynamic selection
functions, that can base the set from which they select on previous decisions:

hProduct :: [a] -> [[a] -> J r a] -> J r [a]

hProduct h [] p = []

hProduct h (e : es) p = a : as

where a = (e h) (\x -> p(x : hProduct (h++[x]) es (p . (x:))))

as = hProduct (h++[a]) es (p . (a:))

This history-dependent version proves useful when modeling sequential games,
in which the moves available at a given stage of the game typically depend on the
previously played moves. The application of the selection monad to sequential
games is already widely studied [1–4, 7, 8].

2.8 Efficiency drawbacks of this implementation

The pair, product, and hProduct implementations introduced above combine
individual selection functions into a single product selection function. In order
to extract the necessary elements out of the individual selection functions, the
required property functions are created so as to always consider previous choices
as well as potential future choices. This models an exhaustive search behaviour,
where every possible combination of objects is judged by a given property func-
tion and the overall favorable combination of objects is then chosen. This results
in an exponential runtime in respect to the number of selection functions to
be combined. This exponential runtime makes the application of the selection
monad infeasible for computing solutions for many problems.

Several methods to cope with this runtime have been explored in the past.
There are several approaches to avoid unnecessary computations. Firstly, the
individual selection functions can be neatly constructed such that they prune
the inspection of their elements in unnecessary cases. Concretely, if the cost
value R by which each object is judged has an upper or lower bound, the search
can be stopped once a solution reaches one of these bounds [5]. Additionally, one
should try to make as little as possible use of the property function, as it always
constructs all possible future objects to judge the current element in context.
One concrete example for this can be to avoid the use of the property function
completely if there is only one element to choose from.

Secondly, the different product variants themselves leave room for improve-
ment. For example, for minimax algorithms [3], a different hProduct function
could implement alpha-beta pruning, which is used in game theory to reduce the
search space when calculating perfect plays for sequential games.

One final flaw with the current implementations of product and hProduct

variants is that they perform a lot of redundant calculations. In particular, each
starts with the first selection function in the list and calculates all possible

8 J. Hartmann, J. Gibbons

future choices for each internal element. Based on this information it chooses
the object that leads to the best possible future outcome. However, continuing
the recursion, it forgets that it already explored all possibilities from there and
starts the computation all over again, leading to a lot of redundant computations.

For the remainder of this paper, we will focus on different implementations
for the iterated product of selection functions, which will have different computa-
tional behaviour. This will enable us to efficiently express greedy algorithms and
other algorithm classes as products of selection function, and further enable us
to abstract the behaviour of the different algorithms into the product functions.

3 Greedy algorithms

The product of selection functions as we have seen so far models an exhaustive
search algorithm, exploring all possible combination of objects in the underlying
sets of the selection functions. In this section, we explore a different product for
selection functions. By using the less expressive type of the product function
to our advantage, we are able to modify it in a way that allows us to model a
greedy algorithm behaviour as a product of selection functions.

We previously identified that by choosing lists as container type for the selec-
tion functions, we restrict all the selection functions in the container to be of the
same type. Further, the Haskell list type does not impose any length restrictions
on the input list of property function. In order to model a greedy behaviour we
can use this more general type to our advantage.

Once we require the property function to be defined for partial solutions as
well, we can define a new greedyProduct function that judges the underlying
objects of the selection functions only in the context of previous choices without
caring about potential future choices:

greedyProduct :: [J r a] -> J r [a]

greedyProduct [] p = []

greedyProduct (e : es) p = a : as

where a = e (p . ([]:))

as = greedyProduct es (p . (a:))

So iterating through the list of selection functions, we extract a value out of
each selection function by building a new property function of type A -> R by
converting each A into a singleton list and then applying our property function
to it. In the recursive call we build a new property function that keeps track of
the previous choices. Note that this definition differs from the product definition
by omitting the recursive call inside the new property function that calculates
all possible future choices. Further, we can also define the corresponding history-
dependent version:

greedyHProduct :: [a] -> [[a] -> J r a] -> J r [a]

greedyHProduct h [] p = []

greedyHProduct h (e : es) p = a : as

Algorithm Design with the Selection Monad 9

where a = (e h) (p . ([]:))

as = greedyHProduct (h++[a]) es (p . (a:))

Judging the individual objects outside of a global context locally captures the
essence of greedy algorithms. In general, algorithms are called “greedy” when
they perform only a local optimisation at each step. We can now utilise these new
products for selection functions to implement greedy algorithms. The general
idea is to define each individual local step of the greedy algorithm as a selection
function; then the greedy algorithm arises from building the greedy product of
these selection functions. The greedy behaviour is thereby abstracted away into
the product function, enabling us to describe greedy algorithms in a similar way
form to exhaustive search algorithms.

4 Examples of greedy algorithms

In this section we look at some examples applying the new greedyProduct

variants to solve problems in a greedy way.

4.1 Password example

To continue the password example from above in a greedy way, we require a
more sophisticated property function, that is able to judge partial solutions. So
we are now given the following property function, that returns the number of
correctly guessed characters of the password, instead of simply a boolean:

p :: String -> Int

p = length . filter id . zipWith (==)

We can reuse our previously defined selection functions:

es :: Ord r => [J r Char]

es = replicate 8 selectChar

And with the new property function we can utilise the greedyProduct which
will calculate the correct solution:

> greedyProduct es p

--> "password"

With the new property function, we don’t need to know all future possibilities
when determining the correct character at the next position of the password.
We just need to be aware of our previous choices and can then decide greedily
for the character that maximises the property function.

10 J. Hartmann, J. Gibbons

4.2 Prim’s algorithm

A textbook example for a greedy algorithm is Prim’s algorithm for finding a
minimal spanning tree for a graph [9]. Given a weighted, undirected graph, a
minimal spanning tree a subset of edges of the given graph that forms a tree and
is minimal in its weight. The general idea of Prim’s algorithm is to grow a tree
by repeatedly greedily selecting the lightest edge extending the tree (that is, the
lightest edge connected to the tree and not creating a cycle).

To implement Prim’s algorithm in terms of selection functions, we first define
a graph as a list of edges, and an edge as a triple of integers with the first two
elements being the two nodes of the edge and the third element the weight of
the edge:

type Node = Int

type Weight = Int

type Edge = (Node, Node, Weight)

type Graph = [Edge]

Further, we then define a helper function that calculates if a node is part of a
given graph:

nodeOf :: Graph -> Node -> Bool

nodeOf [] _ = False

nodeOf ((x,y,_):xs) n = n == x || n == y || nodeOf xs n

We can then define a function calculating the total weight of a given collection
of edges:

p :: [Edge] -> Weight

p [] = 0

p ((_,_,x):xs) = x + p xs

Further, we then need a function that calculates all edges that that can be added
to the tree such that it stays a tree. An edge of the graph is a candidate exactly
if one of its ends is already in the tree, and the other is not. In the initial case,
where there is no tree existing, all edges are potential candidates.

getCandidates :: Graph -> [Edge] -> [Edge]

getCandidates g [] = g

getCandidates g h = filter f g

where

f (x,y,_) = nodeOf g x && not (nodeOf g y) ||

not (nodeOf g x) && nodeOf g y

To build our list of selection functions for a given graph, we want to select the
lightest edge of all possible edges according to our property function. We also
need exactly one fewer selection functions than there are nodes in the original
graph.

Algorithm Design with the Selection Monad 11

selectEdge :: Ord r => Graph -> [[Edge] -> J r Edge]

selectEdge g = replicate (length (nodes g) - 1) f

where

f x p = minWith p (getCandidates g x)

Now considering the following example graph:

exampleGraph :: Graph

exampleGraph = [(1,2,1),(2,3,5),(2,4,9),(4,5,20),(3,5,1)]

we can form the product of our selection functions with the greedyProduct

function. Applying this to our property function we get a minimal spanning tree
as a result:

greedyHProduct [] (selectEdge exampleGraph) p

---> [(1,2,1),(2,3,5),(3,5,1),(2,4,9)]

4.3 Greedy graph walking

In this example, we are given a directed weighted graph and a start node, and we
want to walk a given number of steps in the graph and thereby minimise the cost
of the path we walked. This example will illustrate the different computational
behaviour of the greedy product in comparison to the normal product. We use
the same representation of graphs and edges from the previous example, together
with the property function that can also be used to calculate the cost of a path.
We now define an getCandidates function that, given a graph and the path we
already walked, calculates the possible next edges:

getCandidates :: Graph -> [Edge] -> [Edge]

getCandidates g [] = undefined

getCandidates g [(_,n,_)] = filter (\(x,_,_) -> x == n) g

getCandidates g (_:xs) = getCandidates g xs

Note, that the getCandidates function is undefined for the empty path. There-
fore we are required to have the start edge in the initial path. Next, we define
the list of selection functions. Each selection function takes a history describing
the path that was already walked on the graph, calculating all possible next
edges and selecting the edge with the minimum cost according to the property
function. For our example, we want to walk 3 steps on the graph and therefore
replicate the selection function 3 times.

es :: Ord r => Graph -> [[Edge] -> J r Edge]

es = replicate 3 f

where f x p = minWith p (getCandidates g x)

Now consider the following graph, as shown in Figure 1.

exampleGraph :: Graph

exampleGraph = [(1,2,1),(2,3,1),(2,4,5),(3,5,10),

(4,6,1), (6,7,2), (5,7,1)]

12 J. Hartmann, J. Gibbons

1

2

3 4

5 6

7

1

1 5

10 1

1 2

Fig. 1. Example Graph

To greedily walk a path on this graph, we can utilise the greedyHProduct with
the initial edge (1,2,1) in the history and our selection functions applied to
the exampleGraph. However, applying a greedy algorithm on this graph, locally
choosing the best available edge at each stage, we won’t get an optimal result:

greedyHProduct [(1,2,1)] (es exampleGraph) p

---> [(1,2,1),(2,3,1),(3,4,10),(5,7,1)]

In contrast, when using the normal product, we do achieve the optimal result
(total cost 9 rather than 13):

hProduct [(1,2,1)] (es exampleGraph) p

---> [(1,2,1),(2,4,5),(4,6,1),(6,7,2)]

This example illustrates that for a graph walking algorithm to work, some insight
about future edges is needed in order to calculate the correct result. When
choosing the edge going out of node 2, we need to look further than the current
edge to detect that going from node 2 to node 3 would lead to an overall worse
outcome. That is, a greedy algorithm doesn’t work.

5 Correctness

While the idea of a greedy algorithm is easy to grasp, proving that a greedy
algorithm solves a given problem turns out to be quite difficult. If we view greedy
algorithms in terms of selection functions, we can state that a greedy algorithm
works if both the greedyProduct and the product functions calculate a result
with the same cost:

p (greedyProduct selectFunc p) = p (product selectFunc p) (1)

and further with the history dependent version with a initial history h0:

p (greedyHProduct h0 selectFunc p) = p (hProduct h0 selectFunc p)

(2)

Algorithm Design with the Selection Monad 13

In the case of the graph walking example, we can construct a counter example
for which this property does not hold:

p (greedyHProduct [(1,2,1)] (es exampleGraph) p) ==

p (hProduct [(1,2,1)] (es exampleGraph) p)

---> False

p (hProduct [(1,2,1)] (es exampleGraph) p)

---> 9

p (greedyHProduct [(1,2,1)] (es exampleGraph) p)

---> 13

6 Limited lookahead

While greedy algorithms base their decision on the currently available options
without considering the future, there are use cases where a limited lookahead
into the future improves the result of an algorithm, without needing to go as
far as exhaustive search. We can alter the product further to represent such a
limited lookahead. To do so we introduce a limiting parameter to the product and
distinguish the behaviour of the product depending on whether we reached the
maximum lookahead depth. When building the property function for judging
the individual underlying elements of a selection function, we decrement the
lookahead depth in the recursive call.

limProduct :: Int -> [J r a] -> J r [a]

limProduct i [] p = []

limProduct i (e:es) p | i > 0 = a : as

| i <= 0 = [a']

where

a = e (\x -> p (x : limProduct (i-1) es (p . (x:))))

as = limProduct i es (p . (a:))

a' = e (p . ([]:))

Further, we can also introduce a history-dependent version with limited looka-
head:

limHProduct :: Int -> [a] -> [[a] -> J r a] -> J r [a]

limHProduct i h [] p = []

limHProduct i h (e:es) p | i > 0 = a : as

| i <= 0 = [a']

where

a = e h (\x -> p (x : limHProduct (i-1) (h++[x]) es (p . (x:))))

as = limHProduct i (h++[a]) es (p . (a:))

a' = e h (p . ([]:))

6.1 Graph Example

Recalling the greedy graph walking example from Section 4.3, the greedy al-
gorithm is not able to produce optimal results for the given example graph in

14 J. Hartmann, J. Gibbons

Figure 1. The greedy algorithm is limited to local decisions, and therefore un-
able to detect an upcoming costly edge. Utilising the limited lookahead product
limHProduct now with a lookahead of 1, we are able to detect the upcoming
costly edge 3 → 5 and are able to calculate an optimal solution (total cost of 9)
for this example graph:

shortestPathLimited = limHProduct 1 [(1,2,1)] (es exampleGraph) p

---> [(1,2,1),(2,4,5),(4,6,1),(6,7,2)]

This might work for this particular graph, there is no guaranty that limited
lookahead can be utilised for arbitrary complex graphs. However, considering
graphs where every split eventually converges again into a single node after at
most n steps, a n-step lookahead is sufficient for our graph walking example.
Such graph might look similar to Figure 2.

o

o o

o o

o

n n

Fig. 2. Example limited lookahead graph

This example shows that if you have deeper insights about your problem can
enable programmers to utilise limited lookahead algorithms. Another possible
application of limited lookahead algorithms can be in the area of game theory.
When, for example, implementing an AI opponent for chess, it is not computa-
tionally feasible to calculate a perfect game of chess. At some point, there needs
to be a cutoff of the search space to ensure reasonably runtimes.

7 Conclusion and future work

We have seen that in addition to the already known monadic product for selec-
tion functions, there are other product implementations for selection functions,
each capturing different computational behaviour. In particular with the above
presented variations, the idea of describing problems as collections of selection
functions can now be applied to problems that are solvable by greedy algorithms
and limited lookahead algorithms. Moreover, the computational behaviour of an
algorithm can be changed modularly by using different products for selection
functions, while the problem description stays the same.

In addition to greedy products and limited lookahead products, there is the
potential for more product implementations that behave differently. One example

Algorithm Design with the Selection Monad 15

for this might be a product that is able to perform Alpha-Beta pruning mini-
max algorithms. Further, a common pattern of the above presented examples is
that we are replicating the same selection function n-times. An iterateNTimes

function would probably feel more natural. Further, the presented examples only
work if the length of the result is known. Another useful extension to the col-
lection of product functions might therefore be a iterateUntil function that
keeps iterating a selecting function until a given predicate is satisfied.

References

1. Bolt, J., Hedges, J., Zahn, P.: Sequential games and nondeterministic selection func-
tions. arXiv preprint arXiv:1811.06810 (2018)

2. Escardó, M., Oliva, P.: Selection functions, bar recursion and backward induction.
Math. Struct. Comput. Sci. 20(2), 127–168 (2010)

3. Escardó, M., Oliva, P.: What sequential games, the tychonoff theorem and the
double-negation shift have in common. In: Proceedings of the third ACM SIGPLAN
workshop on Mathematically structured functional programming. pp. 21–32 (2010)

4. Escardó, M., Oliva, P.: Sequential games and optimal strategies. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 467(2130),
1519–1545 (2011)

5. Hartmann, J.: Finding optimal strategies in sequential games with the novel selec-
tion monad. arXiv preprint arXiv:2105.12514 (2018)

6. Hartmann, J.: Dependently Typed Selection Monad (2022),
https://github.com/IncredibleHannes/DependentlyTypedSelectionMonad

7. Hedges, J.: The selection monad as a cps transformation. arXiv preprint
arXiv:1503.06061 (2015)

8. Hedges, J.M.: Towards compositional game theory. Ph.D. thesis, Queen Mary Uni-
versity of London (2016)

9. Prim, R.C.: Shortest connection networks and some generalizations. The Bell Sys-
tem Technical Journal 36(6), 1389–1401 (1957)

Appendix

A Proof that product equals sequence

xm >>= \x -> sequence' xms >>= \xs -> return (x : xs)

-- {{ expand >>= definition }}

xm >>= \x -> (\p -> (\xs -> return (x : xs)) ((sequence' xms)

(p . flip (\xs -> return (x : xs)) p)) p)

-- {{ apply lambda }}

xm >>= \x -> (\p -> (return (x : ((sequence' xms)

(p . flip (\xs -> return (x : xs)) p)))) p)

-- {{ resolve return }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . flip (\xs -> return (x : xs)) p))))

-- {{ apply flip }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . (_ xs -> (x : xs)) p))))

16 J. Hartmann, J. Gibbons

-- {{ apply lambda }}

xm >>= \x -> (\p -> (x : ((sequence' xms) (p . (\xs -> (x : xs))))))

-- {{ resolve function composition }}

xm >>= \x p -> (x : ((sequence' xms) (\xs -> p (x : xs))))

-- {{expand >>= definition }}

\p' -> ((\x p -> (x : ((sequence' xms) (\xs -> p (x : xs)))))

((xm) (p' . flip (\x p -> (x : ((sequence' xms) (\xs -> p (x : xs))))) p')) p')

-- {{ apply lambda }}

\p' -> ((\x p -> (x : ((sequence' xms) (\xs -> p (x : xs)))))

(xm (\x -> p' (x : ((sequence' xms) (\xs -> p' (x : xs)))))) p')

-- {{ apply lambda }}

\p' -> (\x -> (x : ((sequence' xms) (\xs -> p' (x : xs)))))

(xm (\x -> p' (x : ((sequence' xms) (\xs -> p' (x : xs))))))

-- {{ rewrite with where }}

\p' -> z : sequence' xms (\xs -> p' (z : xs))

where z = xm (\x -> p' (x : ((sequence' xms)

(\xs -> p' (x : xs)))))

-- {{ rewrite with where }}

\p' -> z : zs

where z = xm (\x -> p' (x : sequence' xms (p' . (x:))))

zs = sequence' xms (p' . (z:))

Submitted to:
TFP 2022

© M. J. Gajda, and M. S. Lazarev

Towards a more perfect union type

Michał J. Gajda
Migamake Pte Ltd

mjgajda@migamake.com

Mikhail Lazarev
MLabs

m282021@gmail.com

We present a principled theoretical framework for inferring and checking the union types, and show
its work in practice on JSON data structures.

The framework poses a union type inference as a learning problem from multiple examples. The
framework is generic, based on equational properties and, easily extensible.

1 Introduction

Typing dynamic languages has been long considered a challenge [5]. The importance of the task has
grown with the ubiquity of cloud application programming interfaces (APIs) utilizing JavaScript object
notation (JSON), where one needs to infer the structure having only a limited number of sample doc-
uments available. Previous research has suggested it is possible to infer adequate type mappings from
sample data [6–9].

In the present study, we expand on these results. We propose a modular framework for defining type
systems of programming languages as learning algorithms subject to a set of equations, and evaluate its
performance on inference of Haskell data types from JSON API examples.

1.1 Related work

1.1.1 Union type providers

The earliest practical effort to apply union types to JSON inference was made to generate Haskell types
[6]. It uses union type theory, but it also lacks an extensible theoretical framework. F# type providers
for JSON facilitate deriving a schema automatically; however, the type system does not support union
of alternatives and is given as a shape inference algorithm, instead of the design being driven by desired
properties [8]. The other attempt to automatically infer schemas has been introduced in the PADS project
[9, 10]. Nevertheless, it has not specified a generalized design methodology for type systems. One
approach uses Markov chains to derive JSON types [7]. This approach requires considerable engineering
time due to the implementation of unit tests in a case-by-case mode, instead of formulating laws applying
to all types. Moreover, this approach lacks a sound underlying theory. Regular expression types were
also used to type XML documents [11], which does not allow for selecting alternative representations.
In the present study, we generalize previously introduced approaches and enable a systematic addition of
not only value sets, but also inference sub-algorithms, to the union type system.

1.1.2 Frameworks for describing type systems

Type systems are commonly expressed with a partial relation of typing. Their properties, such as subject
reduction are also expressed relatively to the relation of reduction within a term rewriting system. Gen-
eral formulations have been introduced for the Damas-Milner type systems parameterized by constraints

2 Towards a more perfect union type

[12, 13]. It is also worth noting that traditional Damas-Milner type disciplines enjoy decidability, and
embrace the laws of soundness, and subject-reduction. However these laws often prove too strict dur-
ing type system development and extension. The resulting type systems are fragile and often lack the
subject-reduction property [14–23]. Given the publication bias [24], many more unpublished examples
are expected. Because of this fragility, the type systems of widely used programming languages are
either undecidable [25], or even unsound [26].

Early approaches used lattice structure on the types [27], which is more stringent than ours since
it requires idempotence of two information fusion operations, which correspond to the meet and join
operations on a lattice. These are used for fusing the information in covariant and contravariant posi-
tions of the types. Semantic subtyping provides a set-based characterization of union, intersection, and
complement types [28, 29], which allows for modelling subtype containment on first-order types and
functions. This model relies on building a model using infinite sets in set theory, but fails to generalize
to non-idempotent learning, such as the use of machine learning techniques like Markov chains to infer
optimal type representations from the frequency of value occurrence [7].

We are also not aware of a type inference framework that consistently and completely preserves
information in the face of inconsistencies nor errors. Most frameworks simply use ⊥ or the infamous
undefined behaviour [30–32].

We propose a constructive framework that preserves the soundness in inference, while allowing for
consistent approximations. It is based on equational laws that need to be satisfied by type-like structures.
Indeed, our demonstration shows that most parts of the implementation of a type system may be generic.

2 Motivation

Here, we consider several examples similar to JSON API descriptions. We provide these examples in the
form of a few JSON objects, along with desired representation as Haskell data declaration.

1. Subsets of data within a single constructor:

a. API argument is an email – it is a subset of valid STRING values that can be validated on the
client-side.

b. The page size determines the number of results to return (min: 10, max:10,000) – it is also a
subset of integer values (INT) between 10, and 10,000

c. The date field contains ISO8601 date – a record field represented as a STRING that contains
a calendar date in the format "2019-03-03"

2. Optional fields: The page size is equal to 100 by default – it means we expect to see the record
like {"page_size": 50} or an empty record {} that should be interpreted in the same way as
{"page_size": 100}

3. Variant fields: Answer to a query is either a number of registered objects, or String "unavailable"
– this is ether an integer value (INT) or a STRING value (a union of two types: INT :|: STRING,
behaves like EITHER INT STRING but is untagged in JSON)

4. Variant records: Answer contains either a text message with a user identifier or an error. – That
can be represented as one of following options:

{ "MESSAGE" : "Where can I submit proposal?", "UID" : 1014 }
{ "MESSAGE" : "Submit it to HotCRP", "UID" : 317 }
{ "ERROR" : "Authorization failed" , "CODE" : 401 }
{ "ERROR" : "User not found", "CODE" : 404 }

M. J. Gajda, and M. S. Lazarev 3

data EXAMPLE4 = MESSAGE { message :: STRING

, uid :: INT }
| ERROR { error :: STRING

, code :: INT }

5. Arrays corresponding to records:

[[1 , "Nick", null]
, [2 , "George" , "2019-04-11"]
, [3 , "Olivia" , "1984-05-03"]]

6. Maps of identical objects (example from [7]):

{ "6408F5": { "SIZE" : 969709 , "HEIGHT" : 510599
, "DIFFICULTY" : 866429.732 , "PREVIOUS" : "54fced" },

"54FCED": { "SIZE" : 991394 , "HEIGHT" : 510598
, "DIFFICULTY" : 866429.823 , "PREVIOUS" : "6c9589" },

"6C9589": { "SIZE" : 990527 , "HEIGHT" : 510597
, "DIFFICULTY" : 866429.931 , "PREVIOUS" : "51a0cb" } }

It should be noted that the last example presented above requires Haskell representation inference to
be non-monotonic, as an example of object with only a single key would be best represented by a record
type:

data EXAMPLE = EXAMPLE { f6408f5 :: O6408F5
, f54fced :: O6408F5
, f6c9589 :: O6408F5 }

data O6408F5 = O6408F5 { size, height :: INT

, difficulty :: DOUBLE

, previous :: STRING }
However, when this object has multiple keys with values of the same structure, the best representation

is that of a mapping shown below. This is also an example of when user may decide to explicitly add
evidence for one of the alternative representations in the case when input samples are insufficient. (like
when input samples only contain a single element dictionary.)

::: { #sec:nonmonotonic-inference }
data EXAMPLEMAP = EXAMPLEMAP (MAP HEX EXAMPLEELT)
data EXAMPLEELT = EXAMPLEELT { size :: INT , height :: INT

, difficulty :: DOUBLE, previous :: STRING }

3 Problem definition

As we focus on JSON, we utilize Haskell encoding of the JSON term for convenient reading(from Aeson
package [33]); specified as follows:

data VALUE = OBJECT (MAP STRING VALUE)
| ARRAY [VALUE]
| NULL

| NUMBER SCIENTIFIC

| STRING TEXT

| BOOL BOOL

4 Towards a more perfect union type

3.1 Goal of inference

Given an undocumented (or incorrectly labelled) JSON API, we may need to read the input as encoded
in Haskell and avoid checking for the presence of unexpected format deviations. At the same time, we
may decide to accept all known valid inputs outright so that we can use types to ensure that the input is
processed exhaustively (by relying on the compiler’s ability to check for unmatched cases).

Accordingly, we assume the minimal containing set principle: the smallest non-singleton set is a
better approximation type than a singleton set.

Second, the information content principle: we aim to minimize the number of degrees of freedom of
a type, while conforming to a common structure.

Given these principles, and examples of frequently occurring patterns, we can infer a reasonable
world of types that approximate sets of possible values. In this way, we can implement type system
engineering that allows deriving type system design directly from the information about data structures
and the likelihood of their occurrence.

4 Type inference

If an inference fails, it is always possible to correct it by introducing an additional observation (exam-
ple). To denote unification operation, or information fusion between two type descriptions, we use a
SEMIGROUP interface operation ⋄ to merge types inferred from different observations.1 We use a neutral
element of the MONOID to indicate a type corresponding to no observations.

class SEMIGROUP ty where
(⋄) :: ty → ty → ty

class SEMIGROUP ty
⇒ MONOID ty where

mempty :: ty
In other words, we can say that mempty (or ⊥) element corresponds to situation where no informa-

tion was received about a possible value (no term was seen, not even a null). It is a neutral element of
TYPELIKE, since it bring no additional information. For example, an empty array [] can be referred to
as an array type with mempty as an element type. This represents the view that ⋄ always gathers more
information about the type, as opposed to the traditional unification that always narrows down possible
solutions.

4.0.1 Beyond set

In the domain of permissive union types, a beyond set represents the case of everything permitted or a
fully dynamic value when we gather the information that permits every possible value inside a type. At
the first reading, it may be deemed that a beyond set should comprise of only one single element – the ⊤
one (arriving at a complete bounded semilattice), but this is too narrow for our purpose of monotonically
gathering information.

However, since we defined the generalization operator ⋄ as information fusion (corresponding to
unification in the dual case of strict type systems), we may encounter difficulties in assuring that no

1If the semigroup is idempotent, that is when α ⋄ α == α , then ⋄ is a join operation (least upper bound on a semilattice).
Note that the approach presented here is dual to traditional unification that narrows down solutions; we remove the requirement
for idempotence in order to accommodate non-idempotent learning, and will not discuss semilattices any further.

M. J. Gajda, and M. S. Lazarev 5

t1 ⋄ (t2 ⋄ t3) = t1 ⋄ (t2 ⋄ t3) (semigroup associativity)
mempty⋄ t = t (left identity of the monoid)
t ⋄mempty = t (right identity of the monoid)
beyond t1 ⇒ beyond (t1 ⋄ t2) (beyond is closed to the right)
beyond t2 ⇒ beyond (t1 ⋄ t2) (beyond is closed to the left)

Figure 1: Laws of Typelike

information has been lost during the generalization2. Moreover, strict type systems usually specify more
than one error value, as it should contain information about error messages and keep track from where
an error has been originated3.

This observation lets us go well beyond typing statement of gradual type inference as a discovery
problem from incomplete information [34]. Here we consider type inference as a learning problem and,
furthermore, find common ground between the dynamic and the static typing discipline. The languages
relying on the static type discipline usually consider beyond as a set of error messages, as a value should
correspond to a statically assigned narrow type. In this setting, mempty would be the fully polymorphic
type ∀a.a. Languages with dynamic type discipline will treat beyond as an untyped, dynamic value and
mempty will again be an entirely unknown, polymorphic value (like a type of an element of an empty
array).

class MONOID t
⇒ TYPELIKE t where

beyond :: t → BOOL

Besides the standard laws for a commutative MONOID, we state the new law for the beyond set: it is
always closed to information addition by (⋄α) or (α⋄) for any value of α . In other words, the beyond
set forms a submonoid , and an attractor of ⋄ on both sides. Crucially, we describe the typing laws
in Fig.1 as QuickCheck [35] properties so that automated testing via random sample generation can be
implemented to detect apparent violations.

However, we do not require idempotence of ⋄, which is uniformly present in union type frameworks
based on lattices [36] and sets [28]. That is because this requirement is valid only for strict type inference,
not for a more general type inference as a learning problem. As we saw on EXAMPLEMAP in sec. 2, we
need non-monotonic inference when dealing with alternative representations.

When a specific instance of TYPELIKE is not a semilattice (an idempotent semigroup), we will ex-
plicitly indicate that is the case. This seems to be particularly useful to validate when testing a recursive
structure of the type.

In this way, we can specify other elements of beyond set instead of a single ⊤. When under strict
type discipline, like that of Haskell [25], we seek to enable each element of the beyond set to contain at
least one error message.

Time to present the typing relation and its laws. Instead of the classical val : ty, we read and denote
typing as ty ‘Types‘ val. Specifying the laws of typing is important, since we may need to separately
consider the validity of a domain of types/type constraints, and that of the sound typing of the terms by
these valid types.

2Examples will be provided later.
3In this case: beyond (ERROR _) = TRUE | otherwise = FALSE.

6 Towards a more perfect union type

check mempty v = False (mempty contains no terms)
beyond t ⇒ check t v = True (beyond contains all terms)
check t1 v ⇒ check (t1 ⋄ t2) v = True (left fusion keeps terms)
check t2 v ⇒ check (t1 ⋄ t2) v = True (right fusion keeps terms)

check (infer v) v = True (inferred type contains the source term)

Figure 2: Laws for typing

class TYPELIKE ty ⇒ ty ‘TYPES‘ val where
infer :: val → ty
check :: ty → val → BOOL

The minimal definition of typing inference relation and type checking relation is formulated as con-
sistency between these two operations, as shown in Fig.2.

First, we note that to describe no information, mempty cannot correctly type any term. A second
important rule of typing is that all terms are typed successfully by any value in the beyond set. The next
couple of fusion rules make sure that typing is preserved when adding information to the left or to the
right. (For a classical type inference relation, it would be described as principal type property.) Finally
we state the most intuitive rule for typing: a type inferred from a term must always be valid for that
particular term.

The minimal TYPELIKE instance is the one that contains only mempty corresponding to the case of
no sample data received, and a single beyond element for all values permitted. We will define it below
as PRESENCECONSTRAINT in sec. 4.2.3. These laws are also compatible with the strict, static type
discipline: namely, the beyond set corresponds to a set of constraints with at least one type error, and a
task of a compiler to prevent any program with the terms that type only to beyond as a least upper bound.

4.1 Type engineering principles

Considering that we aim to infer a type from a finite number of samples, we encounter a learning prob-
lem, so we need to use prior knowledge about the domain for inferring types. Observing that field
a = FALSE we can expect that in particular cases, we may obtain that another example where a = TRUE.
After observing a b = 123, we expect that b = 100 would also be accepted. It means that we need to con-
sider a typing system to learn a reasonable general class from few instances. This observation motivates
formulating the type system as an inference problem. As the purpose is to deliver the most descriptive4

types, we assume that we need to obtain a broader view rather than focusing on a free type and applying
it to larger sets whenever it is deemed justified.

The other principle corresponds to correct operation. It implies that having operations regarded on
types, we can find a minimal set of types that assure correct operation in the case of unexpected errors.
Indeed we want to apply this theory to infer a type definition from a finite set of examples. We also seek
to generalize it to infinite types. We endeavour rules to be as short as possible. For the inference to be
compositional, it should be also be a contravariant functor with regards to the data constructors. For
example, if ATYPE x y types the value{"a": X, "b": Y}, then x must type the value X, and y must type
the value Y. This behaviour corresponds to that of a tensor product.

4The shortest one according to the information complexity principle. This is formalized below as typeCost metric.

M. J. Gajda, and M. S. Lazarev 7

4.2 Constraint definition

4.2.1 Flat type constraints

Let us first consider typing of flat type: STRING (similar treatment should be given to the NUMBER type.)
data STRINGCONSTRAINT = SCDATE | SCEMAIL

| SCENUM (SET.SET TEXT) – non-empty set of observed values
| SCNEVER – mempty
| SCANY – beyond

instance SEMIGROUP STRINGCONSTRAINT where
SCNEVER ⋄ α = α
α ⋄ SCNEVER = α
SCANY ⋄ _ = SCANY

_ ⋄ SCANY = SCANY

SCDATE ⋄ SCDATE = SCDATE

SCEMAIL ⋄ SCEMAIL = SCEMAIL

(SCENUM α) ⋄ (SCENUM β)
| isValidStringConstSet (α ⋄ β) = SCENUM (α ⋄ β)

_ ⋄ _ = SCANY

instance MONOID STRINGCONSTRAINT where
mempty = SCNEVER

instance TYPELIKE STRINGCONSTRAINT where
beyond = (==SCANY)

Strings can either be dates, emails or one of some user-specified fixed values. By including a bot-
tom (SCNEVER) and top (SCANY) element, we easily see how STRINGCONSTRAINT forms a typelike
structure. Now we can define the typing rules for strings, that is inferring the constraint a given string
adheres to and also checking against a given type:

instance STRINGCONSTRAINT ‘TYPES‘ TEXT where
infer (isValidDate → TRUE) = SCDATE

infer (isValidEmail → TRUE) = SCEMAIL

infer "" = SCANY

infer value = SCENUM (Set.singleton value)
infer _ = SCANY

check SCDATE σ = isValidDate σ
check SCEMAIL σ = isValidEmail σ
check (SCENUM vs) σ = σ ‘Set.member‘ vs
check SCNEVER _ = FALSE

check SCANY _ = TRUE

4.2.2 Free union type

Before we endeavour on finding type constraints for compound values (arrays and objects), it might be
instructive to find a notion of free type, that is a type with no additional laws but the ones stated above.
Given a term with arbitrary constructors we can infer a free type for every term set T as follows: For any

8 Towards a more perfect union type

T value type Set T satisfies our notion of free type specified as follows:
data FREETYPE α = FREETYPE { captured :: SET α } | FULL

instance (ORD α , EQ α)
⇒ SEMIGROUP (FREETYPE α) where

FULL ⋄ _ = FULL

_ ⋄ FULL = FULL

α ⋄ β = FREETYPE

$ (Set.union ‘on‘ captured) α β
instance (ORD α , EQ α , SHOW α)

⇒ TYPELIKE (FREETYPE α) where
beyond = (==FULL)

instance (ORD α , EQ α , SHOW α)
⇒ FREETYPE α ‘TYPES‘ α where

infer = FREETYPE . Set.singleton
check FULL term = TRUE

check (FREETYPE σ) term = term ‘Set.member‘ σ
This definition is deemed sound and applicable to finite sets of terms or values. For a set of values:

["yes", "no", "error"], we may reasonably consider that type is an appropriate approximation of C-style
enumeration, or Haskell-style ADT without constructor arguments. However, the deficiency of this
notion of free type is that it does not allow generalizing in infinite and recursive domains! It only allows
to utilize objects from the sample.

4.2.3 Presence and absence constraint

We call the degenerate case of TYPELIKE a presence or absence constraint. It just checks that the type
contains at least one observation of the input value or no observations at all. It is vital as it can be used to
specify an element type of an empty array. After seeing true value, we also expect false, so we can say
that it is also a primary constraint for pragmatically indivisible like the set of boolean values. The same
observation is valid for null values, as there is only one null value ever to observe.

type BOOLCONSTRAINT = PRESENCECONSTRAINT BOOL

type NULLCONSTRAINT = PRESENCECONSTRAINT ()
data PRESENCECONSTRAINT α = PRESENT | ABSENT

instance PRESENCECONSTRAINT α ‘TYPES‘ α where
infer _ = PRESENT

check PRESENT _ = TRUE

check ABSENT _ = FALSE

Variants It is simple to represent a variant of two mutually exclusive types. They can be implemented
with a type related to EITHER type that assumes these types are exclusive, we denote the tagged union
by :|:. In other words for INT :|: STRING type, we first control whether the value is an INT, and if this
check fails, we attempt to check it as a STRING. Variant records are slightly more complicated, as it may
be unclear which typing is better to use:

{ "MESSAGE" : "Where can I submit my proposal?", "UID" : 1014 }
{ "ERROR" : "Authorization failed", "CODE" : 401 }

M. J. Gajda, and M. S. Lazarev 9

data OURRECORD = OURRECORD { message, error :: MAYBE STRING

, code, uid :: MAYBE INT }

data OURRECORD2 = MESSAGE { message :: STRING , uid :: INT }
| ERROR { error :: STRING , code :: INT }

The best attempt here is to rely on the available examples being reasonably exhaustive. That is, we
can estimate how many examples we have for each, and how many of them match. Then, we compare this
number with type complexity (with options being more complex to process because they need additional
case expression.) In such cases, the latter definition has only one MAYBE field (the optionality on the
toplevel is one), while the former definition has four MAYBE fields (optionality is four). When we obtain
more samples, the pattern emerges:

{ "ERROR" : "Authorization failed", "CODE" : 401 }
{ "MESSAGE" : "Where can I submit my proposal?", "UID" : 1014 }
{ "MESSAGE" : "Sent it to HotCRP", "UID" : 93 }
{ "MESSAGE" : "Thanks!", "UID" : 1014 }
{ "ERROR" : "Missing user", "CODE" : 404 }

Type cost function Since we are interested in types with less complexity and less optionality, we will
define cost function as follows:

class (TYPELIKE ty
, EQ ty)

⇒ TYPECOST ty where
typeCost :: ty → TYCOST

typeCost α = if α == mempty then 0 else 1
instance SEMIGROUP TYCOST where (⋄) = (+)
instance MONOID TYCOST where mempty = 0

newtype TYCOST = TYCOST INT

When presented with several alternate representations from the same set of observations, we will use
this function to select the least complex representation of the type. For flat constraints as above, we infer
that they offer no optionality when no observations occurred (cost of mempty is 0), otherwise, the cost is
1. Type cost should be non-negative, and non-decreasing when we add new observations to the type.

4.2.4 Object constraint

To avoid information loss, a constraint for JSON’s object type is introduced in such a way to simultane-
ously gather information about representing it either as a MAP, or a record. The typing of MAP would
be specified as follows, with the optionality cost being a sum of optionalities in its fields:

10 Towards a more perfect union type

data MAPPINGCONSTRAINT = MAPPINGNEVER – mempty
| MAPPINGCONSTRAINT {

keyConstraint :: STRINGCONSTRAINT

, valueConstraint :: UNIONTYPE }
instance TYPECOST MAPPINGCONSTRAINT where

typeCost MAPPINGNEVER = 0
typeCost MAPPINGCONSTRAINT {..} =

typeCost keyConstraint
+ typeCost valueConstraint

Here, UNIONTYPE stands for any JSON type, and will be composed later in this section as the union
of all the different constraints that we present.

Separately, we acquire the information about a possible typing of a JSON object as a record of
values. Note that RCTOP never actually occurs during inference. That is, we could have represented the
RECORDCONSTRAINT as a TYPELIKE with an empty beyond set. The merging of constraints would be
simply merging of all column constraints.

data RECORDCONSTRAINT = RCTOP {- beyond -} | RCBOTTOM {- mempty -}
| RECORDCONSTRAINT { fields :: HASHMAP TEXT UNIONTYPE }

instance RECORDCONSTRAINT ‘TYPES‘ OBJECT where
infer = RECORDCONSTRAINT . Map.fromList

. fmap (second infer) . Map.toList
check RECORDCONSTRAINT {fields } obj =

all (‘elem‘ Map.keys fields) (Map.keys obj)
&& and (Map.elems $ Map.intersectionWith check fields obj)
&& all isNullable (Map.elems $ fields ‘Map.difference‘ obj)

Observing that the two abstract domains considered above are independent, we can store the infor-
mation about both options separately in a record5. It should be noted that this representation is similar
to intersection type: any value that satisfies OBJECTCONSTRAINT must conform to both mappingCase,
and recordCase. Thus the constraint contains parallel information, it is the tensor product of component
constraints, which allows us to address the problem of enforcing the principal type property in alternative
union type representations, meaning that this product is the principal type that serves to acquire the infor-
mation corresponding to different representations and handle them separately. Since we plan to choose
only one representation for the object, we can say that the minimum cost of this type is the minimum of
component costs.

data OBJECTCONSTRAINT = OBJECTNEVER – mempty
| OBJECTCONSTRAINT { mappingCase :: MAPPINGCONSTRAINT

, recordCase :: RECORDCONSTRAINT }
instance TYPECOST OBJECTCONSTRAINT where

typeCost OBJECTCONSTRAINT { ..} = typeCost mappingCase
‘min‘ typeCost recordCase

4.2.5 Array constraint

Similarly to the object type, ARRAYCONSTRAINT is uses a parallel tensor product to simultaneously
obtain information about all possible representations of an array, differentiating between an array of the
same elements, and a row with the type depending on a column. We need to acquire the information for

5The choice of representation will be explained later. Here we only consider acquiring information about possible values.

M. J. Gajda, and M. S. Lazarev 11

both alternatives separately, since we need to measure a relative likelihood of either case before mapping
the union type to a specific Haskell declaration. Since we will eventually pick one possible represen-
tation, the cost of optionality is again the lesser of the costs of the representation-specific constraints.
Semigroup operation just merges information on the components, and the same is done when inferring
types or checking them.

data ARRAYCONSTRAINT = ARRAYNEVER – mempty
| ARRAYCONSTRAINT { rowCase :: ROWCONSTRAINT, arrayCase :: UNIONTYPE }

data ROWCONSTRAINT = ROWTOP {- beyond -} | ROWNEVER {- mempty -} | ROW [UNIONTYPE]

instance ARRAYCONSTRAINT ‘TYPES‘ ARRAY where
infer vs = ARRAYCONSTRAINT { rowCase = infer vs

, arrayCase = mconcat (infer $♢
Foldable.toList vs) }

check ARRAYNEVER vs = FALSE

check ARRAYCONSTRAINT {..} vs = check rowCase vs
&& and (check arrayCase $♢

Foldable.toList vs)
A row constraint is valid only if there is the same number of entries in all rows, which is represented

by escaping the beyond set whenever there is an uneven number of columns. Row constraint remains
valid only if both constraint describe the record of the same length; otherwise, we yield ROWTOP to
indicate that it is no longer valid. In other words, ROWCONSTRAINT is a levitated6 semilattice [37] with
a neutral element over the content type that is a list of UNIONTYPE objects.

instance ROWCONSTRAINT ‘TYPES‘ ARRAY where
infer = ROW

. Foldable.toList

. fmap infer
check ROWTOP _ = TRUE

check ROWNEVER _ = FALSE

check (ROW rs) vs
| length rs == length vs =

and $
zipWith check rs

(Foldable.toList vs)
check _ _ = FALSE

4.2.6 Combining the union type

It should note that given the constraints for the different type constructors, the union type can be con-
sidered as mostly a generic MONOID instance [38]. Merging information with ⋄ and mempty follow the
pattern above, by just lifting operations on the component.

data UNIONTYPE = UNIONTYPE {
unionNull :: NULLCONSTRAINT, unionBool :: BOOLCONSTRAINT

, unionNum :: NUMBERCONSTRAINT , unionStr :: STRINGCONSTRAINT

, unionArr :: ARRAYCONSTRAINT, unionObj :: OBJECTCONSTRAINT }
The generic structure of union type can be explained by the fact that the information contained

in each record field is independent from the information contained in other fields. We call it disjoint

6Levitated lattice is created by appending distinct ⊥ and ⊤ to a set that does not possess them by itself.

12 Towards a more perfect union type

tensor product, and it is commonly broken down by value constructors. It means that we generalize
independently over disjoint dimensions.7

Type checking and inference are dispatches to the appropriate record fields, according to the con-
structor of the input JSON value. It enables implementing a clear and efficient treatment of different
alternatives separately8.

instance UNIONTYPE ‘TYPES‘ VALUE where
infer (BOOL β) = mempty { unionBool = infer β }
infer NULL = mempty { unionNull = infer () }
infer (NUMBER ν) = mempty { unionNum = infer ν }
infer (STRING σ) = mempty { unionStr = infer σ }
infer (OBJECT ω) = mempty { unionObj = infer ω }
infer (ARRAY α) = mempty { unionArr = infer α }

check UNIONTYPE { unionBool } (BOOL β) =
check unionBool β

check UNIONTYPE { unionNull } NULL =
check unionNull ()

check UNIONTYPE { unionNum } (NUMBER ν) =
check unionNum ν

check UNIONTYPE { unionStr } (STRING σ) =
check unionStr σ

check UNIONTYPE { unionObj } (OBJECT ω) =
check unionObj ω

check UNIONTYPE { unionArr } (ARRAY α) =
check unionArr α

Since union type is all about optionality, we need to sum all options from different alternatives to
obtain its typeCost.

4.3 Overlapping alternatives

The essence of union type systems has long been dealing with conflicting types provided in the input.
Motivated by the examples in sec. 2, we also aim to address conflicting alternative assignments. It is
apparent that examples 4. to 6. hint at more than one assignment: in example 5, a set of lists of values
may correspond to INT, STRING, or null, or a table that has the same (and predefined) type for each row;
in example 6, a record of fixed names, or the mapping from hash to a single object type. It is therefore
natural to pick an alternative that manifests itself more frequently in the input samples.

Let us now discuss how to gather information about the number of samples supporting each alterna-
tive type constraint. To explain this, the other example can be considered:

7In this example, JSON terms can be described by terms without variables, and sets of tuples for dictionaries, so general-
ization by anti-unification is straightforward.

8The question may arise: what is the union type without set union? When the sets are disjoint, we just put the values in
different bins for easier handling.

M. J. Gajda, and M. S. Lazarev 13

{"HISTORY": [{ "ERROR" : "Authorization failed", "CODE" : 401 }
, { "MESSAGE" : "Where can I submit my proposal?", "UID" : 1014 }
, { "MESSAGE" : "Sent it to HotCRP", "UID" : 93 }
, { "MESSAGE" : "Thanks!", "UID" : 1014 }
, { "ERROR" : "Authorization failed", "CODE" : 401 }]}

First, we need to identify it as a list of similar elements. Second, there are multiple instances of each
record example, hence we consider the most appriopriate model to be that of multisets. To find the best
representation, we can a compute their type complexity, and attempt to minimize the term.

Next step is to detect the similarities between type descriptions introduced for different parts of the
term:

{ "HISTORY" : [...]
, "LASTMESSAGE" : { "MESSAGE": "Thanks!", "UID" : 1014} }
The crucial observation here is that we can augment a type constraint with auxiliary information

about the number of samples observed and it will remain a TYPELIKE object. The COUNTED constraint
counts the number of samples observed for the constraint inside so that we can decide on which alterna-
tive representation is best supported by evidence.

data COUNTED α = COUNTED { count::INT, constraint::α }
instance SEMIGROUP α

⇒ SEMIGROUP (COUNTED α) where
α ⋄ β = COUNTED {

count = count α + count β
, constraint = constraint α ⋄ constraint β
}

instance ty ‘TYPES‘ term
⇒ COUNTED ty ‘TYPES‘ term where

infer term = COUNTED 1 $ infer term
check (COUNTED _ ty) term = check ty term

Notice how infer provides a single observation, to be summed up by the semigroup fusion operation.
It should also be noted that COUNTED constraint is the first example that does not correspond to a
semilattice, that is α ⋄α ̸=α . This is natural for a TYPELIKE object; it is not a type constraint in a
conventional sense, just an accumulation of knowledge.

Therefore, at each step, we may need to maintain a cardinality of each possible value and, given
a sufficient number of samples, we may attempt to detect the most suitable encoding.9 For the sake of
efficiency, we may need to merge alternatives whenever the size of a multiset size crosses a specified
threshold.

5 Finishing touches

The final touch would be to perform the post-processing of an assigned type before generating it to
make it more resilient to common uncertainties. These assumptions may bypass the defined information
content principle criterion specified in the initial part of the paper; however, they prove to work well in
practice [6, 7].

If we have no observations corresponding to an array type, it can be inconvenient to disallow an array
to contain any values at all. Therefore, we introduce a non-monotonic step of converting the mempty into

9If we detect a pattern too early, we risk to make the types too narrow to work with actual API responses.

14 Towards a more perfect union type

a final TYPELIKE object aiming to introduce a representation allowing the occurrence of any VALUE in
the input. That still preserves the validity of the typing. We note that the program using our types must
not have any assumptions about these values; however, at the same time, it should be able to print them
for debugging purposes.

In most JSON documents, we observe that the same object can be simultaneously described in dif-
ferent parts of sample data structures. Due to this reason, we compare the sets of labels assigned to all
objects and propose to unify those that have more than 60% of identical labels. For transparency, the
identified candidates are logged for each user, and a user can also indicate them explicitly instead of
relying on automation. We conclude that this allows considerably decreasing the complexity of types
and makes the output less redundant.

6 Framework extensibility

Framework can be easily adopted and extended to infer Haskell data types from other data representa-
tions. Consider following example for CSV file, which potentially contains banking related information.
For such CSV file with the help of framework we want to infer type for each CSV column.

We represent CSV column as Union type. Each cell of column can contain any of: DATE, NUMBER,
STRING, CURRENCY or be empty.

data CSVCOLUMN = CSVCOLUMN

{ csvDate :: DATECONSTRAINT

, csvNumber :: NUMBERCONSTRAINT

, csvString :: STRINGCONSTRAINT

, csvCurrency :: CURRENCYCONSTRAINT

, csvEmpty :: NULLCONSTRAINT

}
deriving (EQ, SHOW, GENERIC)

We add CURRENCYCONSTRAINT and required instances to infer currency codes in ISO format.

instance CURRENCYCONSTRAINT ‘TYPES‘ TEXT where
infer v

| JUST _ ← readAlpha v
= CCALPHA

| otherwise = CCBEYOND

check CCALPHA σ = isJust $ readAlpha σ
check CCNEVER _ = FALSE

check CCBEYOND _ = TRUE

Here we trying to read arbitrary string as ISO currency code with readAlpha function, if an attempt
fails the data provided as text considered beyond the currency type.

We add special DATECONSTRAINT to get more fine grained inference. For each valid DATEFORMAT,
we record how many times it was matched.

M. J. Gajda, and M. S. Lazarev 15

data DATECONSTRAINT

= DCNEVER

| DCBEYOND

| DCDATE

{ formats :: MAP DATEFORMAT TIMESMATCHED

}
deriving (EQ, SHOW)

instance DATECONSTRAINT ‘TYPES‘ TEXT where
infer v

| JUST fmt ← findFirstMatching knownFormats v =
DCDATE $ M.singleton fmt 1

| otherwise =
DCBEYOND

check DCNEVER _ = FALSE

check DCBEYOND _ = TRUE

check (DCDATE fmts) v = isJust $ findFirstMatching (M.keys fmts) v
Call to "findFirstMatching knownFormats v" provides adjustable logic to infer dates, where result of

inference depends from specified date formats. If this fails fails, then again – type of data we tried to
read is beyon the type of DATE we need.

The union type CSVCOLUMN is constructed as a parallel tensor product:
instance SEMIGROUP CSVCOLUMN where

c1 ⋄ c2 =
CSVCOLUMN

{ csvDate = ((⋄) ‘on‘ csvDate) c1 c2
, csvNumber = ((⋄) ‘on‘ csvNumber) c1 c2
, csvString = ((⋄) ‘on‘ csvString) c1 c2
, csvCurrency = ((⋄) ‘on‘ csvCurrency) c1 c2
, csvEmpty = ((⋄) ‘on‘ csvEmpty) c1 c2
}

During inference we determine the type of each cell and then fuse gathered knowledge to get the type
of the whole column. We can go further and try to infer arbitrary text as Haskell data type representing
CSV entries, e.g.:

type COLUMNNAME = TEXT

type NAMEDCOLUMNS = [(COLUMNNAME, CSVCOLUMN)]

data CSVRECORD

= CSVRECORD {namedColumns :: !NAMEDCOLUMNS}
| RECORDBEYOND

Here we use RECORDBEYOND to signal that after inspecting raw data of DECODEDROWS we can
conclude that parsed data not good enough for our purpose and should be treated as plain text, e.g..

CSVRECORD types collection of DECODEDROWS, which obtained from running CSV parser like
cassava for target file. We check if decoded data is good enough for our purpose with checkRows (if it’s
not good, consider it beyond meaningful type), extract colums from decoded data with makeColumns,
infer type of each column and gather results together as CSVRECORD:

16 Towards a more perfect union type

type DECODEDROWS = VECTOR (VECTOR TEXT)

instance CSVRECORD ‘TYPES‘ DECODEDROWS where
infer dr

| JUST checkedRecrods ← checkRows dr
= let

inferColumn = foldMap infer
CSVRECORD $ V.toList . fmap inferColumn . makeColumns $ checkedRecrods

| otherwise
= RECORDBEYOND

Finally, having this in hand we can specify Haskell data type CSVENTRY and build it from CSVRECORD:
instance TOHTYPE CSVRECORD where

toHTypes RECORDNEVER = []
toHTypes RECORDBEYOND = ["Text"]
toHTypes (CSVRECORD cols) =
[HADT

[HCONS "CSVEntry" $ fmap toArgs cols]
]
where

toArgs (title, v) = (HFIELDID . unpack $ title, toHType v)

7 Future work

In the present paper, we only discuss typing of tree-like values, with no facilities to refer to previous parts.
However, it is natural to scale this approach to types being referred to by name and possibly containining
each other. To address these cases, we plan to show that the environment of TYPELIKE objects is also
TYPELIKE, and that constraint generalization (anti-unification) can be extended in the same way.

It should be noted that many TYPELIKE instances for non-simple types usually follow one of two pat-
terns: (1) for a finite sum of disjoint constructors, we bin this information by each constructor during the
inference (2) for typing terms with multiple alternative representations, we infer all constraints separately
for each alternative representation. In both cases, GENERIC derivation of the MONOID, TYPELIKE, and
TYPECOST instances is possible [38, 39]. This allows us to design a type system by declaring datatypes
themselves and leave implementation to the compiler. Manual implementations would only be necessary
for special constraints, like STRINGCONSTRAINT and COUNTED.

Finally, we believe that we can explain the duality of the equation-based framework of TYPELIKE and
use generalization (anti-unification) instead of unification (or narrowing) as a type inference mechanism.
The beyond set would then correspond to a set of error messages, and a result of the inference would
represent a principal type in the Damas-Milner sense [40].

8 Conclusion

In the present study, we aimed to derive the types that were valid with respect to the provided specifica-
tion, thereby obtaining the information from the input in the most comprehensive way. We defined type
inference as representation learning and type system engineering as a meta-learning problem in which
the priors corresponding to the data structure induced typing rules. We show how type safety can

M. J. Gajda, and M. S. Lazarev 17

be quickly tested with equational laws in QuickCheck, which is particularly useful during prototyping,
and may be supplemented with a fully formal proof in the future.

We demonstrate how enforcing compositionality by making inference a contravariant functor creates
two different tensor products (parallel and disjoint) that are useful for systematically defining compound
union types.

We also formulated the union type discipline as manipulation of TYPELIKE commutative monoids
that represent knowledge about the data structure. In addition, we proposed a methodology for engineer-
ing union type systems that was logically justified by theoretical criteria. We demonstrated that it was
capable of consistently explaining the decisions made in practice. We followed a strictly constructive,
algorithmic procedure, that can be implemented generically.

We hope that this kind of straightforward type system engineering will become more widespread in
future practice, replacing less modular approaches of the past. The proposed approach may be used to
underlie the way towards formal construction and derivation of type systems based on the specification
of value domains and design constraints.

Bibliography

1. Knuth, D.E.: Literate programming. Comput. J. 27, 97–111 (1984).
https://doi.org/10.1093/comjnl/27.2.97.

2. Hidding, J.: enTangleD: A bi-directional literate programming tool, https://blog.escienc
ecenter.nl/entangled-1744448f4b9f.

3. McFarlane, J.: Pandoc: A universal document converter, https://pandoc.org.

4. Mitchell, N.D.: GHCID - a new GHCi based IDE (ish), http://neilmitchell.blogspot.co
m/2014/09/ghcid-new-ghci-based-ide-ish.html.

5. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for JavaScript. In: Black,
A.P. (ed.) ECOOP 2005 - object-oriented programming. pp. 428–452. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2005).

6. Anonymous: JSON autotype: Presentation for Haskell.SG, https://engineers.sg/video/j
son-autotype-1-0-haskell-sg--429.

7. Siegel, D.: A first look at quicktype, https://blog.quicktype.io/first-look/.

8. Petricek, T., Guerra, G., Syme, D.: Types from Data: Making Structured Data First-Class Citizens
in F#. SIGPLAN Not. 51, 477–490 (2016). https://doi.org/10.1145/2980983.2908115.

9. Fisher, K., Walker, D.: The PADS Project: An Overview. In: Proceedings of the 14th interna-
tional conference on database theory. pp. 11–17. Association for Computing Machinery, New
York, NY, USA (2011). https://doi.org/10.1145/1938551.1938556.

10. Fisher, K., Walker, D., Zhu, K.Q.: LearnPADS: Automatic tool generation from ad hoc data. In:
SIGMOD conference (2008).

11. Hosoya, H., Pierce, B.: XDuce: A typed XML processing language. (2000).

12. Sulzmann, M., Stuckey, P.j.: HM(X) Type Inference is CLP(X) Solving. J. Funct. Program. 18,
251–283 (2008). https://doi.org/10.1017/S0956796807006569.

https://doi.org/10.1093/comjnl/27.2.97
https://blog.esciencecenter.nl/entangled-1744448f4b9f
https://blog.esciencecenter.nl/entangled-1744448f4b9f
https://pandoc.org
http://neilmitchell.blogspot.com/2014/09/ghcid-new-ghci-based-ide-ish.html
http://neilmitchell.blogspot.com/2014/09/ghcid-new-ghci-based-ide-ish.html
https://engineers.sg/video/json-autotype-1-0-haskell-sg--429
https://engineers.sg/video/json-autotype-1-0-haskell-sg--429
https://blog.quicktype.io/first-look/
https://doi.org/10.1145/2980983.2908115
https://doi.org/10.1145/1938551.1938556
https://doi.org/10.1017/S0956796807006569

18 Towards a more perfect union type

13. Jones, M.P.: Simplifying and Improving Qualified Types. In: Proceedings of the sev-
enth international conference on functional programming languages and computer architec-
ture. pp. 160–169. Association for Computing Machinery, New York, NY, USA (1995).
https://doi.org/10.1145/224164.224198.

14. Imai, K., Yuen, S., Agusa, K.: A session type system with subject reduction.
IEICE Transactions on Information and Systems. E95.D, 2053–2064 (2012).
https://doi.org/10.1587/transinf.E95.D.2053.

15. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order ses-
sion communication. Electron. Notes Theor. Comput. Sci. 171, 73–93 (2007).
https://doi.org/10.1016/j.entcs.2007.02.056.

16. Barthe, G., Grégoire, B., Riba, C.: Type-based termination with sized products. In: Kaminski,
M. and Martini, S. (eds.) Computer science logic. pp. 493–507. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008).

17. (INRIA), F.B., (INPL), C.R.: Combining typing and size constraints for checking the termination
of higher-order conditional rewrite systems. In: Hermann, M. and Voronkov, A. (eds.) Logic for
programming, artificial intelligence, and reasoning. pp. 105–119. Springer Berlin Heidelberg,
Berlin, Heidelberg (2006).

18. Le Botlan, D., Rémy, D.: MLF made simple. (2007).

19. Rémy, D., Yakobowski, B.: A church-style intermediate language for MLF. In: Proceedings of
the 10th international conference on functional and logic programming. pp. 24–39. Springer-
Verlag, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-4_4.

20. Yang, H., Reddy, U.: Imperative lambda calculus revisited, (1997).

21. Bakel, S. van: Partial intersection type assignment in applicative term rewriting systems. In:
Proceedings of the international conference on typed lambda calculi and applications. pp. 29–44.
Springer-Verlag, Berlin, Heidelberg (1993).

22. Luo, Z.: Coercive subtyping. J. Log. Comput. 9, 105–130 (1999).
https://doi.org/10.1093/logcom/9.1.105.

23. Luo, Z., Soloviev, S., Xue, T.: Coercive subtyping: Theory and implementation. Information and
Computation. 223, 18–42 (2013). https://doi.org/https://doi.org/10.1016/j.ic.2012.10
.020.

24. Rothstein, H., Sutton, A., Borenstein, M.: Publication bias in meta-analysis: Prevention, as-
sessment and adjustments. Publication Bias in Meta-Analysis. Prevention, Assessment, and
Adjustments. (2005). https://doi.org/10.1002/0470870168.

25. Peyton Jones, S.: Type inference as constraint solving: How GHC’s type inference engine actu-
ally works, https://www.microsoft.com/en-us/research/publication/type-infere
nce-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/,
(2019).

26. Henry P. Tung and other contributors: https://github.com/microsoft/TypeScript/issu
es/9825.

https://doi.org/10.1145/224164.224198
https://doi.org/10.1587/transinf.E95.D.2053
https://doi.org/10.1016/j.entcs.2007.02.056
https://hal.inria.fr/inria-00156628
https://doi.org/10.1007/978-3-642-12251-4_4
https://doi.org/10.1093/logcom/9.1.105
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1016/j.ic.2012.10.020
https://doi.org/10.1002/0470870168
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://www.microsoft.com/en-us/research/publication/type-inference-as-constraint-solving-how-ghcs-type-inference-engine-actually-works/
https://github.com/microsoft/TypeScript/issues/9825
https://github.com/microsoft/TypeScript/issues/9825

M. J. Gajda, and M. S. Lazarev 19

27. Tiuryn, J.: Subtyping over a lattice (abstract). In: Gottlob, G., Leitsch, A., and Mundici, D.
(eds.) Computational logic and proof theory. pp. 84–88. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997).

28. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping. In: Proceedings 17th annual IEEE
symposium on logic in computer science. pp. 137–146 (2002).

29. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-theoretically
with function, union, intersection, and negation types. J. ACM. 55, (2008).
https://doi.org/10.1145/1391289.1391293.

30. Yodaiken, V.: C Standard undefined behaviour versus Wittgenstein, https://www.yodaiken.c
om/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/.

31. Fairhead, H.: C Undefined Behavior - Depressing and Terrifying (Updated), https://www.yo
daiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-s
tandard/.

32. Cuoq, P., Regehr, J.: Undefined behavior in 2017, https://blog.regehr.org/archives/1
520.

33. O’Sullivan, B.: Aeson: Fast JSON parsing and generation, https://hackage.haskell.org/
package/aeson.

34. Siek, J., Taha, W.: Gradual typing for objects. In: Proceedings of the 21st european conference
on object-oriented programming. pp. 2–27. Springer-Verlag, Berlin, Heidelberg (2007).

35. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of haskell
programs. In: ICFP ’00: Proceedings of the fifth ACM SIGPLAN international confer-
ence on functional programming. pp. 268–279. ACM, New York, NY, USA (2000).
https://doi.org/10.1145/351240.351266.

36. Tiuryn, J.: Subtype inequalities. [1992] Proceedings of the Seventh Annual IEEE Symposium on
Logic in Computer Science. 308–315 (1992).

37. Grenrus, O.: Lattices: Fine-grained library for constructing and manipulating lattices, http:
//hackage.haskell.org/package/lattices-2.0.2/docs/Algebra-Lattice-Levita
ted.html.

38. Snoyman, M.: Generics example: Creating monoid instances, https://www.yesodweb.com/b
log/2012/10/generic-monoid.

39. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism for haskell.
In: Proceedings of the third ACM haskell symposium on haskell. pp. 37–48. Association for
Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1863523.1863529.

40. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: DeMillo, R.A.
(ed.) Conference record of the ninth annual ACM symposium on principles of programming
languages, albuquerque, new mexico, USA, january 1982. pp. 207–212. ACM Press (1982).
https://doi.org/10.1145/582153.582176.

https://doi.org/10.1145/1391289.1391293
https://www.yodaiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/
https://www.yodaiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/
https://www.yodaiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/
https://www.yodaiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/
https://www.yodaiken.com/2018/05/20/depressing-and-faintly-terrifying-days-for-the-c-standard/
https://blog.regehr.org/archives/1520
https://blog.regehr.org/archives/1520
https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/aeson
https://doi.org/10.1145/351240.351266
http://hackage.haskell.org/package/lattices-2.0.2/docs/Algebra-Lattice-Levitated.html
http://hackage.haskell.org/package/lattices-2.0.2/docs/Algebra-Lattice-Levitated.html
http://hackage.haskell.org/package/lattices-2.0.2/docs/Algebra-Lattice-Levitated.html
https://www.yesodweb.com/blog/2012/10/generic-monoid
https://www.yesodweb.com/blog/2012/10/generic-monoid
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/582153.582176

20 Towards a more perfect union type

Appendix: Commutative diagram of laws for typing

Type1×Type2

Type1 Type1 ⋄Type2 Type2

Value1 True Value2

⋄
π2π1

⋄Type2

check value2check value1

Type1⋄

infer

(‘check‘ Type1)

infer

(‘check‘ Type2)

9 Appendix: Inference rules for JSON union types

i is integral
number−int

⊢number {i} : NCInt

f is not integral
number− f loat

⊢number { f} : NCFloat

⊢ :
number−merge−int

f is in date format
string−date

⊢number f : SCDate

f is in email format
string−email

⊢number f : SCEmail

f is neither date nor email
string−enum

⊢number f : SCEnum({ f})

Acknowledgments

The author thanks for all tap-on-the-back donations to his past projects. Paul Tarau, Karla Ramirez
Pulido, attendees of Munich Haskell Meeting and anonymous reviewers provided helpful comments on
the article.

We wrote the article with the great help of bidirectional literate programming [1] tool enTangleD[2],
Pandoc [3] markdown publishing system and live feedback from GHCid [4].

Less Arbitrary waiting time
Short paper

Michał J. Gajda[0000−0001−7820−3906]

Migamake Pte Ltd,
mjgajda@migamake.com,

WWW company page: https://migamake.com

Abstract. Property testing is the cheapest and most precise way of
building up a test suite for your program. Especially if the datatypes
enjoy nice mathematical laws. But it is also the easiest way to make it
run for an unreasonably long time. We prove connection between deeply
recursive data structures, and epidemic growth rate, and show how to
fix the problem, and make Arbitrary instances run in linear time with
respect to assumed test size.

1 Introduction

Property testing is the cheapest and most precise way of building up a test suite
for your program. Especially if the datatypes enjoy nice mathematical laws. But
it is also the easiest way to make it run for an unreasonably long time. We show
that connection between deeply recursive data structures, and epidemic growth
rate can be easily fixed with a generic implementation. After our intervention
the Arbitrary instances run in linear time with respect to assumed test size.
We also provide a fully generic implementation, so error-prone coding process is
removed.

2 Motivation

Typical arbitrary instance just draws a random constructor from a set, possibly
biasing certain outcomes.

Generic arbitrary instance looks like this:
data Tree α =

Leaf α
| Branch [Tree α]
deriving (Eq,Show ,Generic.Generic)

instance Arbitrary α
⇒ Arbitrary (Tree α) where

arbitrary = oneof [Leaf $♢ arbitrary
, Branch $♢ arbitrary
]

2 Michał J. Gajda

Assuming we run QuickCheck with any size parameter greater than 1, it will
fail to terminate!

List instance is a wee bit better, since it tries to limit maximum list length
to a constant option:

instance Arbitrary α
⇒ Arbitrary [α] where

lessArbitrary = sized $ λ size do
len ← choose (1,size)
vectorOf len lessArbitrary

Indeed QuickCheck manual[5], suggests an error-prone, manual method of
limiting the depth of generated structure by dividing size by reproduction factor
of the structure1 :

data Tree = Leaf Int | Branch Tree Tree

instance Arbitrary Tree where
arbitrary = sized tree’

where tree’ 0 = Leaf $♢ arbitrary
tree’ ν | ν > 0 =

oneof [Leaf $♢ arbitrary
,Branch $♢ subtree ∗♢ subtree]

where subtree = tree’ (ν ‘div‘ 2)
Above example uses division of size by maximum branching factor to de-

crease coverage into relatively deep data structures, whereas dividing by average
branching factor of ~2 will generate both deep and very large structures.

This fixes non-termination issue, but still may lead to unpredictable waiting
times for nested structures. The depth of the generated structure is linearly
limited by dividing the ν by expected branching factor of the recursive data
structure. However this does not work very well for mutually recursive data
structures occuring in compilers[6], which may have 30 constructors with highly
variable2 branching factor just like GHC’s HSExpr data types.

Now we have a choice of manual generation of these data structures, which
certainly introduces bias in testing, or abandoning property testing for real-life-
sized projects.

Another motivation is that more complex data structures like lambda terms
require additional information for their generation. For example a list of free
variables. That means that for generating complex structures we need to pass a
state through the test case generator. It would be much more convenient to have
an explicit state assigned to each generated type, so we may use type classes to
generate nested data structures.

1 We changed liftM and liftM2 operators to $♢ and ∗♢ for clarity and consistency.
2 Due to list parameters.

Less Arbitrary 3

3 Complexity analysis

We might be tempted to compute average size of the structure. Let’s use re-
production rate estimate for a single rewrite of arbitrary function written in
conventional way.

We compute a number of recursive references for each constructor. Then we
take an average number of references among all the constructors. If it is greater
than 1, any non-lazy property test will certainly fail to terminate. If it is slightly
smaller, we still can wait a long time.

What is an issue here is not just non-termination which is fixed by error-prone
manual process of writing own instances that use explicit size parameter.

The much worse issue is unpredictability of the test runtime. Final issue
is the poor coverage for mutually recursive data structure with multitude of
constructors.

Given a maximum size parameter (as it is now called) to QuickCheck, would
we not expect that tests terminate within linear time of this parameter? At least
if our computation algorithms are linear with respect to input size?

Currently for any recursive structure like Tree α, we see some exponential
function. For example sizen, where n is a random variable.

4 Solution

We propose to replace implementation with a simple state monad[7] that actually
remembers how many constructors were generated, and thus avoid limiting the
depth of generated data structures, and ignoring estimation of branching factor
altogether.

newtype Cost = Cost Int
deriving (Eq , Ord, Enum ,Bounded,Num)

newtype CostGen σ α =
CostGen {
runCostGen :: State.StateT (Cost, σ) QC.Gen α
}

deriving (Functor, Applicative, Monad, State.MonadFix)

instance State.MonadState σ (CostGen σ) where
state :: ∀ σ α .

(σ → (α , σ)) → CostGen σ α
state nestedMod = CostGen $ State.state mod

where
mod :: (Cost , σ) → (α , (Cost , σ))
mod (aCost, aState) = (result , (aCost, newState))

where
(result, newState) = nestedMod aState

We track the spending in the usual way:

4 Michał J. Gajda

spend :: Cost → CostGen σ ()
spend γ = do

CostGen $ State.modify (first (-γ+))
checkBudget

To make generation easier, we introduce budget check operator:

($$$?) :: HasCallStack
⇒ CostGen σ α
→ CostGen σ α
→ CostGen σ α

cheapVariants $$$? costlyVariants = do
budget ← fst $♢ CostGen State.get
if | budget > (0 :: Cost) → costlyVariants

| budget > −10000 → cheapVariants
| otherwise → error $
”Recursive structure with no loop breaker.”

checkBudget :: HasCallStack ⇒ CostGen σ ()
checkBudget = do

budget ← fst $♢ CostGen State.get
if budget < −10000

then error ”Recursive structure with no loop breaker.”
else return ()

In order to conveniently define our budget generators, we might want to
define a class for them:

class StartingState σ
⇒ LessArbitrary σ α where

lessArbitrary :: CostGen σ α

Note that starting state can default to ():

class StartingState σ where
startingState :: σ

instance StartingState () where
startingState = ()

default lessArbitrary :: (Generic α
, GLessArbitrary σ (Rep α))

⇒ CostGen σ α
lessArbitrary = genericLessArbitrary

Then we can use them as implementation of arbitrary that should have been
always used:

Less Arbitrary 5

fasterArbitrary :: ∀ σ α .
LessArbitrary σ α

⇒ QC.Gen α
fasterArbitrary = (sizedCost :: CostGen σ α → QC.Gen α) (lessArbitrary :: CostGen σ α)

sizedCost :: LessArbitrary σ α
⇒ CostGen σ α
→ QC.Gen α

sizedCost gen = QC.sized (‘withCost‘ gen)
Then we can implement Arbitrary instances simply with:
instance _

⇒ Arbitrary α where
arbitrary = fasterArbitrary

Of course we still need to define LessArbitrary, but after seeing how simple
was a Generic defintion Arbitrary we have a hope that our implementation
will be:

instance LessArbitrary where
That is - we hope that the the generic implementation will take over.

5 Introduction to GHC generics

Generics allow us to provide default instance, by encoding any datatype into its
generic Representation:

instance Generics (Tree α) where
to :: Tree α → Rep (Tree α)
from :: Rep (Tree α) → Tree α

The secret to making a generic function is to create a set of instance decla-
rations for each type family constructor.

So let’s examine Representation of our working example, and see how to
declare instances:

1. First we see datatype metadata D1 that shows where our type was defined:

type instance Rep (Tree α) =
D1
(′MetaData ”Tree”

”Test.Arbitrary”
”less-arbitrary” ′False)

2. Then we have constructor metadata C1:

(C1
(′MetaCons ”Leaf” ′PrefixI ′False)

3. Then we have metadata for each field selector within a constructor:

6 Michał J. Gajda

(S1
(′MetaSel
′Nothing
′NoSourceUnpackedness
′NoSourceStrictness
′DecidedLazy)

4. And reference to another datatype in the record field value:

(Rec0 α))

5. Different constructors are joined by sum type operator:

:+:

6. Second constructor has a similar representation:

C1
(′MetaCons ”Branch” ′PrefixI ′False)
(S1

(′MetaSel
′ Nothing
′ NoSourceUnpackedness
′ NoSourceStrictness
′ DecidedLazy)
(Rec0 [Tree α])))

ignored

7. Note that Representation type constructors have additional parameter that
is not relevant for our use case.

For simple datatypes, we are only interested in three constructors:

– :+: encode choice between constructors
– :*: encode a sequence of constructor parameters
– M1 encode metainformation about the named constructors, C1, S1 and D1

are actually shorthands for M1 C, M1 S and M1 D

There are more short cuts to consider: * U1 is the unit type (no fields) *
Rec0 is another type in the field

5.1 Example of generics

This generic representation can then be matched by generic instances. Example
of Arbitrary instance from [8] serves as a basic example3

1. First we convert the type to its generic representation:
3 We modified class name to simplify.

Less Arbitrary 7

genericArbitrary :: (Generic α
, Arbitrary (Rep α))

⇒ Gen α
genericArbitrary = to $♢ arbitrary

2. We take care of nullary constructors with:

instance Arbitrary G.U1 where
arbitrary = pure G.U1

3. For all fields arguments are recursively calling Arbitrary class method:

instance Arbitrary γ ⇒ Arbitrary (G.K1 i γ) where
gArbitrary = G.K1 $♢ arbitrary

4. We skip metadata by the same recursive call:

instance Arbitrary f
⇒ Arbitrary (G.M1 i γ f) where

arbitrary = G.M1 $♢ arbitrary

5. Given that all arguments of each constructor are joined by :*:, we need to
recursively delve there too:

instance (Arbitrary α,
, Arbitrary β)

⇒ Arbitrary (α G.:*: β) where
arbitrary = (G.:*:) $♢ arbitrary ∗♢ arbitrary

6. In order to sample all constructors with the same probability we compute a
number of constructor in each representation type with SumLen type family:

type family SumLen α :: Nat where
SumLen (α G.:+: β) = (SumLen α) + (SumLen β)
SumLen α = 1

Now that we have number of constructors computed, we can draw them with
equal probability:

instance (Arbitrary α
, Arbitrary β
, KnownNat (SumLen α)
, KnownNat (SumLen β)

)
⇒ Arbitrary (α G.:+: β) where

arbitrary = frequency
[(lfreq , G.L1 $♢ arbitrary)
, (rfreq , G.R1 $♢ arbitrary)]
where

lfreq = fromIntegral
$ natVal (Proxy :: Proxy (SumLen α))

rfreq = fromIntegral
$ natVal (Proxy :: Proxy (SumLen β))

8 Michał J. Gajda

Excellent piece of work, but non-terminating for recursive types with average
branching factor greater than 1 (and non-lazy tests, like checking Eq reflexivity.)

5.2 Implementing with Generics

It is apparent from our previous considerations, that we can reuse code from the
existing generic implementation when the budget is positive. We just need to
spend a dollar for each constructor we encounter.

For the Monoid the implementation would be trivial, since we can always
use mempty and assume it is cheap:

genericLessArbitraryMonoid :: (Generic α
, GLessArbitrary σ (Rep α)
, Monoid α)

⇒ CostGen σ α
genericLessArbitraryMonoid =

pure mempty $$$? genericLessArbitrary
However we want to have fully generic implementation that chooses the

cheapest constructor even though the datatype does not have monoid instance.

Class for budget-conscious When the budget is low, we need to find the least
costly constructor each time.

So to implement it as a type class GLessArbitrary that is implemented
for parts of the Generic Representation type, we will implement two methods:

1. gLessArbitrary is used for normal random data generation
2. cheapest is used when we run out of budget

class GLessArbitrary σ datatype where
gLessArbitrary :: CostGen σ (datatype p)
cheapest :: CostGen σ (datatype p)

genericLessArbitrary :: (Generic α
, GLessArbitrary σ (Rep α))

⇒ CostGen σ α
genericLessArbitrary = G.to $♢ gLessArbitrary

Helpful type family First we need to compute minimum cost of the in each
branch of the type representation. Instead of calling it minimum cost, we call
this function Cheapness.

For this we need to implement minimum function at the type level:

Less Arbitrary 9

type family Min µ ν where
Min µ ν = ChooseSmaller (CmpNat µ ν) µ ν

type family ChooseSmaller (ω :: Ordering)
(µ :: Nat)
(ν :: Nat) where

ChooseSmaller ′LT µ ν = µ
ChooseSmaller ′EQ µ ν = µ
ChooseSmaller ′GT µ ν = ν

so we can choose the cheapest^[We could add instances for :
type family Cheapness α :: Nat where

Cheapness (α :*: β) =
Cheapness α + Cheapness β

Cheapness (α :+: β) =
Min (Cheapness α) (Cheapness β)

Cheapness U1 = 0
≪ flat-types≫
Cheapness (K1 α other) = 1
Cheapness (C1 α other) = 1

Since we are only interested in recursive types that can potentially blow out
our budget, we can also add cases for flat types since they seem the cheapest:

Cheapness (S1 α (Rec0 Int)) = 0
Cheapness (S1 α (Rec0 Scientific)) = 0
Cheapness (S1 α (Rec0 Double)) = 0
Cheapness (S1 α (Rec0 Bool)) = 0
Cheapness (S1 α (Rec0 Text.Text)) = 1
Cheapness (S1 α (Rec0 other)) = 1

Of course we could also try to narrow generation of data structures by their
size, but that would complicate the code here, and also it would only work for
regular data structures that are not greatly affected by the passed state.

Base case for each datatype For each datatype, we first write a skeleton
code that first spends a coin, and then checks whether we have enough funds
to go on expensive path, or we are beyond our allocation and need to generate
from among the cheapest possible options.

instance GLessArbitrary σ f
⇒ GLessArbitrary σ (D1 µ f) where

gLessArbitrary = do
spend 1
M1 $♢ (cheapest $$$? gLessArbitrary)

cheapest = M1 $♢ cheapest

Skipping over other metadata First we safely ignore metadata by writing
an instance:

10 Michał J. Gajda

instance GLessArbitrary σ f
⇒ GLessArbitrary σ (G.C1 γ f) where

gLessArbitrary = G.M1 $♢ gLessArbitrary
cheapest = G.M1 $♢ cheapest

instance GLessArbitrary σ f
⇒ GLessArbitrary σ (G.S1 γ f) where

gLessArbitrary = G.M1 $♢ gLessArbitrary
cheapest = G.M1 $♢ cheapest

Counting constructors In order to give equal draw chance for each construc-
tor, we need to count number of constructors in each branch of sum type :+: so
we can generate each constructor with the same frequency:

type family SumLen α :: Nat where
SumLen (α G.:+: β) = SumLen α + SumLen β
SumLen α = 1

Base cases for GLessArbitrary Now we are ready to define the instances of
GLessArbitrary class.

We start with base cases GLessArbitrary for types with the same repre-
sentation as unit type has only one result:

instance GLessArbitrary σ G.U1 where
gLessArbitrary = pure G.U1
cheapest = pure G.U1

For the product of, we descend down the product of to reach each field, and
then assemble the result:

instance (GLessArbitrary σ α
, GLessArbitrary σ β)

⇒ GLessArbitrary σ (α G.:*: β) where
gLessArbitrary = (G.:*:) $♢ gLessArbitrary

∗♢ gLessArbitrary
cheapest = (G.:*:) $♢ cheapest

∗♢ cheapest
We recursively call instances of LessArbitrary for the types of fields:
instance LessArbitrary σ γ

⇒ GLessArbitrary σ (G.K1 i γ) where
gLessArbitrary = G.K1 $♢ lessArbitrary
cheapest = G.K1 $♢ lessArbitrary

Selecting the constructor We use code for selecting the constructor that is
taken after[8].

Less Arbitrary 11

instance (GLessArbitrary σ α
, GLessArbitrary σ β
, KnownNat (SumLen α)
, KnownNat (SumLen β)
, KnownNat (Cheapness α)
, KnownNat (Cheapness β)

)
⇒ GLessArbitrary σ (α Generic.:+: β) where

gLessArbitrary =
frequency
[(lfreq , L1 $♢ gLessArbitrary)
, (rfreq , R1 $♢ gLessArbitrary)]

where
lfreq = fromIntegral

$ natVal (Proxy :: Proxy (SumLen α))
rfreq = fromIntegral

$ natVal (Proxy :: Proxy (SumLen β))
cheapest =

if lcheap ≤ rcheap
then L1 $♢ cheapest
else R1 $♢ cheapest

where
lcheap , rcheap :: Int
lcheap = fromIntegral

$ natVal (Proxy :: Proxy (Cheapness α))
rcheap = fromIntegral

$ natVal (Proxy :: Proxy (Cheapness β))

6 Conclusion

We show how to quickly define terminating test generators using generic pro-
gramming. This method may be transferred to other generic programming regimes
like Featherweight Go or Featherweight Java.

We recommend because it reduces time spent on making test generators and
improves user experience when a data structure with no terminating constructors
is defined.

7 Bibliography

1. Knuth, D.E.: Literate programming. Comput. J. 27, 97–111 (1984).
https://doi.org/10.1093/comjnl/27.2.97.

2. Hidding, J.: enTangleD: A bi-directional literate programming tool,
[Link].

3. McFarlane, J.: Pandoc: A universal document converter, [Link].

https://doi.org/10.1093/comjnl/27.2.97
https://blog.esciencecenter.nl/entangled-1744448f4b9f
https://pandoc.org

12 Michał J. Gajda

4. FP Complete: stack 0.1 released.

5. John Hughes: QuickCheck: An Automatic Testing Tool for Haskell, [Link].

6. Day, L.E., Hutton, G.: Compilation à la Carte. In: Proceedings of the 25th
Symposium on Implementation and Application of Functional Languages,
Nijmegen, The Netherlands (2013).

7. Jones, M.P., Duponcheel, L.: Composing monads. (1993).

8. contributors, Typeable. io: generic-arbitrary: Generic implementation for
QuickCheck’s Arbitrary, [Link].

9. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for ran-
dom testing of haskell programs. In: ICFP ’00: Proceedings of
the fifth ACM SIGPLAN international conference on functional
programming. pp. 268–279. ACM, New York, NY, USA (2000).
https://doi.org/10.1145/351240.351266.

10. Kerckhove, T.S.: genvalidity-property: Standard properties for functions
on ‘Validity‘ types, [Link].

http://www.cse.chalmers.se/~rjmh/QuickCheck/manual_body.html#16
https://hackage.haskell.org/package/generic-arbitrary-0.1.0/docs/src/Test-QuickCheck-Arbitrary-Generic.html#genericArbitrary
https://doi.org/10.1145/351240.351266
https://hackage.haskell.org/package/generic-arbitrary-0.1.0/docs/src/Test-QuickCheck-Arbitrary-Generic.html#genericArbitrary

Less Arbitrary 13

Appendix: Module headers
{-# language DefaultSignatures #-}
{-# language FlexibleInstances #-}
{-# language FlexibleContexts #-}
{-# language GeneralizedNewtypeDeriving #-}
{-# language InstanceSigs #-}
{-# language Rank2Types #-}
{-# language PolyKinds #-}
{-# language MultiParamTypeClasses #-}
{-# language MultiWayIf #-}
{-# language ScopedTypeVariables #-}
{-# language TypeApplications #-}
{-# language TypeOperators #-}
{-# language TypeFamilies #-}
{-# language TupleSections #-}
{-# language UndecidableInstances #-}
{-# language AllowAmbiguousTypes #-}
{-# language DataKinds #-}
module Test.LessArbitrary(

LessArbitrary(..)
, oneof
, choose
, budgetChoose
, CostGen (..)
, (<$$$>)
, ($$$?)
, currentBudget
, fasterArbitrary
, genericLessArbitrary
, genericLessArbitraryMonoid
, flatLessArbitrary
, spend
, withCost
, elements
, forAll
, sizedCost
, StartingState(..)

) where

import qualified Data.HashMap.Strict as Map
import qualified Data.Set as Set
import qualified Data.Vector as Vector
import qualified Data.Text as Text
import Control.Monad (replicateM)
import Data.Scientific
import Data.Proxy
import qualified Test.QuickCheck.Gen as QC
import qualified Control.Monad.State.Strict as State
import Control.Arrow (first, second)
import Control.Monad.Trans.Class
import System.Random (Random)
import GHC.Generics as G
import GHC.Generics as Generic
import GHC.TypeLits
import GHC.Stack
import qualified Test.QuickCheck as QC
import Data.Hashable

import Test.LessArbitrary.Cost

≪ starting- state≫
≪ costgen≫

– Mark a costly constructor with this instead of ‘<$>‘
(<$$$>) :: (α → β) → CostGen σ α → CostGen σ β
costlyConstructor <$$$> arg = do

spend 1
costlyConstructor $♢ arg

≪ spend≫

≪ budget≫

withCost :: ∀ σ α.
StartingState σ

⇒ Int
→ CostGen σ α
→ QC.Gen α

withCost cost gen = withCostAndState cost startingState gen

withCostAndState :: Int → σ → CostGen σ α → QC.Gen α
withCostAndState cost state gen = runCostGen gen

‘State.evalStateT‘ (Cost cost , state)

≪ generic-instances≫

≪ generic-less-arbitrary≫

≪ less-arbitrary-class≫

instance StartingState σ
⇒ LessArbitrary σ Bool where

lessArbitrary = flatLessArbitrary

instance StartingState σ
⇒ LessArbitrary σ Int where

lessArbitrary = flatLessArbitrary

instance StartingState σ
⇒ LessArbitrary σ Z where

lessArbitrary = flatLessArbitrary

instance StartingState σ
⇒ LessArbitrary σ Double where

lessArbitrary = flatLessArbitrary

instance StartingState σ
⇒ LessArbitrary σ Char where

lessArbitrary = flatLessArbitrary

instance (LessArbitrary σ κ
, LessArbitrary σ v)

⇒ LessArbitrary σ (κ, v) where

instance (LessArbitrary σ κ
, Ord κ)

⇒ LessArbitrary σ (Set.Set κ) where
lessArbitrary = Set.fromList $♢ lessArbitrary

instance (LessArbitrary σ κ
, Eq κ
, Ord κ
, Hashable κ
, LessArbitrary σ v)

⇒ LessArbitrary σ (Map.HashMap κ v) where
lessArbitrary = Map.fromList

$♢ lessArbitrary

instance StartingState σ
⇒ LessArbitrary σ Scientific where

lessArbitrary =
scientific $♢ lessArbitrary

∗♢ lessArbitrary

≪ arbitrary-implementation≫

flatLessArbitrary :: QC.Arbitrary α
⇒ CostGen σ α

flatLessArbitrary = CostGen $ lift QC.arbitrary

instance LessArbitrary σ α
⇒ LessArbitrary σ (Vector.Vector α) where

lessArbitrary = Vector.fromList $♢ lessArbitrary

≪ lifting-arbitrary≫

14 Michał J. Gajda

Appendix: lifting classic Arbitrary functions

Below are functions and instances that are lightly adjusted variants of original
implementations in QuickCheck[9]

instance LessArbitrary σ α
⇒ LessArbitrary σ [α] where

lessArbitrary = pure [] $$$? do
budget ← currentBudget
len ← choose (1,fromEnum budget)
spend $ Cost len
replicateM len lessArbitrary

instance (QC.Testable α
, LessArbitrary σ α)

⇒ QC.Testable (CostGen σ α) where
property = QC.property

. sizedCost

Remaining functions are directly copied from QuickCheck[9], with only
adjustment being their types and error messages:

Less Arbitrary 15

forAll :: CostGen σ α → (α → CostGen σ β) → CostGen σ β
forAll gen prop = gen ≫= prop

oneof :: HasCallStack
⇒ [CostGen σ α] → CostGen σ α

oneof [] = error
”LessArbitrary.oneof used with empty list”

oneof gs = choose (0,length gs - 1) ≫= (gs !!)

elements :: [α] → CostGen σ α
elements gs = (gs!!) $♢ choose (0,length gs - 1)

choose :: Random α
⇒ (α , α)
→ CostGen σ α

choose (α,β) = CostGen $ lift $ QC.choose (α, β)

– | Choose but only up to the budget (for array and list sizes)
budgetChoose :: CostGen σ Int
budgetChoose = do

Cost β ← currentBudget
CostGen $ lift $ QC.choose (1, β)

– | Version of ‘suchThat‘ using budget instead of sized generators.
cg ‘suchThat‘ pred = do

result ← cg
if pred result

then return result
else do

spend 1
cg ‘suchThat‘ pred

This key function, chooses one of the given generators, with a weighted ran-
dom distribution. The input list must be non-empty. Based on QuickCheck[9].

16 Michał J. Gajda

frequency :: HasCallStack
⇒ [(Int, CostGen σ α)]
→ CostGen σ α

frequency [] =
error $ ”LessArbitrary.frequency ”

++ ”used with empty list”
frequency xs

| any (< 0) (map fst xs) =
error $ ”LessArbitrary.frequency: ”

++ ”negative weight”
| all (== 0) (map fst xs) =

error $ ”LessArbitrary.frequency: ”
++ ”all weights were zero”

frequency xs0 = choose (1, tot) ≫= (‘pick‘ xs0)
where
tot = sum (map fst xs0)

pick ν ((κ ,x): xs)
| ν ≤ κ = x
| otherwise = pick (ν-κ) xs

pick _ _ = error
”LessArbitrary.pick used with empty list”

Appendix: test suite

As observed in [10], it is important to check basic properties of Arbitrary
instance to guarantee that shrinking terminates:

shrinkCheck :: ∀ term .
(Arbitrary term
, Eq term)
⇒ term
→ Bool

shrinkCheck term =
term ‘notElem‘ shrink term

arbitraryLaws :: ∀ ty .
(Arbitrary ty
, Show ty
, Eq ty)
⇒ Proxy ty
→ Laws

arbitraryLaws (Proxy :: Proxy ty) =
Laws ”arbitrary”

[(”does not shrink to itself” ,
property (shrinkCheck :: ty → Bool))]

Less Arbitrary 17

For LessArbitrary we can also check that empty budget results in choosing
a cheapest option, but we need to provide a predicate that confirms what is
actually the cheapest:

otherLaws :: [Laws]
otherLaws = [lessArbitraryLaws @() isLeaf]

where
isLeaf :: Tree Int → Bool
isLeaf (Leaf _) = True
isLeaf (Branch _) = False

lessArbitraryLaws :: ∀ σ α .
LessArbitrary σ α

⇒ (α → Bool)
→ Laws

lessArbitraryLaws cheapestPred =
Laws ”LessArbitrary”

[(”always selects cheapest”,
property $
(propalwaysCheapest @σ @α) cheapestPred)]

propalwaysCheapest :: ∀ σ α.
LessArbitrary σ α

⇒ (α → Bool)
→ Gen Bool

propalwaysCheapest cheapestPred =
cheapestPred $♢ (withCost @σ @ α) 0 lessArbitrary

Again some module headers:
{-# language DataKinds #-}
{-# language FlexibleInstances #-}
{-# language Rank2Types #-}
{-# language MultiParamTypeClasses #-}
{-# language ScopedTypeVariables #-}
{-# language TypeOperators #-}
{-# language UndecidableInstances #-}
{-# language AllowAmbiguousTypes #-}
module Test.Arbitrary.Laws(

arbitraryLaws
) where

import Data.Proxy
import Test.QuickCheck
import Test.QuickCheck.Classes
import qualified Data.HashMap.Strict as Map
import Data.HashMap.Strict (HashMap)

≪ arbitrary-laws≫

18 Michał J. Gajda

{-# language DataKinds #-}
{-# language FlexibleInstances #-}
{-# language Rank2Types #-}
{-# language MultiParamTypeClasses #-}
{-# language ScopedTypeVariables #-}
{-# language TypeApplications #-}
{-# language TypeOperators #-}
{-# language UndecidableInstances #-}
{-# language AllowAmbiguousTypes #-}
module Test.LessArbitrary.Laws(

lessArbitraryLaws
) where

import Data.Proxy
import Test.QuickCheck(Gen, property)
import Test.QuickCheck.Classes(Laws(..))
import Test.LessArbitrary
import qualified Data.HashMap.Strict as Map
import Data.HashMap.Strict (HashMap)

≪ less-arbitrary-laws≫

And we can compare the tests with LessArbitrary (which terminates fast,
linear time):

≪ test - file - header≫
≪ test - less - arbitrary-version≫

≪ test - file-laws ≫
≪ less - arbitrary -check≫

Appendix: non-terminating test suite

Or with a generic Arbitrary (which naturally hangs):

≪ test - file - header≫
≪ tree - type - typical- arbitrary≫
otherLaws = []
≪ test-file - laws≫

Here is the code:

Less Arbitrary 19

{-# language FlexibleInstances #-}
{-# language InstanceSigs #-}
{-# language Rank2Types #-}
{-# language MultiParamTypeClasses #-}
{-# language ScopedTypeVariables #-}
{-# language TypeApplications #-}
{-# language TypeOperators #-}
{-# language UndecidableInstances #-}
{-# language AllowAmbiguousTypes #-}
{-# language DeriveGeneric #-}
module Main where

import Data.Proxy
import Test.QuickCheck
import qualified Test.QuickCheck.Gen as QC
import qualified GHC.Generics as Generic
import Test.QuickCheck.Classes

import Test.LessArbitrary
import Test.Arbitrary.Laws
import Test.LessArbitrary.Laws

≪ tree-type≫
instance (Arbitrary α

, LessArbitrary σ α)
⇒ LessArbitrary σ (Tree α) where

lessArbitrary = genericLessArbitrary

instance (LessArbitrary () (Tree α)
, Arbitrary α)

⇒ Arbitrary (Tree α) where
arbitrary = fasterArbitrary @() @ (Tree α)
shrink = recursivelyShrink

main :: IO ()
main = do

lawsCheckMany
[(”Tree”,
[arbitraryLaws (Proxy :: Proxy (Tree Int))
, eqLaws (Proxy :: Proxy (Tree Int))
] ⋄ otherLaws)]

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Test.LessArbitrary.Cost where

≪ cost≫

20 Michał J. Gajda

Appendix: convenience functions provided with the
module

Then we limit our choices when budget is tight:
currentBudget :: CostGen σ Cost
currentBudget = fst $♢ CostGen State.get
– unused: loop breaker message type name
– FIXME: use to make nicer error message
type family ShowType κ where

ShowType (D1 (′MetaData name _ _ _) _) = name
ShowType other = ”unknown type”

showType :: ∀ α .
(Generic α
, KnownSymbol (ShowType (Rep α)))

⇒ String
showType = symbolVal (Proxy :: Proxy (ShowType (Rep α)))

Towards Incremental Language Definition with
Reusable Components

Damian Frölich1 and L. Thomas van Binsbergen2[0000−0001−8113−2221]

1 Informatics Institute, University of Amsterdam, The Netherlands
dfrolich@acm.org

2 Informatics Institute, University of Amsterdam, The Netherlands
ltvanbinsbergen@acm.org

Abstract. This paper introduces a novel method for defining software
languages incrementally as the composition of smaller languages, starting
from reusable components for the specification of syntax and semantics.
The method is enabled by the combined application of several advanced
techniques implemented in functional languages: datatypes à la carte
for the fine-grained composition of (abstract) syntactic categories and
composable micro-interpreters that implement the operational semantics
of certain reusable components known as ‘funcons’. We demonstrate the
method makes it possible to perform incremental language development
with prototyping. The generality of the method is demonstrated through
a variety of case studies.

Keywords: software language engineering, language composition, syntax, se-
mantics, interpretation

1 Introduction

Incremental programming is a style of programming in which software is built
in a step-by-step fashion by submitting code fragments that, for example, de-
clare a single type or execute a single statement with immediate feedback on
the validity and effect of the code fragment. This style of programming is nat-
urally supported by read-eval-print-loop (REPL) interpreters (also referred to
as interactive shells) such as JShell and IPython and computational notebooks
such as Jupyter [9] and Mathematica [7]. In the context of software engineering,
a common usage of a REPL is to test a library under development by loading its
latest version and interacting with the functions it defines, perhaps in combina-
tion with functions from other libraries (under development). In the context of
data science, a common usage of a computational notebook is the simultaneous
development and testing of a scientific workflow. In the context of language-
oriented programming [17], an incremental programming environment should
support the definition and testing of language constructs (akin to library func-
tions), also in combination with the constructs of other languages, by extending
language definitions and by running test programs written in the language(s)

2 Damian Frölich and L. Thomas van Binsbergen

currently under construction. However, there are various challenges to realising
such a system. For example, simultaneously extending the syntax and seman-
tics of a language definition without modifying or recompiling existing parts are
requirements of solutions to the well-documented expression problem coined by
Wadler [16]. As another example, the composition of two deterministic context-
free grammars may produce a non-deterministic context-free grammar to which
the parsing technology of choice is not applicable or which results in ambiguities
that need to be resolved.

In this paper we experiment with an approach to incremental language de-
velopment enabled by certain functional techniques for modular language spec-
ification: data types à la carte [15] and micro-interpreters implementing the op-
erational semantics of a reusable library of fundamental programming languages
constructs known as ‘funcons’ [2]. The funcons of the Funcons-beta library [13]
are used as a common base language on top of which object languages are de-
fined. The practicality of this approach is to be evaluated in this paper.

The full version of this paper is to contribute by:

– Presenting a novel approach for incremental language definition with reusable
components

– Presenting an implementation of the approach as a framework consisting of
existing Haskell EDSLs resulting from recent advances in modular language
specification techniques

– Demonstrating the applicability and generality of the approach through var-
ious case studies and in comparison with existing approaches to language
extension and unification

2 Background

The initial algebra semantics of Goguen et al. [6], concisely described by Mosses
in [11], provides important formal foundations and terminology to our work,
as it can be seen to capture the essential elements of many existing semantic
specification formalisms such as denotational semantics and attribute grammar
semantics. In initial algebra semantics, a multi-sorted signature lays out the op-
erations of a language. Abstract syntax is defined by assigning term constructors
to the operations (as an initial algebra) according to their structure, as deter-
mined by the signature. Semantics are defined by assigning ‘semantic domains’
to sorts and functions to operations (within an evaluation algebra) that map the
terms (within their respective semantic domains) computed for operands to the
value describing the result of applying the operation to these operands.

As a solution to the expression problem [16], data types à la carte [15] pro-
vides a method for assembling data types and functions from individual com-
ponents to form signatures and initial algebras, and evaluation algebras respec-
tively. With this technique, signatures of independent languages can be freely
composed, enabling mixing of syntactic constructs of different languages. The
approach achieves this by implementing signatures as functors, combining via

Towards Incremental Language Definition with Reusable Components 3

their coproduct and using the fix-point of functors to tie the recursive knot. Us-
ing type-classes, automatic injections into the coproduct can be achieved, which
combined with smart constructors provide a natural way to construct values
of the coproduct type. To assign semantics, catamorphisms are used with the
underlying algebra implemented via type-classes.

The comp-data library [1] provides a comprehensive Haskell library imple-
menting the data types à la carte approach with some extensions, including sup-
port for generalised algebraic data types, contexts, automatic deriving of several
type-class instances using template Haskell, and more. The library also sup-
ports usage of higher-order functors [8] to implement signatures. A consequence
of using higher-order functors is that algebras become natural transformations
instead of functions, which affects the kind of the algebra.

The component-based approach to operational semantics presented in [12] is
centred around reusable definitions of the fundamental constructs of program-
ming – funcons for shorts. As explained in [2], ‘micro-interpreters’ can be gen-
erated from funcon definitions. The micro-interpreters are compositional eval-
uation functions expressing the behaviour of an individual funcon that can be
generated and compiled separately. In this paper we leverage the generality of
the Funcons-beta [13] library to be able to express the semantics of various lan-
guages in a shared base language, applying the micro-interpreters generated for
funcons as the constructs of an EDSL.

By combining the described techniques, language extensions and composi-
tions can be written in a highly modular fashion, permitting rapid prototyping.
Via the method proposed in [3] and implemented in [5], REPLs for the resulting
languages can be obtained with minimal effort.

Erdweg et al. provide a framework for discussing and comparing meta-languages,
tools and formalisms that support various form of incremental language devel-
opment [4]. In particular, the authors define the concepts of (modular) language
extension, restriction, and unification which they apply to both the syntax, static
semantics, operational semantics and IDE services of languages. In this paper we
adopt their terminology and use their framework as the basis for our evaluation.

Template Haskell is a Haskell extension permitting compile-time meta-
programming [14]. With Template Haskell users can write programs that trans-
form programs and is useful, for instance, when generating boilerplate code or
to perform calculations at compile-time instead of run-time for performance rea-
sons. The extension provides several facilities to inspect and operate on Haskell
programs, including a quotation monad that enables reification of Haskell con-
structs which gives the user access to the internal represenation of the compiler.

3 Incremental definitions

This section describes this paper’s approach to language development conceptu-
ally, with an implementation strategy (in Haskell) described in Section 4. Essen-
tial to the approach is the separation between operator (or language construct)
definitions on the one hand and language definitions on the other hand. A lan-

4 Damian Frölich and L. Thomas van Binsbergen

guage definition can freely choose from the available operators and constrains
the flexibility with which the chosen operators can be used. The definition of an
operator consists of an abstract syntax definition and a denotational semantics,
choosing funcon terms as a semantic domain. The separation between operator
and language definitions is enabled by an alternative take on abstract syntax
definitions.

3.1 Abstract syntax

A common approach to defining the abstract syntax of a language is listing
algebraic datatypes (ADTs) of which the operator3 signatures determine, in
a mutually recursive fashion, the set of terms that forms the abstract syntax
of the language. For example, the abstract syntax of a lambda calculus can be
represented as follows, where VarO, AbsO, and AppO are operators (as indiciated
by the subscript) and String and Expr are sorts.

VarO : String → Expr

AbsO : String × Expr → Expr

AppO : Expr × Expr → Expr

In this style, the signature of an operator simultaneously identifies the sort of
term constructed by applications of the operator, the arity of the operator, and
the sort of term required at each operand position in valid applications of the
operator.

A key insight of our approach is to delay the decisions related to sorts (but
not arity) until the definition of a language, rather than making these part of
operator definitions. This is achieved by (1) using a unique sort at every position
in the signature and by (2) introducing separate sort constraints to establish the
relations between sorts. Following (1), the sorts are effectively naming operand
positions. The right-hand side of a signature is made redundant and can be
removed, as every operator already has a unique name. With these changes, the
operators are defined as follows:

VarO : VarVar

AbsO : AbsVar ×AbsBody

AppO : AppAbs ×AppArg

In contrast to the conventional approach, the signatures do not share any
sorts, and the three operators are completely unrelated. To re-establish the re-
lationships, we introduce sort constraints. Sort constraints are based on the
interpretation of sorts as sets of operators. For example, the following sort con-
straint indicates that strings serve as identifiers in both variable references and
abstractions:

String ⊆ VarVar

String ⊆ AbsVar

3 Such as constructors in Haskell and variants in the ML family of languages

Towards Incremental Language Definition with Reusable Components 5

This kind of sort constraint is referred to as a sub-sort declaration.
The other kind of sort constraint, referred to as an operator assignment,

indicates that terms constructed by the VarO operator can be used as the body
of an abstraction:

VarO ∈ AbsBody

To express the same relations between the operators as in the initial example,
operator assignments can be written for every pair of an operator and sort taken
from the sets {VarO,AbsO,AppO} and {AbsBody ,AppAbs,AppArg}. Writing
down these operator assignments grows increasingly tedious (and error-prone) as
more and more operators are added to a language. Therefore, as a convenience,
sort constraints can also be used to introduce new sorts that serve as a level of
indirection and enable reuse. The following sort constraints (re-)introduce the
sort Expr as a convenience, stating that all operators assigned to Expr are also
assigned to AbsBody , AppAbs and AppArg :

Expr ⊆ AbsBody

Expr ⊆ AppAbs

Expr ⊆ AppArg

The relations of the original example are then expressed by assigning the oper-
ators to Expr :

VarO ∈ Expr

AppO ∈ Expr

AbsO ∈ Expr

By separating operator definitions from constraints on where operators can
be used, a new operator can be introduced without modifying existing ones. For
example, extending the lambda calculus with integer addition can be achieved
by defining an Add operator and assigning this operator to the sorts where we
want to use the Add operator.

AddO : AddLeft ×AddRight

AddO ∈ Expr

This definition adds AddO to Expr, such that the Add operator can be used at
the operand positions over which we distributed Expr earlier. Interestingly, no
operators have been assigned to the operands of the Add operator yet. Consider
the following sort constraints:

Integer ∈ AddLeft

Integer ∈ AddRight

Integer ⊆ Expr

AddO ∈ AddRight

6 Damian Frölich and L. Thomas van Binsbergen

These constraints express that integer literals can appear as operands of Add
in both positions. However, since the Add operator is only added to AddRight ,
the constraints allow only nested occurrences of Add on the right side, encoding
right-associativity. This example demonstrates the flexibility of sort constraints:
integer expressions can be used in lambda-expressions — owing to the constraints
AddO ∈ Expr and Integer ⊆ Expr — whereas lambda-expessions cannot be
used in integer expressions. Such rules of composition can be changed simply
by selecting a different set of sort constraints without affecting the definitions
of the operators themselves. As discussed in §3.4, finalising a selection of sort
constraints is done as part of the definition of a language.

3.2 Incremental semantics

To retain the disjoint property of the operators, their semantics must be defined
independently as well. This is achieved by utilising semantic functions. Semantic
functions translate an operator into a specific semantic domain. For example, our
previous operators defining the lambda calculus can have the following semantic
functions, with funcons being our semantic domain4.

VarF (lit) = bound string lit

AbsF (x, b) = function closure scope(bind(string x, given), b)

AppF (abs, arg) = apply(abs, arg)

When a translation occurs, the operands of an operator are already translated by
their respective translation function. Hence, an operator only needs to translate
itself into the semantic domain while having access to the already translated
operands.

3.3 Glueing components together

In certain circumstances it may be necessary to adapt language fragments in
order to make them compatible for composition. So-called ‘glue code’ is often
used in these circumstances, being applied at the location where two fragments
interact. This glue code is to be written modularly, and such that both frag-
ments can be defined in isolation, without anticipating, or constraining, future
interactions. To make these observations more concrete, consider the following
example in which the Abs operator is combined with commands in order to de-
scribe procedures that can terminate abruptly by returning a value. In funcons,
a return is implemented via a signal that is to be handled at the call-site. As
given previously, the translation function for the Abs operator is such that the
operator does not handle return signals. To handle return signals, the following
definition should have been given instead:

AbsF (x, b) = function closure scope(bind(string x, given),handle-return(b))

4 In the right-hand side, juxtaposition is the right-associative application of a funcon
to a (single) funcon term, i.e. bound string lit == bound(string(lit)).

Towards Incremental Language Definition with Reusable Components 7

However, we would like to be able use the original definition instead, in which
this usage of Abs was not anticipated.

The solution we apply is to associate glue code with the sort constraint that
enables commands (forming the body of a procedure) in the body of abstractions:

Command ⊆ AbsBody (Sort constraint with glue code)

↪→ handle-return(CommandF) (glue code)

CommandF refers to the result of the translation function associated with the
sort Command , which is implicitly defined in terms of the translation functions
given for the operators contained in the sort Command , i.e. the free homomor-
phism between initial and semantic algebra. The result is that the glue code is
applied to all commands whenever they appear at the position where an AbsBody
is expected, i.e. as the second operand of the Abs operator. The original transla-
tion for Abs is thus correct, as the funcon term bound by b now handles return
signals whenever the translation is applied to an abstraction with a command
as a body.

The following definitions complete the example by determining that the re-
turn operator (ReturnO) is the only operator in the sort Command and that its
translation simply applies the return funcon to returned value:

ReturnO : ReturnV al (Operator declaration)

ReturnF (val) = return val (Semantic function)

ReturnO ∈ Command (Sort constraint)

3.4 Language definition

A language is defined as a structure 〈O,Ot, Sc, Ss, Go, Gt〉, with O being the
set of operators, Ot the operators at the top-level with Ot ⊆ O, Sc the sort-
constraints of the language — assigning operators to operand positions — Ss

the sub-sort declarations (i.e. Sc ∪ Ss contains all sort constraints), Go the set
of operator glue code, and Gt is the glue code for the top-level operators. The
Gt component provides an extra glue layer that is applied over the full program
and can be used to perform initialisation, handle uncaught exceptions, etc. The
top-level operators of a language determine the entry points of the language —
i.e., the root of an AST is always a top-level operator.

4 Implementation

In this section we demonstrate an implementation in Haskell of the introduced
approach. The section follows the same layout as the previous section.

4.1 Operators

In order to delay sort decisions and describe relations via constraints, operators
are implemented as GADTs with two type parameters, u and t , corresponding
to the universe and the meta-type of the operator, respectively.

8 Damian Frölich and L. Thomas van Binsbergen

data Operatorp 5 u t where
Operatorp :: Sortsp ⇒ Argumentsp → Operatorp u OperatorpType

data OperatorpType

The universe contains all the operators in the language and is needed for auto-
matic injections into the coproduct type. The meta-type is used to differentiate
between different operators after injection into the universe and is implemented
as an empty data type (with no values and constructors).

The sorts in an operator signature are implemented as type families such
that an operator is assigned to the sort when its meta-type is an instance of the
family that evaluates to the type-level boolean True. The arity of an operator is
determined by its arguments. In an argument definition, arguments are linked to
a sort defined in the sorts definition. For example, Abs can be defined as follows.

data Abs u t where
Abs :: IsTrue (AbsBody t)⇒ String → u t → Abs u AbsType

data AbsType
type family AbsBody t

The sorts definition links the AbsBody sort the second argument via the meta-
type of the second argument — identified by t. To assign an operator to the
body of abstractions, we define the meta-type of the operator as an instance of
the AbsBody type class that evaluates to True. To enable adaptibility, we delay
the instantation of such an instance via a template Haskell call. Thus, to allow
abstractions inside abstractions, we define the AbsType as an instance of the
AbsBody type class:

$ (genSortConstraint [(’’ AbsBody ’’ AbsType)])

which evaluates to

type instance AbsBody AbsType = True

and is the encoding for AbsO ∈ AbsBody .
Indirection sorts are also defined as type families:

type family Expr t

and adding an instance to the Expr sort is identical as assigning an instance to a
sort that exists in an operator definition. However, to allow elemens of the Expr
sort to occur inside the AbsBody, we need to copy over the instances of the Expr
sort to the AbsBody sort. To achieve this, we again utilise template Haskell such
that a user only has to define the relation. For instance, to link the elements of
the Expr sort to the AbsBody, we perform the following template Haskell call.

$ (genSubSort [(’’ Expr , ’’ AbsBody)])

5 Values with the p superscript denote placeholders that are filled in by an operator
definition.

Towards Incremental Language Definition with Reusable Components 9

The genSubSort function takes as arguments a list of tuples, with the first ele-
ment the source of the relation and the second element the target of the relation.
After this call, the target sort contains all elements also present in the source
sort. The arguments to this call thus describe the edges in a directed graph,
which must be acyclic.

4.2 Semantic functions

Inheriting from data types à la carte, semantic functions are algebra’s imple-
mented via type classes and applied via a fold. Because of the type classes,
instances can be defined in isolation, enabling modularity in the definition of
semantic functions. The definition for the semantic function with funcons as the
semantic domain is as follows.

class HFunctor f ⇒ ToFuncons f where
toFuncons :: Alg f (K Funcons)

Since the implementation uses higher-order functors, the second parameter needs
to be of kind ∗ → ∗, which requires wrapping funcons, which have kind ∗, in a
wrapper functor — identified by the K constructor.

By defining an instance of the ToFuncons type class, an operator defines
its translation to the semantic domain of funcons. For example, the following
instance encodes the definition of AbsF (x, b) given in subsection 3.2.

instance ToFuncons Abs where
toFuncons (Abs s (K body)) = K $

function [closure [scope [bind [T .string 6 s, given], body]]]

4.3 Glue code

Glue code is implemented as functions of type operator (K Funcons) t →
operator (K Funcons) t and is executed before the translation of the opera-
tor but after the translation of the operands. Hence, glue code can not alter the
operator but only the operands.

Internally, these functions are generated into type class instances via a tem-
plate Haskell call. So, the glue definition from section 3 is achieved with the
following template Haskell call:

$ (genGlue (’’ Abs, ’’ absGlueReturn))
absGlueReturn e@(Abs s body) =

if unK body ‘G .contains‘ return [G .matchhole] then Abs s glued body else e

6 The T module provides helper functions to transform Haskell values into funcon
values. Funcon smart constructors — identified by the trailing underscore — take a
variable number of arguments, hence the usage of lists.

10 Damian Frölich and L. Thomas van Binsbergen

where
glued body = hfkmap (handle return ◦ (:[])) body

which is generated into the following instance declaration.

instance GlueFuncon Abs where
glueFuncon e = absGlueReturn e

class HFunctor f ⇒ PostFuncon f where
postFuncon :: f (K Funcons) t → f (K Funcons) t
postFuncon = id

When no glue code is specified for an operator, the identity function is used.
The absGlueReturn function checks whether the body operand contains a

return statement and if so it modifies the body by wrapping it inside a handle-
return. To modify the body, the hfkmap :: (a → b) → K a t → K b t function
that maps over a higher-order functor without modifying the second paramater
is used. This ensures the reconstruction of the operator with modified operands
is type correct.

Glue code functions can use a match library provided by us — recognised
by the G prefix — to apply glue code conditionally. The match library provides
functionality to search for (partial) funcon terms inside other funcon terms.
Partiallity is achieved by introducing a new funcon (G .matchhole) that matches
all other funcon terms. Nonetheless, the matching library does not require usage
of the new funcon, glue code can also match on specific funcons terms or be
applied unconditionally.

4.4 Language definition

The language definition is implemented as a data type defined in terms of Tem-
plate Haskell constructs.

data Language = Language
{operators :: [Operator]
, op constr :: [Constraint]
, sub sorts :: [SubSort]
, glue code :: [(Constructor ,GlueFunction)]
, top glue :: Maybe GlueFunction
} deriving (Show)

type Constructor = Name
type MetaType = Name
type Sort = Name
type Operator = (Constructor ,MetaType)
type Constraint = (MetaType,Sort)
type GlueFunction = Exp
type OperatorAssignment = (MetaType,Sort)
type SubSort = (Sort ,Sort)

Towards Incremental Language Definition with Reusable Components 11

An operator is uniquely identified by its constructor and meta-type; the op-
erator constraints of the language are given as a list of tuples as expected by
genSortConstraint ; sub-sort constraints are given as a list of tuples as expected
by genSubSort ; glue code is defined as a list of tuples as expected by genGlue;
and a language can define an optional glue code function for the top-level sort.

The language definition does not contain a special entry for top-level oper-
ators. Instead, we utilise a special sort — TopLevel — that can be used inside
the sort constraint and sub-sort definitions.

To instantiate a language, the genLanguage Template Haskell function is
used. This function is defined in terms of the earlier introduced Template Haskell
functions.

genLanguage :: Language → Q [Dec]

The genLanguage function generates the sort constraint instances, generates
smart constructors that automatically inject the operator into the coproduct
type, and the glue code definitions are transformed into type class instances.

Our original expression language can thus be generated via the following call.

$ (genLanguage expressionLanguage
where

expressionLanguage = Language
{operators = [(’’ Var , ’’ VarType), (’’ Abs, ’’ AbsType), (’’ App, ’’ AppType)]
, op constr = [(op, ’’ Expr) | op ← [’’ VarType, ’’ AbsType, ’’ AppType]]
, sub sorts = [(’’ Expr , t) | t ← [’’ AbsBody , ’’ AppLeft , ’’ AppRight , ’’ TopLevel]],
, glue code = []
, top glue = Nothing
})

5 Evaluation

To evaluate the implementation, we implement the components described by
Liang [10] and use the components to construct several languages and demon-
strate the different forms of extensibility as described by Erdweg [4].

In the final version of this paper, our evaluation will contain the following:

– construction of several languages with the introduced components via lan-
guage composition;

– demonstrating the usage of different language operators that determine how
languages are composed;

– generation of REPLs for the constructed languages that permit prototyp-
ing with the object language and enable evaluation of our incremental and
prototyping claims;

12 Damian Frölich and L. Thomas van Binsbergen

5.1 Components

The components presented in this section are an aritmetic component for integer
addition; a function component containing variables, call-by-value, and call-by-
name abstractions; an assignment component; a lazy evaluation component; a
tracing component; a callcc component; and a nondeterminism component. We
detail the implementation of the function component.

data Abs e l where
Abs :: IsTrue (AbsBody t)⇒ String → e t → Abs e AbsType

data AbsType
type family AbsBody t
instance ToFuncons Abs where

toFuncons (Abs s (K body)) = K $ function
[closure [scope [bind [T .string s, given], body]]]

data AppByName e l where
AppByName :: e t1 → e t2 → AppByName e AppByNameType

data AppByNameType
type family AppByNameAbs t
type family AppByNameArg t
instance ToFuncons AppByName where

toFuncons (AppByName (K abs) (K arg)) = K $ apply [abs, thunk [closure [arg]]]

data AppByValue e l where
AppByValue :: e t1 → e t2 → AppByValue e AppByValueType

data AppByValueType
type family AppByValueAbs t
type family AppByValueArg t
instance ToFuncons AppByValue where

toFuncons (AppByValue (K abs) (K arg)) = K $ apply [abs, arg]

data Var (e :: ∗ → ∗) l where
Var :: String → Var e VarType

data VarType
instance ToFuncons Var where

toFuncons (Var s) = K $ T .string s

For ease of exportation and usage by other modules, we define the component
as a language.

functionalLanguage = Language
{operators =

[(’’ Abs, ’’ AbsType), (’’ AppByName, ’’ AppByNameType),
(’’ AppByValue, ’’ AppByValueType), (’’ Var , ’’ VarType)]

, op constr =
[(op, ’’ FunctionalExpr)
| op ← [’’ AbsType, ’’ AppByNameType, ’’ AppByValueType, ’’ VarType]]

, sub sorts = []

Towards Incremental Language Definition with Reusable Components 13

, glue code = []
, top glue = Nothing
}

type family FunctionalExpr t

The defined language makes no choice with respect to the locations of operators.
Instead, it only defines a helper sort to group the operators of the component.

6 Related work

7 Discussion

8 Conclusions and future work

In this paper we have shown an approach to incremental language development
enabled by functional techniques for modular language specification. With the
approach, a language can be incrementally defined by writing new languages,
using existing language components, or using existing languages.

Currently, we have given an overview of our approach using a variant of
the lambda calculus. In the final paper, we evaluate our approach according to
Erdweg’s framework by performing several case-studies and compare our ap-
proach to existing approaches for incremental language development. We will
also demonstrate the generation of a REPL for the constructed languages that
enables prototyping with the defined language, and discuss the generation of
parsers from our language description.

14 Damian Frölich and L. Thomas van Binsbergen

References

1. Bahr, P., Hvitved, T.: Compositional data types. In: Järvi, J., Mu, S. (eds.)
Proceedings of the seventh ACM SIGPLAN workshop on Generic programming,
WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 83–94. ACM (2011).
https://doi.org/10.1145/2036918.2036930

2. van Binsbergen, L.T., Mosses, P.D., Sculthorpe, N.: Executable component-
based semantics. J. Log. Algebraic Methods Program. 103, 184–212 (2019).
https://doi.org/10.1016/j.jlamp.2018.12.004

3. van Binsbergen, L.T., Verano Merino, M., Jeanjean, P., van der Storm, T., Combe-
male, B., Barais, O.: A Principled Approach to REPL Interpreters, pp. 84–100.
ACM (2020). https://doi.org/10.1145/3426428.3426917

4. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions. LDTA ’12, ACM (2012). https://doi.org/10.1145/2427048.2427055

5. Frölich, D., van Binsbergen, L.T.: A generic back-end for exploratory programming.
In: The 22nd International Symposium on Trends in Functional Programming
(TFP 2021). LNCS, vol. 12834. Springer (2021). https://doi.org/10.1007/978-3-
030-83978-9 2

6. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra se-
mantics and continuous algebras. Journal of the ACM 24(1), 68–95 (1977).
https://doi.org/10.1145/321992.321997

7. Hayes, B.: Thoughts on Mathematica. Pixel 1(January/February), 28–34 (1990)

8. Johann, P., Ghani, N.: Foundations for structured programming with gadts.
In: Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008. pp. 297–308. ACM (2008).
https://doi.org/10.1145/1328438.1328475

9. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla,
S., Willing, C., development team, J.: Jupyter notebooks - a publishing format for
reproducible computational workflows. In: Loizides, F., Scmidt, B. (eds.) Position-
ing and Power in Academic Publishing: Players, Agents and Agendas. pp. 87–90.
IOS Press, Netherlands (2016). https://doi.org/10.3233/978-1-61499-649-1-87

10. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: Cytron, R.K., Lee, P. (eds.) Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995. pp. 333–343. ACM Press (1995).
https://doi.org/10.1145/199448.199528

11. Mosses, P.D.: Denotational semantics. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics, pp. 575–
631. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-
1.50016-0

12. Mosses, P.D.: Software meta-language engineering and CBS. Journal of Computer
Languages 50, 39–48 (2019). https://doi.org/10.1016/j.jvlc.2018.11.003

13. Mosses, P.D., Sculthorpe, N., Van Binsbergen, L.T.: Funcons-Beta, Online GitHub
repository, https://plancomps.github.io/CBS-beta/Funcons-beta/

14. Sheard, T., Jones, S.L.P.: Template meta-programming for haskell. ACM SIG-
PLAN Notices 37(12), 60–75 (2002). https://doi.org/10.1145/636517.636528

https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1016/j.jlamp.2018.12.004
https://doi.org/10.1145/3426428.3426917
https://doi.org/10.1145/2427048.2427055
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1007/978-3-030-83978-9_2
https://doi.org/10.1145/321992.321997
https://doi.org/10.1145/1328438.1328475
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/199448.199528
https://doi.org/10.1016/b978-0-444-88074-1.50016-0
https://doi.org/10.1016/b978-0-444-88074-1.50016-0
https://doi.org/10.1016/j.jvlc.2018.11.003
https://plancomps.github.io/CBS-beta/Funcons-beta/
https://doi.org/10.1145/636517.636528

Towards Incremental Language Definition with Reusable Components 15

15. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008).
https://doi.org/10.1017/S0956796808006758

16. Walder, P.: The expression problem, http://www.ctan.org/pkg/acmart
17. Ward, M.P.: Language-oriented programming. Softw. Concepts Tools 15(4), 147–

161 (1994). https://doi.org/10.1007/978-1-4302-2390-0 12

https://doi.org/10.1017/S0956796808006758
http://www.ctan.org/pkg/acmart
https://doi.org/10.1007/978-1-4302-2390-0_12

Sound and Complete Type Inference
for Closed Effect Rows

Kazuki Ikemori, Youyou Cong, Hidehiko Masuhara, and Daan Leijen
1 Tokyo Institute of Technology, Japan
ikemori.k.aa@prg.is.titech.ac.jp

2 Tokyo Institute of Technology, Japan
cong@c.titech.ac.jp

3 Tokyo Institute of Technology, Japan
masuhara@acm.org

4 Microsoft Research, USA
daan@microsoft.com

Abstract. Koka is a functional programming language that has alge-
braic effect handlers and a row-based effect system. Koka adopts a type
inference algorithm based on the Hindley-Milner type inference, but
naive application of this type inference yields many effect-polymorphic
functions. Such functions are more difficult to handle for users due to the
complex type signature, and lead to less optimal code when using the
evidence passing translation implemented in the Koka compiler. Instead,
we aim to infer closed effect rows when possible, simplifying types and
improving performance, and open closed effect rows automatically at in-
stantiation to avoid loss of expressiveness. In this paper, we define a type
inference algorithm with the open and close constructs. We prove that
the inference algorithm is sound and complete, and infers most general
types.

1. Introduction

Koka [13, 22] is a functional programming language that has algebraic effects
and handlers [7, 16] which are a recently introduced abstraction of computa-
tional effects. An important aspect1 of Koka is that it tracks the (side) effects
of functions in their type. For example, the following function:

fun sqr(x : int) : ⟨ ⟩ int
x * x

has an empty effect row type ⟨ ⟩ as it has no side effect at all. In contrast, a
function like:

fun head(xs : list⟨a⟩) : ⟨exn⟩ a
match xs

Cons(x,xx) → x

1 Koka is the first practical language that tracks the (side) effects of functions in their
type.

2 K. Ikemori et al.

gets the ⟨exn⟩ effect row type as it may raise an exception at runtime (if we pass
an empty list). To track effects, Koka uses row-based effect types [10]. These are
quite suitable to combine with standard Hindley-Milner type inference as row
equality has decidable unification (unlike subtyping for example).

When doing straightforward Hindley-Milner type inference with row-based
effect types many functions will be polymorphic in the tail of the effect row
(we call such effect rows open). For example, the naively inferred types of the
previous two functions would be:

fun sqr : int → e int
fun head: list⟨a⟩ → ⟨exn|e⟩ a

Observe that both types are polymorphic in the effect tail as effect variable e.
These are in a way the natural types, signifying for example that we can use
sqr in any effectful context. However, in practice, we prefer closed types instead,
as these are easier to explain, and easier to read and write without needing to
always consider the polymorphic tail.

Moreover, it is possible to generate more efficient code for functions with
closed effect rows. When executing an effect operation (which is similar to raising
an exception), there is generally a dynamic search at runtime for a corresponding
handler of that effect. This can be expensive, and Koka uses evidence passing [21,
22] to pass handler information as a vector at runtime. When an effect row is
closed, the runtime shape of the vector is statically determined, and instead of
searching for a handler, we can select the right handler at a fixed offset in the
vector. This can be much more efficient.

Therefore, the type inference algorithm in the current Koka compiler gener-
ally infers closed effect rows for function bindings, where it relies on two con-
structs, open and close, for converting between open and closed function types.
However, the opening and closing features of the inference algorithm have never
been formalized.

In this paper, we make the following contributions:

– We formalize type inference with the open and close constructs precisely
(Section 4).

– We prove that the type inference algorithm is sound and complete (Section 5)
and infers most general types.

First, we give an introduction to algebraic effects and handlers, and explain what
kind of types we would like to infer (Section 2). Next, we present an implicitly
typed calculus with algebraic effects and handlers, and give a set of declarative
type inference rules (Section 3). Then, we define syntax-directed type inference
rules and show they are sound and complete with respect to the declarative rules
(Section 4). We also define a type inference algorithm and prove its soundness
and completeness (Section 5). Lastly, we discuss related work (Section 6) and
conclude with future directions (Section 7).

Sound and Complete Type Inference for Closed Effect Rows 3

2. Motivation

2.1. Algebraic Effects and Handlers

Algebraic effects and handlers [7, 16] are a uniform mechanism for representing
computational effects. When programming with effect handlers, the user first
declares an effect with a series of operations. They then define a handler that
specifies the meaning of operations, using the continuation (resume in Koka)
surrounding the operation. As an example, let us implement a reader effect in
Koka.

effect read2
ask-int() : int
ask-bool(): bool

The reader effect read2 has two operations ask-int and ask-bool, which take no
argument and return an integer and a boolean, respectively. Below is a program
that uses the two operations.

handler {
ask-int() { resume(12) }
ask-bool() { resume(True) }

} {
if ask-bool() then ask-int() else 42

}

In the above program, the conditional expression is surrounded by a handler that
specifies the meaning of ask-int and ask-bool. The evaluation goes as follows.
First, ask-bool() is interpreted by the second clause of the handler, which
says: continue (resume) evaluation with the value True. Second, the conditional
expression reduces to the then-clause. Third, ask-int() is interpreted by the
first clause of the handler, which says: continue evaluation with the value 12.
Thus, the program evaluates to 12.

2.2. Naive Hindley-Milner Type Inference with Algebraic Effects
and Handlers

Koka employs a row-based effect system similar to a record type system [10]. It is
also equipped with polymorphic type inference, which is similar to the Hindley-
Milner type inference but has an additional mechanism for manipulating effects.

It turns out that the types inferred by a natural extension of the Hindley-
Milner inference are not suitable for evidence passing [21, 22]. Consider the
following example.

fun f(x)
ask-int()
x

The function f is inferred to have type forall⟨a,e⟩ a → ⟨read2|e⟩ a. The
type contains an effect variable e, representing the effects of the function body.
Since the Koka compiler cannot statically instantiate e to a concrete effect at

4 K. Ikemori et al.

compile time, it needs to dynamically search for a matching handler when calling
f at runtime. However, we would like to infer the type forall⟨a⟩ a → ⟨read2⟩ a
for f. We call this function type closed, in the sense that we cannot grow the ef-
fect row by instantiating the effect variable. When f is given this closed function
type, we know that f only performs the read2 effect. Therefore, we can obtain
a corresponding handler in constant time.

The Hindley-Milner type inference also occasionally yields type signatures
that are more general than what the user may expect. Consider the identity
function.

fun id(x)
x

It is likely that the user defines id as a function of the following type.
fun id(x : a): ⟨ ⟩ a

x

Notice that the effect of function body is an empty row ⟨ ⟩. This is because the
body of id is variable, which has no effect. However, based on the Hindley-
Milner inference, id is given type forall⟨a,e⟩ a → e a. Here, e is an effect
variable representing any effects. When the user is shown this type, they might
be surprised because they did not introduce the effect variable e. In contrast,
the type forall⟨a⟩ a → ⟨ ⟩ a, which has a total effect ⟨ ⟩, seems more natural.

2.3. Type Inference with open and close

In order to optimize more functions and display precise types, the Koka compiler
manipulates effect types using special constructs open and close. In this paper,
we formalize type inference with these constructs. The key principle is to close
the effect row of all named functions (bound by the let/val expression), and
open the effect row when we encounter variables of a closed function type. Let
us illustrate how open and close work through an example.

val id = fn(x) x
id(ask-int())

In the type system described in this paper, the function fn(x) x is given the
most general type forall⟨a,e⟩ a → e a. When the function is bound to id,
the type is closed to forall⟨a⟩ a → ⟨ ⟩ a. This ensures that, when the type of a
named function is displayed to the user, it must be of the closed form. When id is
instantiated in the body, the type is opened again, first to forall⟨a,e⟩ a → e a
and then unified to int → ⟨read2⟩ int so that id(ask-int()) is well-typed
in its context.

In general, open introduces a fresh effect variable µ into a closed effect row
⟨l1, . . ., ln⟩, yielding ⟨l1, ..ln | µ⟩. Dually, close removes an effect variable from an
open effect row. Together these allow us to avoid dynamic handler search and
display simplified type signatures.

The reader may find opening and closing similar to subtyping. We use these
mechanisms to avoid complex constraints over the subtyping relation and un-

Sound and Complete Type Inference for Closed Effect Rows 5

Monotypes MType ∋ τ ::= αk | τ → ϵ τ | ck τ . . . τ

Types Type ∋ σ ::= τ | ∀αk.τ
Kinds Kind ∋ k ::= ∗ | k→ k | eff | lab
Type Constructors Con ∋ ck ::= ⟨ ⟩ | ⟨_ | _⟩ | clab | sk

Effect Rows Eff ∋ ϵ ::= ⟨ ⟩ | αeff | ⟨l | ϵ⟩
Kind Context KCtx ∋ Ξ ::= ∅ | Ξ, αk

Type Context TCtx ∋ Γ, ∆ ::= ∅ | Γ, x : σ

Substitution Subst ∋ θ ::= ∅ | θ[αk := τ]

Effect signature sig ::= { opi : ∀αk
i . τ

i
1 → ϵ τ i

2 }
Effect signatures Σ ::= { li : sigi }
Syntax Convention ⟨l1, . . ., ln⟩ .

= ⟨l1 | . . . | ⟨ln | ⟨ ⟩⟩ . . . ⟩
⟨l1, . . ., ln | µ⟩ .

= ⟨l1 | . . . | ⟨ln | µ⟩ . . . ⟩
µ ::= αeff, l ::= clab

Figure 1. Types, Kinds, Effect Signatures, and Effect Rows of ImpKoka

decidability of the unification algorithm. In the following sections, we will show
simple type inference for open and close.

3. Implicitly Typed Calculus for Algebraic Effects and
Handlers

In this section, we present ImpKoka, an implicitly typed surface language that
has algebraic effects and handlers, as well as polymorphism and higher-order
kinds à la System Fω. The structure of this section is as follows. First, we define
the syntax of kinds, types, and effect rows (Sections 3.1.1-3.1.3). Next, we define
the syntax of expressions (Section 3.1.4). Lastly, we give a set of declarative type
inference rules (Section 3.2).

Note that we do not define an operational semantics for ImpKoka, but in-
stead define a translation from ImpKoka to an extension of System Fϵ [21]. The
definition can be found in the appendix.

3.1. Syntax

3.1.1. Kinds and Types We define the syntax of kinds and types of ImpKoka
in Figure 1. Similar to System Fϵ of [21], we have kinds for value types (∗),
type constructors (k→ k), effect rows (eff), and effect labels (lab). Differently
from System Fϵ, we distinguish between monotypes and type schemes. Mono-
types consist of type variables αk, type constructors ck τ . . .τ , and function types
τ → ϵ τ . In particular, sk is a special type constructors used in a unfication func-
tion for operations, and the detail of sk will be explained in section 5.1 Note
that type variables and constructors have a kind annotation k. The effect ϵ in a
function type τ → ϵ τ represents the effect performed by the body of the func-
tion. We will use α and β for value type variables and µ for effect type variables,
often without kind annotations.

6 K. Ikemori et al.

ϵ≡ ϵ
[refl]

l1 ̸≡ l2 ϵ1 ≡ ϵ2

⟨l1, l2 | ϵ1⟩≡ ⟨l2, l1 | ϵ2⟩
[eq-swap]

ϵ1 ≡ ϵ2 ϵ2 ≡ ϵ3

ϵ1 ≡ ϵ3
[eq-trans]

ϵ1 ≡ ϵ2

⟨l | ϵ1⟩≡ ⟨l | ϵ2⟩
[eq-head]

Figure 2. Equivalence of Row Types

3.1.2. Signatures We define operations op, effect signatures sig, and sets of
effect signatures Σ again as in System Fϵ (Figure 1). An effect signature is a set
of pairs of an operation name and a type. A set of effect signatures associates
each effect label li with a corresponding effect signature sigi. We assume that
operation names and effect labels are all unique, and that Σ is defined at the
top level.

3.1.3. Effect Rows In ImpKoka, we use effect rows [5, 12] to represent a col-
lection of effects to be performed by an expression. As in System Fϵ, an effect
row is either an empty row ⟨ ⟩, or an effect variable µ, or an extension ⟨l | ϵ⟩ of
an effect row ϵ with an effect label l, respectively. For example, assuming exn
is an effect label representing exceptions, ⟨exn, read2⟩ is an effect row represent-
ing a collection of exception and reader effects. The kinds of ⟨ ⟩ and l are eff
(representing an effect type) and lab (representing an effect label), respectively.
The kind of ⟨_ | _⟩ is lab→ eff→ eff. We will use ⟨ ⟩ and ⟨_ | _⟩ without kind
annotations.

The equivalence relation for effect rows is also defined in the same way as
in System Fϵ (Figure 2). The [refl] and [eq-trans] rules are the reflexivity and
transitivity rules. The [eq-swap] rule says that two effect labels l1 and l2 can be
swapped if they are distinct. The [eq-head] rule tells us that two effect rows are
equivalent when their heads and tails are equivalent.

Note that effect rows can have multiple occurrences of the same effect label.
For example, we may have ⟨exn⟩ and ⟨exn, exn⟩, and they are treated as different
effect rows. The advantage of this design is that we can define type inference
rules in a simple manner, by using only type equivalence.

3.1.4. Expressions We define the syntax of expressions of ImpKoka in Fig-
ure 3. In addition to the standard lambda terms, we have handlers handler h
and operation performing perform op. Note that we treat both handler h and
perform op as a value. If we want to handle an expression e with handler h,
we write handler h (λ_.e) via application. Similarly, if we want to perform an
operation op with argument e, we write perform op e via application.

3.2. Declarative Type Inference rules
We now turn to the declarative type inference rules with open and close (Fig-
ure 4). Here, we use a typing judgment of the form Ξ | Γ | ∆ ⊢ e : σ | ϵ. The

Sound and Complete Type Inference for Closed Effect Rows 7

Expressions Exp ∋ e ::= v (value)
| e e (application)

Values Val ∋ v ::= x (variable)
| λx. e (function)
| handler h (effect handler)
| perform op (operation)

Handlers Hnd ∋ h ::= {opi → vi } (operation clauses)

Figure 3. Expressions of ImpKoka

judgment states that, under type variable context Ξ and typing context Γ and
∆, expression e has type σ and performs effect ϵ. Among the two contexts, ∆ is a
type assignment for named (i.e., let-bound) functions, which inhabit a function
type with a closed effect row (we will call such types closed function types). The
other context Γ is a type assignment for all other variables.

The [Var] rule concludes with a type σ that comes from either ∆ or Γ, and an
arbitrary effect ϵ. Note that, although a variable does not perform any effects, we
cannot replace ϵ by ⟨ ⟩, because we do not have subeffecting rules in ImpKoka.
Note also that the rule applies only to variables whose type is not a closed
function type.

The [VarOpen] rule derives an open function type for a variable of a closed
function type. The variable must reside in ∆, because we can only open the type
of named functions. As an example, we can use [VarOpen] to make id (perform ask-int ())
well-typed, because we can derive Ξ | Γ | ∆ ⊢ id : int→⟨read2⟩ int by [VarOpen]
and Ξ | Γ | ∆ ⊢ perform ask-int () : int | ⟨read2⟩ by [Perform] and [App].

The [Lam] rule derives a function type for a lambda abstraction. Observe that
the effect ϵ of the body e is integrated into the type τ1 → ϵ τ2 in the conclusion.
Observe also that the lambda-bound variable x is added to Γ, not ∆. Therefore,
in the derivation of the body e, the type of x cannot be opened using [VarOpen].

The [App] rule requires that the function e1, the argument e2, and the body
of the function have the same effect ϵ.

The [Gen] rule derives a polymorphic type. Similar to the value restriction
in ML we only allow values v [20], but type soundness is actually guaranteed
by restricting the effect type to be total ⟨ ⟩ [8, 12]. The [Inst] rule is completely
standard.

The [Let] rule is used to bind values with polymorphic types. As in the [Gen]
rule, the expression being bound is a value, and must have a total effect ⟨ ⟩.
Notice that bound variable x is added to the context ∆, not Γ. Therefore, in the
derivation of the body e2, the type of x can be opened via [VarOpen].

The [Perform] rule is used to type an operation call. The type in the conclusion
is a monotype, which is instantiated by using a sequence of types τ . The notation
op : ∀αk.τ1 → τ2 ∈ Σ(l) of the premise means that the operation op : ∀αk.τ1 → τ2
belongs to the effect signature corresponding to the effect label l.

The [Hanlder] rule is used to type a handler. It takes a thunked computation
(action) of type ()→⟨l | ϵ⟩ τ and handles the effect l. The [Ops] rule takes care
of operation clauses of a handler. The type of each operation clause is a nested

8 K. Ikemori et al.

Ξ | Γ | ∆ ⊢ e : σ | ϵ Ξ | Γ | ∆ ⊨ h : τ | l | ϵ

x : σ ∈ Γ, ∆ Ξ ⊢wf ϵ : eff σ not a closed function type
Ξ | Γ | ∆ ⊢ x : σ | ϵ

[Var]

f : ∀αk . τ1 →⟨l1, . . ., ln⟩ τ2 ∈ ∆ Ξ ⊢wf ϵ : eff Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ f : ∀αk. τ1 →⟨l1, . . ., ln | ϵ⟩ τ2 | ϵ′

[VarOpen]

Ξ | Γ, x : τ1 | ∆ ⊢ e : τ2 | ϵ
Ξ ⊢wf τ1 : ∗ Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ λx. e : τ1 → ϵ τ2 | ϵ′

[Lam]

Ξ | Γ | ∆ ⊢ e1 : τ2 → ϵ τ | ϵ
Ξ | Γ | ∆ ⊢ e2 : τ2 | ϵ
Ξ | Γ | ∆ ⊢ e1 e2 : τ | ϵ

[App]

Ξ, αk | Γ | ∆ ⊢ v : σ | ⟨ ⟩
k ̸≡ lab αk ̸∈ ftv(Γ, ∆)

Ξ | Γ | ∆ ⊢ v : ∀αk. σ | ⟨ ⟩
[Gen]

Ξ | Γ | ∆ ⊢ e : ∀αk. σ | ϵ Ξ ⊢wf τ : k
Ξ | Γ | ∆ ⊢ e : σ[αk := τ] | ϵ

[Inst]

Ξ | Γ | ∆ ⊢ v1 : σ1 | ⟨ ⟩ Ξ | Γ | ∆, x : σ1 ⊢ e2 : τ2 | ϵ
Ξ | Γ | ∆ ⊢ let x = v1 in e2 : τ2 | ϵ

[Let]

op : ∀αk. τ1 → τ2 ∈ Σ(l) αk ̸∈ Ξ Ξ ⊢wf τ : k Ξ ⊢wf ϵ : eff Ξ ⊢ef ϵ′ : eff
Ξ | Γ | ∆ ⊢ perform op : id[αk := τ](τ1 →⟨l | ϵ⟩ τ2) | ϵ′

[Perform]

Ξ | Γ | ∆ ⊨ h : τ | l | ϵ Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ handler h : (()→⟨l | ϵ⟩ τ)→ ϵ τ) | ϵ′

[Handler]

αk
i ̸∈ ftv(ϵ, τ) opi : ∀αk

i . τ
i
1 → τ i

2 ∈ Σ(l) Ξ | Γ | ∆ ⊢ vi : ∀αk
i . τ

i
1 → ϵ ((τ i

2 → ϵ τ)→ ϵ τ) | ⟨ ⟩
Ξ | Γ | ∆ ⊨ {op1 → v1, . . . , opn → vn } : τ | l | ϵ

[Ops]

Figure 4. Declarative Type Inference Rules

Sound and Complete Type Inference for Closed Effect Rows 9

⊢ θ : Ξ⇒ Ξ′ Ξ ⊢ σ1 ⊑σ2

⊢ ∅ : · ⇒ Ξ
[Empty]

⊢ θ : Ξ1⇒ Ξ2 Ξ2 ⊢ τ : k
⊢ θ[αk := τ] : (Ξ1, α

k)⇒ Ξ2

[Extend]

Ξ ⊢wf τ : k τ2 = id[αk := τ]τ1 β
k′ ̸∈ ftv(∀αk. τ1)

Ξ ⊢ ∀αk. τ1 ⊑∀βk′
. τ2

[TypeOrdering]

Figure 5. Type Substitution and Type Ordering

function type of the form ∀αk
i . τ

i
1 → ϵ ((τ i

2 → ϵ τ)→ ϵ τ), where τ i
1 is the input

type of the operation, and τ i
2 → ϵ τ is the type of the continuation. The condition

αk
i ̸∈ ftv(ϵ, τ) is necessary for type preservation of the translation from ImpKoka

to System Fϵ+restrict.

4. Syntax-Directed Type Inference Rules

In this section, we formalize the syntax-directed type inference rules with open
and close, following [6, 11]. These rules allow us to determine which typing rule
to apply to an expression from the syntax of that expression. In what follows,
we first define type substitution and type ordering, and then elaborate the key
cases of the inference rules.

4.1. Type Substitution

Figure 5 shows the definition of type substitution, which is inspired by [4]. The
judgment ⊢ θ : Ξ1⇒ Ξ2 means substitution θ replaces type variables in context
Ξ1 with types well-formed under context Ξ2. There are two formation rules
for substitutions: [Empty] forms an empty substitution, and [Extend] extends a
substitution θ with [αk := τ]. As a convention, we write id to mean the identity
substitution.

4.2. Type Ordering

Figure 5 shows the definition of type ordering, which is similar to that of System
F. The judgment Ξ ⊢ σ1 ⊑σ2 means type σ2 is more specific than type σ1 under
context Ξ. The context Ξ is used to inspect the kinds of the types τ that replace
the type variables αk. For example, the following relationship holds.

Ξ ⊢ ∀α . α→⟨ ⟩α⊑ int→⟨ ⟩ int
Ξ ⊢ ∀αµ . α→µα⊑∀β. (β→⟨exn⟩β)→⟨exn⟩ (β→⟨exn⟩β)

Using type ordering, we define type equivalence as follows.

σ1 = σ2 ⇔ σ1 ⊑σ2 ∧ σ2 ⊑σ1

10 K. Ikemori et al.

Ξ | Γ | ∆⊩s e : τ | ϵ Ξ | Γ | ∆⊨s h : τ | l | ϵ

x : σ ∈ Γ, ∆ Ξ ⊢ σ⊑ τ Ξ ⊩wf ϵ : eff
Ξ | Γ | ∆⊩s x : τ | ϵ

[Var]

f : ∀αk. τ1 →⟨l1, . . ., ln⟩ τ2 ∈ ∆

Ξ ⊢ ∀αk. τ1 →⟨l1, . . ., ln⟩ τ2 ⊑ τ ′
1 →⟨l1, . . ., ln⟩ τ ′

2

Ξ ⊢wf ϵ : eff Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆⊩s f : τ ′

1 →⟨l1, . . ., ln | ϵ⟩ τ ′
2 | ϵ′

[VarOpen]

Ξ | Γ | ∆⊩s v1 : τ1 | ⟨ ⟩ Ξ \ αk | Γ | ∆, x : Close(σ1) ⊩s e2 : τ2 | ϵ
σ1 = Gen(Γ, ∆, τ1) = ∀αk. τ1

Ξ | Γ | ∆⊩s let x = v1 in e2 : τ2 | ϵ
[Let]

opi : ∀αk
i . τ

i
1 → τ i

2 ∈ Σ(l) αk
i ̸∈ ftv(ϵ, τ)

Ξ, αk
i | Γ | ∆⊩s vi : τ i

1 → ϵ ((τ i
2 → ϵ τ)→ ϵ τ) | ⟨ ⟩ αk

i ̸∈ ftv(Γ, ∆)

Ξ | Γ | ∆⊨s {op1 → v1, . . . , opn → vn } : τ | l | ϵ
[Ops]

Figure 6. Syntax-directed Type Inference Rules (excerpt)

4.3. Inference Rules with open and close

Figure 6 is an excerpt of the syntax-directed type inference rules, consisting of
those rules that are changed from the declarative rules. Compared to the declar-
ative rules we saw in Section 3.2, there are no rules corresponding to [Gen] and
[Inst], because these rules are not syntax directed. All other rules are identical
to the declarative rules. Another difference is that we use two auxiliary functions
Gen(·, ·, ·) and Close(·). The Gen function is the standard generalization function,
with a standard definition of free type variables. The Close function closes the
effect row of a function type. For example, Close(∀µα. α→µα) = ∀α. α→⟨ ⟩α.

Gen(Γ, ∆, τ) = ∀(ftv(τ) − ftv(Γ, ∆)). τ

Close(∀µαk. τ1 →⟨l1, . . ., ln | µ⟩ τ2) = ∀αk. τ1 →⟨l1, . . . , ln⟩ τ2 iffµ ̸∈ ftv(τ1, τ2)
Close(σ) = σ

Among the key rules, [Var] is standard and derives the type instantiated by τ .
The [VarOpen] rule derives an open function type from a closed one by inserting an
arbitrary effect row. The [Let] rule generalizes the type of the bound expression
using Gen, and derives the type of the body under an extended type context
∆, x : Close(σ). In the [Ops] rule, we derive a monomorphic type without the
type variables bound by the quantifier.

It is important that the Close function is applied only in the [Let] rule. The
reason is that, if Close is used to a function type that is not universally quantified,
the type system cannot track the effects to be handled. Let us illustrate the
problem using a variation of Close and [Lam] rule. We first define Close1 as a

Sound and Complete Type Inference for Closed Effect Rows 11

function that closes the effect variable of a monomorphic function type. For
example, Close1(α→µα) = α→⟨ ⟩α, where Γ = ∅ and ∆ = ∅.

Close1(τ1 →⟨l1, . . ., ln | µ⟩ τ2) = τ1 →⟨l1, . . . , ln⟩ τ2 iffµ ̸∈ ftv(τ1, τ2)
Close1(τ) = τ

We next define [Lam1] as a typing rule that closes the monomorphic function
type of a λ-bound variable using Close1 and derives the type of the body under
an extended type context ∆, x : τ ′1. This allows more functions to have a closed
function type as their domain.

Ξ | Γ | ∆, x : τ ′1 ⊩s e : τ2 | ϵ τ ′1 = Close1(τ1)
Ξ ⊢wf τ1 : ∗ Ξ ⊢wf ϵ′ : eff

Ξ | Γ | ∆⊩s λx. e : τ1 → ϵ τ2 | ϵ′
[Lam1]

With [Lam1], it is possible to derive wrong effects. Consider the following expres-
sion.

let f = λg. g () in f (λ_. perform ask-int ())

First, we derive ∅ | ∅ | ∅⊩s λg. g () : (()→µα)→⟨ ⟩α by the [Lam1] and [VarOpen]
rules. Next, we extend the type context ∆ with f : ∀µα. (()→µα)→⟨ ⟩α by
the [Let] rule. Then, we obtain the following derivation by the [App] rule.

∅ | ∅ | f : ∀µα. (()→µα)→⟨ ⟩α ⊩s f (λ_. perform ask-int ()) : int | ⟨ ⟩

This type judgment is clearly wrong, because the read2 effect is not tracked. By
using Close only in the [Let] rule, we can avoid this problem.

The syntax-directed type inference rules are sound and complete with respect
to the declarative type inference rules.
Theorem 1. (syntax-directed inference rules is sound)
If Ξ | Γ | ∆⊩s e : τ | ϵ then Ξ | Γ | ∆ ⊢ e : τ | ϵ.

Theorem 2. (syntax-directed inference rules is complete)
If Ξ | Γ | ∆ ⊢ e : σ | ϵ then Ξ | Γ | ∆⊩s e : τ | ϵ,
where Ξ ⊆ Ξ′ and Ξ′ ⊢ Gen(Γ, ∆, τ)⊑σ.

4.4. Fragility of the [Let] Rule

An unfortunate aspect of our current rules is that the [Let] rule is fragile in the
sense that insertion of a let binding may change the typability of programs. Let
us consider the following functions:

remote= λf. perform ask-bool ()
foo = λf. remote f; f ()

In our type system, the type of the function remote is inferred as α→⟨read2 | µ⟩ bool.
The function foo is also well-typed. First, the lambda-bound variable f is added to
the context Γ, second, the type of remote f is inferred as Ξ | Γ | ∆⊨s remote f : bool

12 K. Ikemori et al.

| ⟨read2 | µ⟩ by the [App] rule, and finally, the type of f is inferred as Ξ | Γ | ∆⊨s f :
()→⟨read2 | µ⟩β | ⟨read2 | µ⟩ by the [App] rule, where e1; e2 is a syntax suger of
(λ_. e2) e1. Therefore, the type of function foo is inferred as (()→⟨read2 | µ⟩β)
→⟨read2 | µ⟩β and foo is judged well-typed.

Suppose though that we have a function remote that is explicitly annotated
with type (()→⟨ ⟩ ())→⟨read2⟩ bool.

remote : (()→⟨ ⟩ ())→⟨read2⟩ bool
remote = λf. perform ask-bool ()

foo = λf. remote f; f ()
bar = λf. remote f; let g = f in g ()

Here foo and bar only differ in the explicit let-binding for f, but our inference rules
reject the foo definition. The type of remote f is inferred as Ξ | Γ | ∆⊨s remote f :
bool | ⟨read2⟩, and the type of f is unified to a closed type ()→⟨ ⟩ () by remote.
Its type cannot be opened to ()→⟨read2⟩ (), because the lambda-variable f is
included in Γ and cannot be applied the [VarOpen] rule. Hence, we cannot ap-
ply the [App] rule to f (). On the other hand, the bar definition is well-typed.
The function f is now a let-bound variable, thus its type can be opened to
()→⟨read2⟩ () by the [VarOpen] rule. Hence, we can apply the [App] rule to f ().

This is clearly not desirable and we would like to address this in future
work. On the other hand, it is not uncommon to find this form of fragility in
practical type systems (like the monomorphism restriction in Haskell, inference
for GADT’s [15], etc) and it may work out fine in practice. Experiments on all
the standard libraries of Koka (~15000 lines) showed only 2 instances where a
let binding was required.

5. Type Inference Algorithm

In this section, we formalize the type inference algorithm with open and close
as an extension of Algorithm W [3]. We first present the unification algorithm
(Section 5.1), and then discuss the type inference algorithm (Section 5.2).

5.1. Unification Algorithm

In Figure 7, we define the unification algorithm. The algorithm is a natural ex-
tension of the standard Robinson unification algorithm [19]. It consists of three
functions unify(·, ·, ·), unifyEffect(·, ·, ·), and unifyOp(·, ·, ·), which take care of
value types, effect types, and the type of operation clauses, respectively. Among
these functions, unify and unifyEffect are standard. The unifyOp function origi-
nates from the special treatment of Koka’s operation clauses.

Let us look at the unify and unifyEffect functions. Given a triple (Ξ, ϵ, l)
of a type context, an effect row type, and an effect label, unifyEffect returns a
triple (Ξ1, θ1, ϵ1) of a new type context, a substitution, and an effect row. We

Sound and Complete Type Inference for Closed Effect Rows 13

unify : (KCtx × MType × MType)→ (KCtx × Subst)
unify(Ξ, αk, αk) = return (Ξ, id)
unify((Ξ, αk), αk, τ) = assertΞ ⊢wf τ : k; return (Ξ, id[αk := τ])

unify((Ξ, αk), τ, αk) = assertΞ ⊢wf τ : k; return (Ξ, id[αk := τ])
unify(Ξ, ⟨ ⟩, ⟨ ⟩) = return (Ξ, id)
unify(Ξ, ⟨l | ϵ1⟩, ⟨l′ | ϵ2⟩) =

let (Ξ1, θ1, ϵ3) = unifyEffect(Ξ, ⟨l′ | ϵ2⟩, l)
assert tail(ϵ1) ̸∈ dom(θ1)
let (Ξ2, θ2) = unify(Ξ1, θ1(ϵ1), ϵ3)
return (Ξ2, θ2 ◦ θ1)

unify(Ξ, τ1 → ϵ τ2, τ
′
1 → ϵ′ τ ′

2) =
let (Ξ1, θ1) = unify(Ξ, τ1, τ ′

1)
let (Ξ2, θ2) = unify(Ξ1, θ1(ϵ), θ1(ϵ

′))
let (Ξ3, θ3) = unify(Ξ2, (θ2 ◦ θ1)(τ ′

2), (θ2 ◦ θ1)(τ ′
2))

return (Ξ3, θ3 ◦ θ2 ◦ θ1)

unifyEffect : (KCtx × Eff × Lab)→ (KCtx × Subst × Eff)
unifyEffect(Ξ, ⟨l′ | ϵ⟩, l) =

| l′ ≡ l ⇒ return (Ξ, id, ϵ)
| l′ ̸≡ l ⇒ let (Ξ1, θ1, ϵ1) = unifyEffect(Ξ, ϵ, l)

return (Ξ1, θ1, ⟨l′ | ϵ1⟩)
unifyEffect((Ξ, µ), µ, l) =

assumeµ1 is fresh
return ((Ξ, µ1), id[µ := ⟨l | µ1⟩]), µ1)

unifyOp : (KCtx × Type × MType)→ (KCtx × Subst)
unifyOp(Ξ, ∀αk. τ1, τ2) =

assume sk are fresh (skolem constants)
let (Ξ1, θ1) = unify(Ξ, id[αk := sk]τ1, τ2)

assert sk ̸∈ const(codom(θ1 − ftv(τ2)))
return ((Ξ1, α

k), [sk 7→ αk] ◦ θ1)

Figure 7. Unification Algorithm

14 K. Ikemori et al.

can transfom ϵ into an effect row whose head effect label is l. As an example, let
us consider the following unification problem.

unifyEffect(Ξ, ⟨read2 | µ⟩, exn)

This succeeds and returns the following effect row and substitution:

ϵ1 = ⟨read2 | µ1⟩ θ1 = id[µ := ⟨exn | µ1⟩]

The unifyEffect function is sound. That is, if unifyEffect(Ξ, ϵ, l) succeeds, it
returns a substitution θ1 and an effect row ϵ1 that satisfy θ1(ϵ)≡⟨l | θ1(ϵ1)⟩.
Theorem 3. (unifyEffect is sound)
If Ξ ⊢wf ϵ : eff, Ξ ⊢wf l : lab and unifyEffect(Ξ, ϵ, l) = (Ξ1, θ1, ϵ1),
then ⊢ θ1 : Ξ⇒ Ξ1 and θ1(ϵ)≡⟨l | θ1(ϵ1)⟩.
The unifyEffect function is also complete. That is, if ϵ can be rewritten to an
effect row of the form ⟨l | θ(ϵ′)⟩ by the substitution θ, unifyEffect(Ξ, ϵ, l) succeeds
and returns the most general substitution θ1.
Theorem 4. (unifyEffect is complete)
If Ξ ⊢wf ϵ : eff, Ξ ⊢wf l : lab, ⊢ θ : Ξ⇒ Ξ2 and θ(ϵ)≡⟨l | θ(ϵ′)⟩,
then unifyEffect(Ξ, ϵ, l) = (Ξ1, θ1, ϵ1) and there exists ⊢ θ2 : Ξ1⇒ Ξ2 such
that θ = θ2 ◦ θ1.
The unify function is similar to unifyEffect. Given a triple (Ξ, τ1, τ2) of a type
context and two monomorphic types, unify returns a pair (Ξ1, θ1) of a new type
context and a substitution.

The unification algorithm is sound: if unify(Ξ, τ1, τ2) succeeds, it returns the
substitution θ1 that unifies τ1 and τ2.
Theorem 5. (unify is sound)
If Ξ ⊢wf τ1 : k, Ξ ⊢wf τ2 : k, and unify(Ξ, τ1, τ2) = (Ξ1, θ1), then ⊢ θ1 : Ξ⇒ Ξ1

and θ1(τ1) = θ1(τ2).
The unification algorithm is also complete: if two types τ1 and τ2 are unifiable,
unify(Ξ, τ1, τ2) succeeds and it returns the most general substitution θ1.
Theorem 6. (unify is complete)
If Ξ ⊢wf τ1 : k, Ξ ⊢wf τ2 : k, ⊢ θ : Ξ⇒ Ξ2 and θ(τ1) = θ(τ2),
then unify(Ξ, τ1, τ2) = (Ξ1, θ1) and there exists ⊢ θ2 : Ξ1⇒ Ξ2 such that θ = θ2 ◦ θ1.

We now look at the unifyOp function. The function takes a triple (Ξ, ∀αk. τ1, τ2)
of a type variable context, a type scheme, and a monomorphic type τ , and returns
a pair (Ξ1, θ1) of a new type context and a substitution. Following [11], we use
skolem constants to ensure that bound type variables αk do not escape or occur
free in the substitution [sk 7→ αk] ◦ θ1. The algorithm reads as follows. We first
replace the free type variables αk of τ1 with fresh skolem constants sk, and unify
the resulting type with τ2. When we obtain a substitution θ1 as the result, we
check the codomain of θ1 − ftv(τ2) does not contain skolem constants sk, using
the const function. If this checking succeeds, we construct a new substitution by

Sound and Complete Type Inference for Closed Effect Rows 15

replacing the skolem constants sk in θ1 back to type variables αk, and return the
resulting substitution. As an example, consider the following unification problem:

unifyOp(Ξ, ∀α. α→ exn ((α→⟨exn⟩ int)→⟨exn⟩ int), β1 →µβ2)

This succeeds and returns the following substitution:

[s 7→ α] ◦ θ1 = id[β1 :=α, β2 := ((α→⟨exn⟩ int)→⟨exn⟩ int), µ := ⟨exn⟩]

where θ1 = id[β1 := s, β2 := ((s→⟨exn⟩ int)→⟨exn⟩ int), µ := ⟨exn⟩].
The soundness and completeness of unifyOp can be proven in a similar way

to that of unify and unifyEffect.
Theorem 7. (unifyOp is sound)
If Ξ ⊢wf ∀αk. τ1 : k, Ξ ⊢wf τ2 : k and unifyOp(Ξ, ∀αk. τ1, τ2) = (Ξ1, θ1),
then ⊢ θ1 : Ξ⇒ Ξ1 and θ1(∀αk. τ1) = ∀αk. θ1(τ2).

Theorem 8. (unifyOp is complete)
If Ξ ⊢wf ∀αk. τ1 : k, Ξ ⊢wf τ2 : k, ⊢ θ : Ξ⇒ Ξ2 and θ(∀αk. τ1) = ∀αk. θ(τ2),
then unifyOp(Ξ, ∀αk. τ1, τ2) = (Ξ1, θ1) and there exists ⊢ θ2 : Ξ1⇒ Ξ2 such
that θ = θ2 ◦ θ1.

5.2. Type Inference Algorithm

In Figures 8 and 9, we define the type inference algorithm. The algorithm is
an extension of Algorithm W [3] with kinding and a row-based effect system.
The functions infer(·, ·, ·, ·) and inferHandler(·, ·, ·, ·) are defined by mutual
induction. Given a quadruple (Ξ, Γ, ∆, e) of a type variable context, two typing
contexts, and an expression, infer returns a quadruple (Ξ, θ, τ, ϵ) of a new type
variable context, a substitution, a monomorphic type, and an effect row. The
effect row ϵ represents the effect performed by the expression e.

Let us go through individual cases. In the variable case, if x has a closed
function type and resides in ∆, infer yields the most general type by opening
the closed effect row to µ1. The infer function also yields an arbitrary effect µ2

as x is a value. If x does not have a closed function type, infer generates a new
type variable β

k as in a standard type inference algorithm.
The abstraction and application cases are standard, except that they involve

inference of effect rows.
In the case of a let expression, the bound expression is generalized by Gen

and the effect row of the function type is closed by Close. Then, the type context
∆ is extended with the closed effect row and used for the inference of the body
of the let expression. Consider the inference of the following let expression.

let f = λx. x in f 1

The type of f is inferred to be ∀α. α→µα, where µ is an effect variable. Since the
effect row of the function is closed immediately after generalization, the inference
of the body f 1 is done by infer(Ξ, Γ, (∆, f : ∀α. α→⟨ ⟩α) , f 1).

16 K. Ikemori et al.

infer : (KCtx × TCtx × TCtx × Exp)→ (KCtx × Subst × MType × Eff)
infer(Ξ, Γ, ∆, x) =

| x : ∀αk. τ1 →⟨l1, .., ln⟩ τ2 ∈ ∆

⇒ assumeβk
, µ1 andµ2 are fresh.

return ((Ξ, β
k
, µ1, µ2), id, id[αk :=β

k
](τ1 →⟨l1, .., ln | µ1⟩ τ2), µ2)

| x : ∀αk. τ ∈ Γ, ∆

⇒ assumeβk andµ are fresh.
return ((Ξ, β

k
, µ), id, id[αk :=β

k
]τ, µ)

infer(Ξ, Γ, ∆, λx. e) =
assumeα∗ andµ are fresh.
let (Ξ1, θ1, τ1, ϵ1) = infer((Ξ, α∗), (Γ, x : α∗), ∆, e)
return (Ξ1, θ1, θ1(α

∗)→ ϵ1 τ1, µ)

infer(Ξ, Γ, ∆, e1 e2) =
assumeα∗ is fresh.
let (Ξ1, θ1, τ1, ϵ1) = infer(Ξ, Γ, ∆, e1)
let (Ξ2, θ2, τ2, ϵ2) = infer(Ξ1, θ1(Γ), θ1(∆), e2)
let (Ξ3, θ3) = unify(Ξ2, θ2(τ1), τ2 → ϵ2 α

∗)
let (Ξ4, θ4) = unify(Ξ3, (θ3 ◦ θ2)(ϵ1), θ3(ϵ2))
return (Ξ4, θ4 ◦ θ3 ◦ θ2 ◦ θ1, (θ4 ◦ θ3)(α∗), (θ4 ◦ θ3)(ϵ2))

infer(Ξ, Γ, ∆, let x = v1 in e2) =
let (Ξ1, θ1, τ1, ϵ1) = infer(Ξ, Γ, ∆, v1)
let (Ξ2, θ2) = unify(Ξ1, ϵ1, ⟨ ⟩)
let ∀αk. θ2(τ1) = Gen((θ2 ◦ θ1)(Γ), (θ2 ◦ θ1)(∆), θ2(τ1))

letσ = Close(∀αk. θ2(τ1))

let (Ξ3, θ3, τ2, ϵ2) = infer(Ξ2 \ αk, (θ2 ◦ θ1)(Γ), ((θ2 ◦ θ1)(∆), x : σ), e2)
return (Ξ3, (θ3 ◦ θ2 ◦ θ1), τ2, ϵ2)

infer(Ξ, Γ, ∆, perform op) =

assumeβk
, µ1 andµ2 are fresh.

let ∀αk. τ1 → τ2 = Op(Σ, op)
return ((Ξ, β

k
, µ1, µ2), id, id[αk :=β

k
](τ1 →µ1 τ2), µ2)

infer(Ξ, Γ, ∆, handler h) =
assumeµ is fresh.
let (Ξ1, θ1, τ1, l1, ϵ1) = inferHandler(Ξ, Γ, ∆, h)
return ((Ξ, µ), θ1, (()→⟨l1 | ϵ1⟩ τ1)→ ϵ1 τ1, µ)

Figure 8. Type Inference Algorithm

Sound and Complete Type Inference for Closed Effect Rows 17

inferHandler : (KCtx × TCtx × TCtx × Hnd)→ (KCtx × Subst × MType × Lab × Eff)
inferHandler(Ξ, Γ, ∆, {op1 → v1, . . . , opn → vn }) =

assumeβ∗ andµ are fresh.
let l = Label(Σ, op1)
assertΣ(l) = {op1, . . ., opn}
let (Ξ0, θ0) = (Ξ, id)
for i ∈ {1, . . .,n}

assumeαk
i are fresh.

let ∀αk
i . τ

i
1 → τ i

2 = Op(Σ, opi)
let (Ξ1

i , θ
1
i , τi, ϵi) = infer(Ξ3

i−1, θi−1(Γ), θi−1(∆), vi)
let (Ξ2

i , θ
2
i) = unify(Ξ1

i , ϵi, ⟨ ⟩)
let (Ξ3

i , θ
3
i)

= unifyOp(Ξ2
i , (θ

2
i ◦ θ1i ◦ θi−1)(∀αk. τ1

i →µ ((τ2
i →µβ∗)→µβ∗)), θ2i (τi))

let θi = θ3i ◦ θ2i ◦ θ1i ◦ θi−1

assert αk
i ̸∈ ftv(θi(Γ), θi(∆))

return (Ξ3
n, θn, θn(β

∗), l, θn(µ))

Figure 9. Type Inference Algorithm for Handlers

In the case of an operation call, infer simply returns the type instantiated
with a new effect variable. Here, Op(·, ·) is an auxiliary function that selects
from Σ the signature of the operation op.

In the handler case, we use two auxiliary functions inferHandler and Label.
The inferHandler function infers the type of a handler. It receives a quadruple
(Ξ, Γ, ∆, h) of a type variable context, two typing contexts, and a handler, and
returns a quintuple (Ξ, θ, τ, l, ϵ) of a new type variable context, a substitution,
a monomorphic type, an effect label, and an effect row. Here, τ is the return
type of the continuation captured by the handler h, l is the effect label handled
by h, and ϵ is the rest of the effect row. The Label function returns the effect
label corresponding to the given operation.

It is important to use unifyOp instead of unify in the type inference of han-
dlers. For example, consider the following effect signature and handler:

Σ = { l1 : { op : ∀α. α→α }}
handler { op→λx k. k (x + 1) }

This handler should be rejected for the following reason. First, the operation
op is defined as having type ∀α. α→α. Therefore, the operation clause of op
must have a type of the form ∀α. α→µ ((α→µβ)→µβ), where the input and
output types of the operation are universally quantified. Second, the operation
clause λx k. k (x + 1) is inferred to have type int→µ ((int→µβ)→µβ), where
the input and output types are a concrete type int. If we use unifyOp, uni-
fication of ∀α. α→µ ((α→µβ)→µβ and int→µ ((int→µβ)→µβ) fails, be-
cause the bound variable α and int cannot be unified. On the other hand, if
we use unify, unification of the two types succeeds, because we would pass a
monomorphic type α→µ ((α→µβ)→µβ) to unify, which can be unified with
int→µ ((int→µβ)→µβ).

18 K. Ikemori et al.

The soundness and completeness with respect to the syntax-directed infer-
ence rules of infer can be proven by induction on the structure of e.
Theorem 9. (infer is sound with respect to syntax-directed inference rules)
If infer(Ξ, Γ, ∆, e) = (Ξ1, θ, τ, ϵ), then ⊢ θ : Ξ⇒ Ξ1 and Ξ1 | θ(Γ) | θ(∆) ⊩s e : τ | ϵ.

Theorem 10. (infer is complete with respect to syntax-directed inference rules)
If ⊢ θ : Ξ⇒ Ξ2 and Ξ2 | θ(Γ) | θ(∆) ⊩s e : τ | ϵ,
then infer(Ξ, Γ, ∆, e) = (Ξ1, θ1, τ, ϵ), and there exists ⊢ θ2 : Ξ1⇒ Ξ2 such
that θ = θ2 ◦ θ1.
Using the results so far, we can prove the main theorems: the type inference
algorithm for the declarative inference rules is sound and complete.
Theorem 11. (infer is sound)
If infer(Ξ, Γ, ∆, e) = (Ξ1, θ, τ, ϵ), then ⊢ θ : Ξ⇒ Ξ1 and Ξ1 | θ(Γ) | θ(∆) ⊢ e : τ | ϵ.

Proof. By Theorem 1 and Theorem 9.

Theorem 12. (infer is complete)
If ⊢ θ : Ξ⇒ Ξ2 and Ξ2 | θ(Γ) | θ(∆) ⊢ e : τ | ϵ,
then infer(Ξ, Γ, ∆, e) = (Ξ1, θ1, τ, ϵ), and there exists ⊢ θ2 : Ξ1⇒ Ξ2 such
that θ = θ2 ◦ θ1.

Proof. By Theorem 2 and Theorem 10.

6. Related Work

There are a variety of languages supporting effect handlers in the literature.
Eff [1] is an ML-like language that employs the Hindley-Milner type inference [9,
17]. Differently from Koka, Eff has an effect system based on subtyping. As a
result, the type inference algorithm [9] of Eff is more complex than the one
presented in this paper.

Frank [2, 14] is a language that has effect rows and effect polymorphism
similar to Koka. The difference is that Frank treats all effect rows as open
ones by implicitly inserting effect variables. This means the user does not need
to write type variables to express effect polymorphism, but it also means error
messages may contain effect variables that the user did not write.

Links [5] is another language with a row-based effect system and effect poly-
morphism. What is different from Koka is that effect rows in Links are based on
Remy’s record types [18], where each effect label is annotated with a presence
type. Presence types increase the expressiveness of the language, but they also
complicate the inference algorithm.

There is a type inference algorithm for an older version of Koka [12], which
solely supports built-in effects such as exceptions and references. Similar to the
current Koka, it has effect rows [10] and effect polymorphism. The type inference
algorithm is an extension of the Hindley-Milner algorithm, but it infers an open
effect row for all functions due to the lack of open and close.

Sound and Complete Type Inference for Closed Effect Rows 19

7. Conclusion and Future Work

In this paper, we formalized a type inference algorithm with open and close
and proved its soundness and completeness. The inference algorithm helps the
Koka compiler statically determine handlers, and thus improve performance.
Moreover, it allows the compiler to display precise signatures.

In future work, we plan to improve the current typing rules in order to make
the typability of programs robust against small syntactic rewrites.

20 K. Ikemori et al.

Appendix

In this appendix, we present an extension of System Fϵ, which we call System
Fϵ+restrict, and a type-directed translation from ImpKoka to System Fϵ+restrict.
The translation allows us to prove the type soundness of ImpKoka without di-
rectly defining an operational semantics for ImpKoka. This is a well-known tech-
nique, and is used in [11], for instance. The target calculus of the translation
has a new construct restrict, which is necessary for establishing soundness of the
translation.

A. System Fϵ+restrict

In Figures 11 to 13, we define the syntax, operational semantics, and typing
rules of System Fϵ+restrict. The typing rule [Restrict] extends the closed effect
row ⟨l1, .., ln⟩ of the expression e to ⟨l1, . . .ln | ϵ⟩, where ϵ is an arbitrary effects.

We can prove the type soundness of Sysmtem Fϵ+restrict by showing the
fllowing theorems.
Theorem 13.
If ∅ ⊢ e1 : σ | ⟨ ⟩ then either e1 is a value or e1 7−→ e2.

Theorem 14.
If ∅ ⊢ e1 : σ | ⟨ ⟩ and e1 7−→ e2 then ∅ ⊢ e2 : σ | ⟨ ⟩.

B. Type-directed Translation to System Fϵ

In Figure 10, we next define the type-directed translation from ImpKoka to Sys-
tem Fϵ+restrict. The judgment Ξ | Γ | ∆ ⊢ e : σ | ϵ ⇝ e′ states that an ex-
pression e has type σ and effect ϵ under the type variable context Ξ and typing
contexts Γ and ∆, and translates to an expression e′ of System Fϵ+restrict. We
can easily prove the soundness of the type-directed translation.
Theorem 15.
If Ξ | Γ | ∆ ⊢ e : σ | ϵ ⇝ e′ then Γ, ∆ ⊢ e′ : σ | ϵ.

Proof. By straightforward induction on the typing derivation.

Sound and Complete Type Inference for Closed Effect Rows 21

Ξ
↑
| Γ

↑
| ∆

↑
⊢ e

↑
: σ

↑
| ϵ
↑
⇝ e′

↓
Ξ
↑
| Γ

↑
| ∆

↑
⊨ h

↑
: τ

↑
| l
↑
| ϵ
↑
⇝ h′

↓

x : σ ∈ Γ, ∆ Ξ ⊢wf ϵ : eff
σ not a closed function type
Ξ | Γ | ∆ ⊢ x : σ | ϵ ⇝ x

[Var]

f : ∀αk. τ1 →⟨l1, . . ., ln⟩ τ2 ∈ ∆
Ξ ⊢wf ϵ : eff Ξ ⊢wf ϵ′ : eff

Ξ | Γ | ∆ ⊢ f : ∀αk. τ1 →⟨l1, . . ., ln | ϵ⟩ τ2 | ϵ′

⇝ Λαk. λ⟨l1,...,ln|ϵ⟩ x : τ1. restrict⟨l1,...,ln⟩ f [αk] x

[VarOpen]

Ξ | Γ, x : τ1 | ∆ ⊢ e : τ2 | ϵ ⇝ e′ Ξ ⊢wf τ1 : ∗ Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ λx. e : τ1 → ϵ τ2 | ϵ′ ⇝ λϵ x : τ1. e′

[Lam]

Ξ | Γ | ∆ ⊢ e1 : τ2 → ϵ τ | ϵ ⇝ e′1 Ξ | Γ | ∆ ⊢ e2 : τ2 | ϵ ⇝ e′2
Ξ | Γ | ∆ ⊢ e1 e2 : τ | ϵ ⇝ e′1 e′2

[App]

Ξ, αk | Γ | ∆ ⊢ v : σ | ⟨ ⟩ ⇝ v′ k ̸≡ lab
Ξ | Γ | ∆ ⊢ v : ∀αk. σ | ⟨ ⟩ ⇝ Λαk. v′

[Gen]

Ξ | Γ | ∆ ⊢ e : ∀αk. σ | ϵ ⇝ e′ Ξ ⊢wf τ : k
Ξ | Γ | ∆ ⊢ e : σ[αk := τ] | ϵ ⇝ e′[τ]

[Inst]

Ξ | Γ | ∆ ⊢ v1 : σ1 | ⟨ ⟩ ⇝ v′1 Ξ | Γ | ∆, x : σ1 ⊢ e2 : τ2 | ϵ ⇝ e′2
Γ ⊢ let x = v1 in e2 : σ2 | ϵ ⇝ (λϵ x : σ1. e′2) v′1

[Let]

op : ∀αk. τ1 → τ2 ∈ Σ(l) αk ̸∈ Ξ Ξ ⊢wf τ : k Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ perform op : (τ1 →⟨l | ϵ⟩ τ2)[αk := τ] | ϵ′ ⇝ performϵ op τ

[Perform]

Ξ | Γ | ∆ ⊨ h : τ | l | ϵ ⇝ h′ Ξ ⊢wf ϵ′ : eff
Ξ | Γ | ∆ ⊢ handler h : (()→⟨l | ϵ⟩ τ)→ ϵ τ) | ϵ′ ⇝ handlerϵ h′ [Handler]

opi : ∀αk
i . τ

i
1 → τ i

2 ∈ Σ(l) αk
i ̸∈ ftv(ϵ, τ)

Ξ | Γ | ∆ ⊢ vi : ∀αk
i . τ

i
1 → ϵ ((τ i

2 → ϵ τ)→ ϵ τ) | ⟨ ⟩ ⇝ v′i
Ξ | Γ | ∆ ⊨ {op1 → v1, . . . , opn → vn } : τ | l | ϵ ⇝ {op1 → v′1, . . . , opn → v′n }

[Ops]

Figure 10. Translation to System Fϵ+restrict

22 K. Ikemori et al.

Types
σ ::= αk (type variables of kind k)

| ck τ . . . τ (type constructor of kind k)
| σ→ ϵ σ (function type)
| ∀αk. σ (quantified type)

Kinds
k ::= ∗ (value type)

| k→ k (type constructors)
| eff (effect type (µ,ϵ))
| lab (basic effect (l))

Effect signature sig ::= { op1 : ∀α1. σ1 →σ′
1, . . ., opn : ∀αn. σn →σ′

n}
Effect signatures Σ ::= {l1 : sig1, . . ., ln : sign }
Type Constructors ⟨ ⟩ : eff empty effect row (total)

⟨_ | _⟩ : lab→ eff→ eff effect row extension

Syntax ⟨l1, . . ., ln⟩ .
= ⟨l1 | . . . | ⟨ln | ⟨ ⟩⟩ . . . ⟩

⟨l1, . . ., ln | µ⟩ .
= ⟨l1 | . . . | ⟨ln | µ⟩ . . . ⟩

ϵ ::= σeff, µ ::= αeff, l ::= clab

Figure 11. Types of System Fϵ+restrict

Expressions
e ::= v (value)

| e e (application)
| e[σ] (type application)
| handle h e (handler instance)
| restrict⟨l1,...,ln⟩ v (restrict)

Values
v ::= x (variables)

| λϵx : σ. e (abstraction)
| Λαk. e (type abstraction)
| handlerϵ h (effect handler)
| performϵ opσ (operation)

Handlers h ::= {op1 → f1, . . ., opn → fn }
Evaluation Context F ::= □ | F e | v F | Fσ

| restrict⟨l1,...,ln⟩ F
E ::= □ | E e | v E | Eσ

| handle h E | restrict⟨l1,...,ln⟩ E

(app) (λϵx : σ. e) v −→ e[x:=v]
(handler) (handlerϵ h) v −→ handle h (v ())
(return) handle h v −→ v
(perform) handle h E[perform opσ v] −→ f[σ] v k iff op ̸∈ bop(E) ∧ (op→ f) ∈ h

where op : ∀α. σ1 →σ2 ∈ Σ(l)
(restrict) restrict⟨l1,...,ln⟩ v −→ v

e −→ e′

E[e] 7−→E[e′]
[step]

bop(□) = ∅
bop(E e) = bop(E)
bop(v E) = bop(E)
bop(handle h E) = bop(E) ∪ {op | (op→ f) ∈ h }
bop(restrict⟨l1,...,ln⟩ E)= bop(E)

Figure 12. Expressions and Operational Sematics of Fϵ+restrict

Sound and Complete Type Inference for Closed Effect Rows 23

Γ
↑
⊢ e

↑
Fϵ

: σ
↓
| ϵ
↑

Γ
↑
⊢val v

↑
Fϵ

: σ
↓

Γ
↑
⊢ops h

↑
Fϵ

: σ
↓
| l
↓
| ϵ
↑

Γ ⊢ e : σ | ⟨l1, . . ., ln⟩ Γ ⊢wf ϵ : eff
Γ ⊢ restrict⟨l1,...,ln⟩ e : σ | ⟨l1, . . ., ln | ϵ⟩

[Restrict]
x : σ ∈ Γ

Γ ⊢val x : σ
[Var]

Γ, x : σ1 ⊢ e : σ2 | ϵ Γ ⊢wf σ1 : ∗
Γ ⊢val λϵ x : σ1. e : σ1 → ϵ σ2

[Lam]
Γ ⊢val v : σ Γ ⊢wf ϵ : eff

Γ ⊢ v : σ | ϵ
[Val]

Γ ⊢ e1 : σ2 → ϵ σ | ϵ Γ ⊢ e2 : σ2 | ϵ
Γ ⊢ e1 e2 : σ | ϵ

[App]

Γ ⊢ e : σ | ⟨ ⟩ αk ̸∈ ftv(Γ) k ̸≡ lab
Γ ⊢val Λαk.e : ∀α. σ

[TAbs]

Γ ⊢ e : ∀αk.σ1 | ϵ Γ ⊢wf σ′ : k
Γ ⊢ e [σ′] : σ[α:=σ′] | ϵ

[TApp]

op : ∀αk. σ1 →σ2 ∈ Σ(l) α ̸∈ ftv(Γ) Γ ⊢wf ϵ : eff
Γ ⊢val performϵ opσ : σ1[α

k :=σ]→⟨l | ϵ⟩σ2[α
k :=σ]

[Perform]

Γ ⊢ops h : σ | l | ϵ Γ ⊢ e : σ | ⟨l | ϵ⟩
Γ ⊢ handleϵ h e : σ | ϵ

[Handle]

Γ ⊢ops h : σ | l | ϵ
Γ ⊢val handlerϵ h : (()→⟨l | ϵ⟩σ)→ ϵ σ

[Handler]

opi : ∀αk. σ1 →σ2 ∈ Σ(l) αk ̸∈ ftv(Γ) Γ ⊢val vi : ∀αk. σ1 → ϵ ((σ2 → ϵ σ)→σ)

Γ ⊢ops {op1 → v1, . . ., opn → vn} : σ | l | ϵ
[OPs]

Figure 13. Typing Rules of Fϵ+restrict

24 K. Ikemori et al.

References

1.[1] Andrej Bauer, and Matija Pretnar. “Programming with Algebraic Effects and Han-
dlers.” Journal of Logical and Algebraic Methods in Programming 84 (1). Elsevier:
108–123. 2015.

2.[2] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. “Doo Bee
Doo Bee Doo.” In the Journal of Functional Programming, January. Jan. 2020. To
appear in the special issue on algebraic effects and handlers.

3.[3] Luís Damas, and Robin Milner. “Principal Type-Schemes for Functional Pro-
grams.” In Conference Record of the Ninth Annual ACM Symposium on Principles
of Programming Languages, Albuquerque, New Mexico, USA, January 1982, edited
by Richard A. DeMillo, 207–212. ACM Press. 1982. doi:10.1145/582153.582176.

4.[4] Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates.
“FreezeML: Complete and Easy Type Inference for First-Class Polymorphism.” In
Proceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, edited by Alastair F. Donaldson and Emina Torlak, 423–437. ACM. 2020.
doi:10.1145/3385412.3386003.

5.[5] Daniel Hillerström, and Sam Lindley. “Liberating Effects with Rows and Handlers.”
In Proceedings of the 1st International Workshop on Type-Driven Development,
TyDe@ICFP 2016, Nara, Japan, September 18, 2016, edited by James Chapman
and Wouter Swierstra, 15–27. ACM. 2016. doi:10.1145/2976022.2976033.

6.[6] Mark P. Jones. “A Theory of Qualified Types.” In 4th. European Symposium
on Programming (ESOP’92), 582:287–306. Lecture Notes in Computer Science.
Springer-Verlag, Rennes, France. Feb. 1992. doi:10.1007/3-540-55253-7_17.

7.[7] Ohad Kammar, and Gordon D. Plotkin. “Algebraic Foundations for Effect-
Dependent Optimisations.” In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 349–360. POPL
’12. ACM, New York, NY, USA. 2012. doi:10.1145/2103656.2103698.

8.[8] Ohad Kammar, and Matija Pretnar. “No Value Restriction Is Needed for Algebraic
Effects and Handlers.” Journal of Functional Programming 27 (1). Cambridge Uni-
versity Press. Jan. 2017. doi:10.1017/S0956796816000320.

9.[9] Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and
Tom Schrijvers. “Explicit Effect Subtyping.” J. Funct. Program. 30: e15. 2020.
doi:10.1017/S0956796820000131.

10.[10] Daan Leijen. “Extensible Records with Scoped Labels.” In Proceedings of the 2005
Symposium on Trends in Functional Programming, 297–312. 2005.

11.[11] Daan Leijen. “HMF: Simple Type Inference for First-Class Polymorphism.”
In Proceedings of the 13th ACM Symposium of the International Confer-
ence on Functional Programming. ICFP’08. Victoria, Canada. Sep. 2008.
doi:10.1145/1411204.1411245.

12.[12] Daan Leijen. “Koka: Programming with Row Polymorphic Effect Types.” In
MSFP’14, 5th Workshop on Mathematically Structured Functional Programming.
2014. doi:10.4204/EPTCS.153.8.

13.[13] Daan Leijen. “Type Directed Compilation of Row-Typed Algebraic Effects.”
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL’17), 486–499. Paris, France. Jan. 2017.
doi:10.1145/3009837.3009872.

14.[14] Sam Lindley, Connor McBride, and Craig McLaughlin. “Do Be Do Be
Do.” In Proceedings of the 44th ACM SIGPLAN Symposium on Principles

https://dx.doi.org/10.1145/582153.582176
https://dx.doi.org/10.1145/3385412.3386003
https://dx.doi.org/10.1145/2976022.2976033
https://dx.doi.org/10.1007/3-540-55253-7_17
https://dx.doi.org/10.1145/2103656.2103698
https://dx.doi.org/10.1017/S0956796816000320
https://dx.doi.org/10.1017/S0956796820000131
https://dx.doi.org/10.1145/1411204.1411245
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/3009837.3009872

Sound and Complete Type Inference for Closed Effect Rows 25

of Programming Languages (POPL’17), 500–514. Paris, France. Jan. 2017.
doi:10.1145/3009837.3009897.

15.[15] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly Types:
Type Inference For Generalised Algebraic Data Types. MS-CIS-05-26. Jul. 2004.
Microsoft Research.

16.[16] Gordon D. Plotkin, and John Power. “Algebraic Operations and Generic Effects.”
Applied Categorical Structures 11 (1): 69–94. 2003. doi:10.1023/A:1023064908962.

17.[17] Matija Pretnar. “Inferring Algebraic Effects.” Log. Methods Comput. Sci. 10 (3).
2014. doi:10.2168/LMCS-10(3:21)2014.

18.[18] Didier Rémy. “Type Inference for Records in Natural Extension of ML.” In Theo-
retical Aspects of Object-Oriented Programming, 67–95. 1994. doi:10.1.1.48.5873.

19.[19] John Alan Robinson. “A Machine-Oriented Logic Based on the Resolution Princi-
ple.” J. ACM 12 (1): 23–41. 1965. doi:10.1145/321250.321253.

20.[20] Andrew K. Wright. “Simple Imperative Polymorphism.” LISP Symb. Comput. 8
(4): 343–355. 1995.

21.[21] Ningning Xie, and Daan Leijen. “Effect Handlers in Haskell, Evidently.” In Pro-
ceedings of the 2020 ACM SIGPLAN Symposium on Haskell. Haskell’20. Jersey
City, NJ. Aug. 2020. doi:10.1145/3406088.3409022.

22.[22] Ningning Xie, and Daan Leijen. “Generized Evidence Passing for Effect Handlers
– Efficient Compilation of Effect Handlers to C.” In Proceedings of the 26th ACM
SIGPLAN International Conference on Functional Programming (ICFP’2021).
ICFP ’21. Virtual. Aug. 2021.

https://dx.doi.org/10.1145/3009837.3009897
https://dx.doi.org/10.1023/A:1023064908962
https://dx.doi.org/10.2168/LMCS-10%25283:21%25292014
https://dx.doi.org/10.1.1.48.5873
https://dx.doi.org/10.1145/321250.321253
https://dx.doi.org/10.1145/3406088.3409022

Named Arguments as Records
(Research Paper)

Yaozhu Sun? and Bruno C. d. S. Oliveira

The University of Hong Kong, China
{yzsun,bruno}@cs.hku.hk

Abstract. Named arguments are commonly supported in mainstream
programming languages. However, there has been little work on formal-
izing the design of named arguments.
This paper shows a minimal calculus that encodes named arguments
as a form of records. Our design is based on a variant of record types,
which allows optional fields and introduces two alternative notions of
open-bindings and failable projections. With this design, we are able to
model an expressive form of named arguments, which supports optional
arguments as well. In our design, named arguments are commutative, and
they are distinct from positional arguments. We present an extension to
λ<: and discuss its semantics. Our main goal is to obtain a calculus that
is as simple as possible but still captures most of the desirable features
for named arguments.

Keywords: Named arguments · Optional arguments · Record types

1 Introduction

The λ-calculus, introduced by Alonzo Church, shows us how to model com-
putation solely with function abstraction and application. In the λ-calculus, a
function only has one parameter and can only be applied to one argument.
Many programming languages in the ML family inherit this feature. If we want
a function with multiple arguments in those languages, we need to turn it into
a sequence of functions, each with a single argument, which is called currying.
Currying brings brevity to functional programming and naturally allows partial
application, but it also limits the flexibility of function application. For example,
we cannot pass arguments in a different order nor omit some of them by provid-
ing default values. Both demands are not rare at all in practical programming
and can be met in a language that supports named arguments.

Named arguments are commonly supported in mainstream programming lan-
guages, such as C#, Python, Ruby, and Scala, just to name a few. The earliest
instance, to the best of our knowledge, is Smalltalk, where every argument must
be associated with a keyword. The syntax of modern languages is usually less
rigid, so programmers can choose whether to attach keywords to arguments or
? The main author is a student.

2 Y. Sun and B.C.d.S. Oliveira

def exp(x, base=math.e):
return base ** x

exp(10) #= exp(x=10) = 22026
exp(base=2, x=10) #= 1024

(a) The Python way

def exp(x:, base: Math::E)
base ** x

end
exp(10) # ArgumentError!
exp(base: 2, x: 10) #= 1024

(b) The Ruby way

Fig. 1: Named arguments in two different ways

not. More specifically, there are two ways to handle named arguments. The more
common way, shown in Fig. 1a, is to make variable names in the function defini-
tion as optional keywords. Thus every argument can be passed with or without
keywords. As shown in the Python code, exp(10) is equivalent to exp(x=10).
To reconcile the two forms, a restriction is imposed that all positional arguments
have to appear to the left of named ones. The other way, shown in Fig. 1b, is
to strictly distinguish named arguments from positional ones. In Ruby, a named
parameter should end with a colon even if it does not have a default value. There-
fore, they are distinct from positional parameters, and their keywords cannot be
omitted in a function call. In fact, these named arguments are desugared to a
hash map.

Although named arguments are ubiquitous in practical programming, they do
not attract enough attention in the research of programming languages. Among
the few related papers, the work by Garrigue et al. [1,3,6] formalizes a label-
selective λ-calculus and eventually applies it to OCaml [5]. We will discuss it
in detail in Section 2.1. Another work by Rytz and Odersky [10] discusses the
design of named and optional arguments in Scala but does not formalize it. In
Haskell, the paradigm of named arguments as records is folklore, which will be
elaborated in Section 2.2. From previous work in the literature, we identify four
design choices related to named arguments:

1. Commutativity : whether the order of arguments can be different from that
in the original definition.

2. Optionality : whether some arguments can be optional if their default values
are given.

3. Distinctness: whether named arguments are distinct from positional argu-
ments.

4. Currying : whether a function that takes more than one argument is always
converted into a chain of functions that each take a single argument.

The first two properties hold for most mainstream programming languages
that support named arguments. Commutativity and optionality are so useful
that they should not be compromised. The third design is endorsed by Ruby and
Racket, and we find it more intuitive than mixing two forms of arguments, so we
advocate distinguishing them. In other words, we have to add argument keywords
in the function application as long as they defined to be named. The last one,

Named Arguments as Records 3

currying, is important for functional languages. OCaml manages to integrate
currying with commutativity, at the cost of introducing a very complicated core
calculus. We agree that currying is very useful when we use normal positional
arguments, but we argue that currying can be temporarily dropped when we use
named arguments because the most common use case for named arguments is
to represent a whole chunk of parameters like settings.

In this paper, we propose a new approach by desugaring named arguments
into records in a minimal core calculus. The approach is simpler than the OCaml
way and avoids some drawbacks of the design pattern used in Haskell. To some
degree, we absorb the design pattern into the language support. Our approach
supports commutativity and optionality but does not support currying when
using named arguments. This is a trade-off between simplicity and expressive-
ness. Nevertheless, users have the right to choose either to use named arguments
without currying or to use positional arguments with currying.

To make it clear, our goal is not to find a solution that is as powerful as
OCaml has, but to propose a core calculus that is as simple as possible but
still supports named and optional arguments via desugaring. We believe such
a simple calculus leads to less feature interaction when integrated with other
languages.

Our source language benefits from named arguments in two aspects. On the
one hand, argument keywords serve as extra documentation at the language
level. We do not need to open the code in an IDE and look up the definition
of a function to figure out for what its arguments are used. This design is more
friendly to those users who read code literally. Moreover, keywords are part
of a function type, so we can know more from the type information without
referring to ad-hoc documentation. On the other hand, named arguments lay
the foundation for supporting commutativity and optionality. Without argument
keywords, it is unclear how to naturally support these useful features.

In summary, the contributions of this paper are:

– We document the folklore paradigm of named arguments as records in Haskell.
– We demonstrate how a functional language with named and optional argu-

ments can be desugared to a minimal core calculus.
– We propose two core calculi supporting optional fields in record types, which

extend λ<: with open-bindings and failable projections respectively.
– In order to give a correct small-step operational semantics to open-bindings,

we explore environment-based evaluation with closures instead of using tex-
tual substitution.

2 Named Arguments in Existing Functional Languages

In this section, we review the techniques used for named arguments in two exist-
ing functional languages, namely OCaml and Haskell. We will explain why their
approaches still have some drawbacks.

4 Y. Sun and B.C.d.S. Oliveira

2.1 OCaml

Originally, just like other languages in the ML family, OCaml did not support
named arguments. Later, Garrigue et al. [1,3,6] conducted research on the label-
selective λ-calculus and implemented it in OLabl [4]. OLabl extended OCaml
with labeled and optional arguments, among others. All features of OLabl were
merged into OCaml 3, though with subtle differences [5].

Here is an example of the exponential function defined in a labeled style:

let exp ?(base = 2.71828) x = base ** x
(* val exp : ?base:float → float → float = <fun> *)
exp 10.0 (*= 22026. *)
exp 10.0 ~base:2.0 (*= 1024. *)
(exp 10.0) ~base:2.0 (* TypeError! *)

In the definition of exp, base is an optional labeled parameter while x is a normal
positional parameter. We cannot change x into a second labeled parameter here
because OCaml imposes a restriction that there must be a positional parameter
after all optional parameters. This restriction is at the heart of how OCaml re-
solves the ambiguity introduced by currying. For example, consider the function
application exp 10.0. Is it a partially applied function or a fully applied one
using the default value of base? The presence of the positional argument (x in
this example) is used to decide whether such a function has been fully applied.
So exp 10.0 is considered to be a full application because x is already given.
However, this feature may confuse users since (exp 10.0) ~base:2.0 will raise
a type error but exp 10.0 ~base:2.0 will not. Currying does not seem to hold
in such a situation.

In OCaml, optional arguments are internally implemented as option types.
Here is an equivalent definition for exp, together with two examples of the trans-
formation of optional arguments:

let exp ?base x =
let base = match base with None → 2.71828 | Some b → b in
base ** x

(* val exp : ?base:float → float → float = <fun> *)
exp 10.0 (*> exp 10.0 ~base:None *)
exp 10.0 ~base:2.0 (*> exp 10.0 ~base:(Some 2.0) *)

This encoding is quite natural, but it assumes option types to be built in.
Unfortunately, there are plenty of languages that do not regard option as a
built-in type, especially in those languages that do not support algebraic data
types.

In short, the OCaml way cannot scale smoothly. OCaml has a very powerful
label-selective core calculus that reconciles commutativity and currying, but it is
quite complicated, hindering its integration with other languages. The assump-
tion of option types makes the situation even worse. In contrast to OCaml, we
want a minimal core calculus that supports named and optional arguments via
desugaring.

Named Arguments as Records 5

data Settings = Settings
{ settingsPort :: Port
, settingsHost :: HostPreference
, settingsTimeOut :: Int
, ...
}

(a) The record type containing settings

defaultSettings = Settings
{ settingsPort = 3000
, settingsHost = "*4"
, settingsTimeout = 30
, ...
}

(b) Default values

runSettings :: Settings → Application → IO ()
runSettings = ...

main :: IO ()
main = runSettings settings app

where settings = defaultSettings { settingsPort = 4000
, settingsHost = "*6" }

(c) Update some settings before running a server application

Fig. 2: Named arguments as records in Haskell

2.2 Haskell

Unlike OCaml, Haskell does not support named arguments natively. However,
the paradigm of named arguments as records has long existed in the Haskell com-
munity. Although we have to uncurry a function to have all parameters labeled
in a record, it is clearer and more human-readable, especially when different pa-
rameters have the same type. For example, in the web server library warp [11],
various server settings are bundled in the data type Settings, as shown in Fig. 2.
It is obvious how named arguments correspond to record fields, but it needs some
thought on how to encode default values for optional arguments. The simplest
approach, also used by warp, is to define a record defaultSettings. Users can
update whatever fields they want to change while keeping others.

Such an approach works fine here but still has two drawbacks. The first issue
is the dependency on defaultSettings. It is awkward for users to look for a
record containing particular default values, especially when there are quite a few
similar records in a library. A better solution is to change the parameter from
concrete Settings to a function that updates Settings:

runSettings’ :: (Settings → Settings) → Application → IO ()
runSettings’ update = runSettings (update defaultSettings)

main :: IO ()
main = runSettings’ update app

where update settings = settings { settingsPort = 4000
, settingsHost = "*6" }

6 Y. Sun and B.C.d.S. Oliveira

With the new interface, users do not need to look for default values anymore, and
the use of runSettings’ is fully decoupled from defaultSettings. However,
this design still has the second drawback: all arguments are optional. Sometimes
we do not want to provide any default value for some argument, settingsPort
for example, and users are required to fill it in. A workaround employed by
SqlBackend in the library persistent [7] is to have another function that takes
required arguments and supplements default values for optional arguments:

{-# language DuplicateRecordFields, RecordWildCards #-}

data ReqSettings = ReqSettings { settingsPort :: Port }

mkSettings :: ReqSettings → Settings
mkSettings ReqSettings {..} =

Settings { settingsHost = "*4", settingsTimeout = 30, .. }

Although the new mkSettings function solves the second issue, there is a re-
gression concerning the first issue: users have to look for mk* functions now.
Fortunately, we can harmonize the essence of both design patterns to develop a
third approach:

{-# language DuplicateRecordFields, RecordWildCards #-}

data OptSettings = OptSettings { settingsHost :: HostPreference
, settingsTimeOut :: Int }

runSettings’’ :: (OptSettings → Settings) → Application → IO ()
runSettings’’ update = runSettings (update defaultSettings)

where defaultSettings = OptSettings { settingsHost = "*4"
, settingsTimeout = 30 }

main :: IO ()
main = runSettings’’ update app

where update OptSettings {..} =
Settings { settingsPort = 4000, .. }

{ settingsHost = "*6" }

This last approach is probably the best practice at the moment in Haskell,
though it is already complicated for novices and requires two GHC language
extensions. Of course, there could be other approaches we did not mention to
encoding named and optional arguments in Haskell. Users may get users confused
about the various available design patterns. This is partly due to the lack of the
language support for named arguments. We believe it is better for a functional
language to provide some standard syntax instead.

Named Arguments as Records 7

3 Encoding Named Arguments as Records

In this section, we demonstrate our approach to encoding named and optional
arguments. Two possible ways of desugaring are presented, both of which are
based on a minimal extension of λ<:. The first one adds open-bindings while the
second one adds failable projections. A new kind of record type with optional
fields is also needed for type safety.

3.1 Desugaring with Open-Bindings

Let us revisit the example of the exponential function. This time, exp is defined
and applied using our source language in ML-like syntax:

exp { x: Double; base: Double = 2.71828 } = base ** x

exp { x = 10.0 } --> 22026.
exp { x = 10.0; base = 2.0 } --> 1024.
exp { base = 2.0; x = 10.0 } --> 1024.

In the definition of exp, we provide the default value for base. When applying
exp, we can choose whether to pass base or not as long as the required argument
x is present. We can freely swap the order of x and base while keeping the
meaning of each argument clear.

Desugared code. How does it work? Actually, we desugar the previous definition
of exp to a core expression of this form:

exp = λargs: { x: Double }. let base = 2.71828 in
open args in -- let x = 10.0 in let base = 2.0 in
base ** x ----------------- shadowing!

The first thing to note is that the type of args does not contain any optional
argument. Here, we leverage width subtyping between record types to accept
additional arguments. That is why the record type only contains required argu-
ments like x.

In the desugared definition, the most interesting part is the open-binding on
the second line. It will dynamically convert each field within the record into a
corresponding let-binding. While optional arguments are already bound to their
default values, the new values in the argument record, if provided by users,
will shadow the previous let-bindings. Note that we cannot statically convert
open-bindings to let-bindings because we cannot know what optional fields are
available in the record args until run time. In other words, open is a dynamic
operation that inspects the evaluated value of the argument record.

A stricter open. Although our desugaring works fine so far, one may have a
concern about accidental shadowing caused by open-bindings. For example, if
a user applies exp to { x = 10.0; foo = "bar" }, the field foo may cause
accidental shadowing if this variable has already been defined. To avoid such an

8 Y. Sun and B.C.d.S. Oliveira

embarrassing situation, we propose a stricter version of open with a permitted
label set. The given labels limit the range of fields that can be opened. With this
version of open, the desugared code can be rewritten like this:

exp = λargs: { x: Double }. let base = 2.71828 in
open base, x of args in
base ** x

However, this stricter version is still unsatisfying in terms of type safety. We will
revisit open-bindings in Section 3.3.

3.2 Desugaring with Failable Projections

In the first way of desugaring, we said that open-bindings cannot be statically
converted to let-bindings because the presence of optional fields is unknown
until run time. Thus we cannot guarantee that record projections are always
safe. But what if we allow failable projections? In OCaml, option types are
used to represent such a failable result. As we have argued, we want to keep
the core calculus as simple as possible, so we choose to provide default values
for failable projections instead. It can be regarded as eliminating option values
with the Option.value function immediately. (Option.value is equivalent to
fromMaybe in Haskell.)

Desugared code. With failable projections, the previous definition of exp is de-
sugared into a core expression of this form:

exp = λargs: { x: Double }.
let base = args.base ? 2.71828 in -- failable projection
let x = args.x in -- definitely safe projection
base ** x

The syntax of failable projection is e1.` ? e2. If a field of the form {` = v} is
present in e1 then v is returned, otherise use e2 as a default. Note that the second
projection is definitely safe because the type of args ensures that x is present.

Lazy evaluation. In most situations, failable projections and the stricter version
of open-bindings are equally valid. But one thing to note is that failable pro-
jections have better compatibility with lazy evaluation. This issue is about the
strict evaluation of e1 in the expression open e1 in e2. For example, consider the
following code:

const = λargs: Top. let foo = 0 in open args in 48
const { foo = undefined }

Here, we assume undefined to be a stuck term. The application of const is
certainly stuck since the argument is strictly evaluated. This is not a bug but a
feature in the call-by-value λ-calculus. To avoid this, we can employ call-by-name
evaluation, but our open-bindings do not have a lazy version. The evaluation
will still be stuck when evaluating args in the expression open args in

Named Arguments as Records 9

Therefore, we have to choose an alternative way using failable projections and
lazy let-bindings:

const = λargs: Top. let foo = args.foo ? 0 in 48
const { foo = undefined }

Since foo is unused, the expression args.foo ? 0 is never evaluated. Thus the
code terminates in a call-by-name semantics.

3.3 Toward Type Safety

There is still a serious problem in our approach: neither open-bindings nor fail-
able projections are type-safe! To address this problem, we need to provide the
type system with more information about optional fields. The way of desugaring
should be changed a bit:

exp : { x: Double; base: Double = 2.71828 } = ...
-- will be desugared to:
exp = λargs: { x: Double | base?: Double }. ...

In the type of args in the desugared code, the optional argument base is ap-
pended after a vertical bar. The question mark after the label is used to visually
distinguish optional fields from required ones. With the extra type information,
we can do more checks to ensure type safety.

Open-bindings. Even with the stricter version of open, we could not guarantee
that every opened argument has the same type as its default value. After we
include optional fields in the parameter type, the desugared code is now:

exp = λargs: { x: Double | base?: Double }.
let base = 2.71828 in open args in base ** x

Since we statically know the names and types of the optional arguments from the
type of args, we can check if they are bound with default values of appropriate
types before args are opened. At call sites, optional arguments are also checked
against the parameter type to ensure that they have the correct types. Further-
more, passing undeclared arguments is forbidden to avoid accidental shadowing.

Failable projections. A similar issue can be found in the approach with failable
projections: we cannot guarantee that the value we obtain from a projection has
the same type as the default value. But with the new way, the desugared code
is now:

exp = λargs: { x: Double | base?: Double }.
let base = args.base ? 2.71828 in let x = args.x in base ** x

When type checking args.base ? 2.71828, we can statically know the potential
type of the base field. It is easy to make sure the failable projection is type-safe
by comparing that type and the type of the default value.

10 Y. Sun and B.C.d.S. Oliveira

4 Formalization of Core Calculi

After the informal introduction of language constructs in the core calculi, we go
deep into the formalization in this section. We formalize failable projections and
open-bindings in λproj and λopen, respectively. As demonstrated before, either
of the two calculi is enough to encode named arguments. Furthermore, a special
record type with extra information about optional fields is added to keep both
calculi type-safe.

4.1 Syntax and Semantics of λproj

The syntax of λproj is presented in Fig. 3. The λ<: components are standard
as we follow the formalization in Software Foundations [8], except that we use
bidirectional typing [2] to make typing rules clear and evaluation contexts [9] to
simplify evaluation rules. Therefore, we focus on the novel parts about failable
projections and record types with optional fields. It is worth noting that all of our
new rules are modularly added, which means no existing rules need modification.

Subtyping. The subtyping rules are inherited from λ<: intact, including ordinary
record subtyping (width, depth, and permutation subtyping). Note that there
is no subtyping relation with respect to the record types with optional fields.
Consequently, these types will never go through the rule of subsumption.

Typing. Following the convention of bidirectional typing, we use Γ ` e ⇒ A to
denote type inference and Γ ` e ⇐ A to denote type checking. There is no rule
that infers an expression to be a record type with optional fields, so such a type
can only occur in parameters that are annotated by users. When a function is
applied to optional arguments, the argument is checked against the parameter
type, that is, a record type with optional fields. Such a check is handled by
T-OptRcd in Fig. 4. In essence, optional fields add a lower bound to a record

Types A,B ::= > | A→ B | {` : A} | {`i : Ai | `j? : Aj}

Expressions e ::= x | λx : A. e | e1 e2 | let x = e1 in e2 |

{` = e} | e.` | e1.` ? e2
Values v ::= λx : A. e | {` = v}
Evaluation Contexts E ::= � | E e | v E | let x = E in e |

{`i = vi; ` = E; `j = ej} | E.` | E.` ? e
Typing Environments Γ ::= · | Γ, e : A

Fig. 3: Syntax of λproj

Named Arguments as Records 11

T-OptRcd
Γ ` e⇒ A {`i : Ai; `j : Aj} <: A <: {`i : Ai}

Γ ` e⇐ {`i : Ai | `j? : Aj}

T-OptProj
Γ ` e1 ⇒ {`i : Ai | `j? : Aj ; `? : A; `j′? : Aj′} Γ ` e2 ⇒ A

Γ ` e1.` ? e2 ⇒ A

Fig. 4: Typing rules of optional fields and failable projections

E-ProjSome
{`i = vi; ` = v; `j = vj}.` ? e2 −→ v

E-ProjNone
` /∈ {`i}

{`i = vi}.` ? e2 −→ e2

Fig. 5: Evaluation rules of failable projections

type. The record type {`i : Ai} without optional fields still acts as the upper
bound; meanwhile, we construct another ordinary record type {`i : Ai; `j : Aj}
consisting of both optional and required fields as the lower bound. The inferred
type of a record should lie between the two bounds. The typing rule of failable
projections is also shown in Fig. 4. T-OptProj checks if the field with label `
has the same type as e2. If not, type checking fails.

Operational semantics. As shown in Fig. 5, there are two evaluation rules about
failable projections: E-ProjSome succeeds in finding the field {` = v} and steps
to v, while E-ProjNone steps to e2 since ` is absent in the record.

4.2 Syntax and Semantics of λopen

The syntax of λopen is presented in Fig. 6. The components about optional fields
are omitted since they are the same as those introduced in λproj. The extension
of open-bindings is more difficult than failable projections because we have to
employ a different operational semantics. The root cause is that open-bindings
are incompatible with textual substitution. Since a substitution eagerly replaces
all occurrences of a variable by traversing the syntax tree, open-bindings cannot
foresee whether a substitution is shadowed by the labels to be opened before the
record is evaluated. For example, consider such an expression:

let x = 1 in let args = { x = 2 } in open args in x

It evaluates to 1 if we evaluate let-bindings with substitution. The substitution of
let x = 1 is not shadowed by open args because the record args has not been
evaluated and the labels it contains are unknown at this moment. Therefore, we
abandon substitution and propose a environment-based operational semantics
with closures.

12 Y. Sun and B.C.d.S. Oliveira

Expressions e ::= x | λx : A. e | e1 e2 | {` = e} | e.` |

let x = e1 in e2 | open e1 in e2 | 〈∆ | e〉

Values v ::= 〈∆ | λx : A. e〉 | {` = v}

Evaluation Contexts E ::= � | E e | v E | {`i = vi; ` = E; `j = ej} | E.` |

let x = E in e | open e1 in e2

Valuation Environments ∆ ::= · | ∆, x 7→ v

Fig. 6: Syntax of λopen

E-Var
x 7→ v ∈ ∆
∆ ` x −→ v

E-Abs
∆ ` λx : A. e −→ 〈∆ | λx : A. e〉

E-App
∆ ` 〈∆′ | λx : A. e〉 v −→ 〈∆′, x 7→ v | e〉

E-Proj
∆ ` {`i = vi; ` = v; `j = vj}.` −→ v

E-Let
∆ ` let x = v1 in e2 −→ 〈∆, x 7→ v1 | e2〉

E-Open
∆ ` open {` = v} in e −→ let ` = v in e

E-Closure
∆′ ` e −→ e′

∆ ` 〈∆′ | e〉 −→ 〈∆′ | e′〉

E-ClosureV
∆ ` 〈∆′ | v〉 −→ v

E-Context
∆ ` e −→ e′

∆ ` E[e] −→ E[e′]

Fig. 7: Environment-based evaluation rules of λopen

T-Open
Γ, `j : Aj ` e1 ⇒ {`i : Ai | `j? : Aj} Γ, `j : Aj , `i : Ai ` e2 ⇒ B

Γ, `j : Aj ` open e1 in e2 ⇒ B

Fig. 8: The typing rule of open-bindings

Named Arguments as Records 13

Operational semantics. As shown in Fig. 7, a valuation environment ∆, which
binds variable names to their corresponding values, is added to each evaluation
rule. The expression 〈∆ | e〉 saves an environment inside so that evaluation can
later resume with a saved environment, among which 〈∆|λx : A. e〉 is well knwon
as a function closure. Briefly speaking, closures are used to ensure lexical scoping.
The extension of open-bindings is rather simple: E-Open converts open-bindings
to let-bindings depending on the evaluated result of the record.

Typing. The typing rule of open-bindings in Fig. 8 may need some explaining.
T-Open first figures out the optional fields from the type of e1 and checks if
these names are already in the typing environment. This is because we assume
that all optional arguments have their default values defined in advance. If the
requirement is met, we go on to calculate the type of e2 with the type information
of all fields appended to the environment. By the way, the check of an open-
binding degenerate into something like a check of multiple let-bindings if there
is no optional fields.

Remarks. Overall, we prefer λproj to λopen because we want to keep the exten-
sion to λ<: as simple as possible. Although the operational semantics of λopen
is unusual, the implementation of open-bindings should not be harder than fail-
able projections since we seldom use textual substitution owing to inefficiency.
Instead, a practical implementation is probably more close to our closure-based
operational semantics. Moreover, an open-binding itself is a useful language con-
struct, similar to the open directive in the ML module system or record wildcards
in Haskell. It is also interesting to us that a seemingly concise design can finally
lead to a relatively sophisticated formalization.

5 Conclusion

Named and optional arguments are widely supported in object-oriented pro-
gramming languages but are hardly formalized. Garrigue et al. formalized a
label-selective λ-calculus for OCaml that combines commutativity and currying,
but it is non-trivial to be integrated with other sophisticated λ-calculi. OCaml
goes to the extreme of pursuing fancy features, while Haskell goes to the other
extreme of lacking native support for named arguments. It is well known in
Haskell that named arguments can be encoded as records, but it requires a lot of
boilerplate code to support both required and optional arguments. In this paper,
we presented a minimal extension to λ<: that serves as a type-safe core calculus.
Based on two alternative ways of desugaring, named and optional arguments can
be encoded as records.

Although we keep the calculus as simple and modular as possible, it is impos-
sible to avoid every potential conflict caused by feature interaction. If a language
is simply incompatible with subtyping, for an extreme example, our approach
does not work. Nevertheless, we believe that our approach works in most sit-
uations. We hope that functional language designers who are concerned about
named arguments can benefit from this paper.

14 Y. Sun and B.C.d.S. Oliveira

Future work. We plan to prove the type soundness of λproj and λopen using Coq
in the near future. Moreover, it is worth investigating how to adapt our approach
for a record calculus that uses row polymorphism rather than subtyping.

Acknowledgments. This work has been sponsored by the Hong Kong Research
Grant Council project numbers 17209519, 17209520, and 17209821.

References

1. Aït-Kaci, H., Garrigue, J.: Label-selective lambda-calculus: syntax and confluence.
Theor. Comput. Sci. 151(2) (1995)

2. Dunfield, J., Krishnaswami, N.: Bidirectional typing. ACM Comput. Surv. 54(5)
(2021)

3. Furuse, J.P., Garrigue, J.: A label-selective lambda-calculus with optional argu-
ments and its compilation method. Tech. rep., Kyoto University (1995)

4. Garrigue, J.: Objective Label trilogy, http://wwwfun.kurims.kyoto-u.ac.jp/
soft/olabl/

5. Garrigue, J.: Labeled and optional arguments for Objective Caml. In: JSSST SIG-
PPL (2001)

6. Garrigue, J., Aït-Kaci, H.: The typed polymorphic label-selective lambda-calculus.
In: POPL (1994)

7. Parsons, M.: Persistent: type-safe, multi-backend data serialization, https://
hackage.haskell.org/package/persistent

8. Pierce, B.C., et al.: Programming Language Foundations, Software Foundations,
vol. 2. https://softwarefoundations.cis.upenn.edu/plf-current/

9. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2) (1975)

10. Rytz, L., Odersky, M.: Named and default arguments for polymorphic object-
oriented languages. In: SAC (2010)

11. Snoyman, M.: Warp: a fast, light-weight web server for WAI applications, https:
//hackage.haskell.org/package/warp

http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/
https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/persistent
https://softwarefoundations.cis.upenn.edu/plf-current/
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/warp

Towards Efficient Adjustment of Effect Rows

Naoya Furudono, Youyou Cong, Hidehiko Masuhara, and Daan Leijen
1 Tokyo Institute of Technology, Japan
naoyafurudono@prg.is.titech.ac.jp
2 Tokyo Institute of Technology, Japan

cong@c.titech.ac.jp
3 Tokyo Institute of Technology, Japan

masuhara@acm.org
4 Microsoft Research, USA

daan@microsoft.com

Abstract. Koka is a functional programming language with native sup-
port for algebraic effects and handlers. To implement effect handler oper-
ations efficiently, Koka employs a semantics where the handlers in scope
are passed down to each function as an evidence vector. At runtime,
these evidence vectors are adjusted using the open constructs to match
the evidence for a particular function. All these adjustments can cause
significant runtime overhead. In this paper, we present a novel trans-
formation on the Koka core calculus that we call open floating. This
transformation aims to float up open constructs and combine them in
order to minimize the adjustments needed at runtime. Open floating im-
proves performance by 2.5× in an experiment. Furthermore, we formalize
an aspect of row-based effect typing, including the closed prefix relation
on effect rows that is required for our transformation to be sound.

1. Introduction
Several implementation strategies of algebraic effect handlers [13] have been
proposed for performance [2, 14, 18, 19]. Algebraic effect handlers are language
feature for user-defined effects. For instance, using effect handlers, we can sup-
port exception, asynchronous programming, nondeterminism, and so on not as
builtin features but as libraries. While effect handlers are convenient, they incur
more runtime overhead compared to native effects. In order to fill in the gap
of the performance, suitable semantics have been explored. For example, the
Koka language [7, 8, 19] employs the evidence passing semantics [19] for the
core calculus.

The key idea of the semantics is to pass around a vector of handler implemen-
tations, called an evidence vector, and propagate it to algebraic effect operation
calls, exposing optimization opportunities. The row-based type-and-effect sys-
tem ensures the correctness of the dynamic semantics, where the static effect
row type corresponds directly to the shape of the dynamic evidence vector at
runtime.

The Koka compiler automatically inserts open constructs during type infer-
ence so that adjust evidence vectors at runtime. Let us consider a function call

2 N. Furudono et al.

as an example. Suppose that a function of type int→〈exn 〉 int, which expects an
evidence vector of shape 〈〈exn : ..〉〉 to be passed, is called in the context with ef-
fect 〈exn, read 〉, which provides an evidence vector of 〈〈exm : .., read : ..〉〉. The
compiler detects the mismatch and wraps the function by open to adjust the
runtime vector from 〈〈exn : .., read : ..〉〉 to 〈〈exn : ..〉〉.

Unfortunately, each adjustment incurs runtime cost and, being type-directed,
the automatic insertion tends to generate many redundant open calls around
function applications. In this paper, we present the open floating algorithm to
remove such opens as a compiler optimization. The algorithm first removes ex-
isting opens in a top-down way and then re-assign effect adjustment constructs
back in a bottom-up traversal. The re-assignment is driven by the (now) ex-
plicit effect types, ensuring preservation of the meaning of programs. To give
the reader a rough idea of the algorithm, we present programs before and after
open floating.

handler { ask 7→λx. λk. k 3 }λ_.
let x = open 〈read 〉 safediv(3, 2) in
let y = open 〈read 〉 safediv(3, x) in
open 〈read 〉 safediv(3, y)

⇝

handler { ask 7→λx. λk. k 3 }λ_.
restrict 〈 〉 (

let x = safediv(3, 2) in
let y = safediv(3, x) in
safediv(3, y))

Observe that the program on the left has three opens, whereas the one on the
right only has a single restrict construct. Both open and restrict perform the same
adjustment thus the transformation decreases the number of adjustments. The
restrict construct can be applied to general expressions, not just functions. This
is essential to share a single adjustment over multiple function applications.

In Section 2, we give the overview of our study, and following sections include
listed contributions.

– We define System Fpwo, a system of effect handlers with the open construct.
The system is the core calculus of the Koka language, and is an extension
of System Fpw by Xie and Leijen [19]. We elaborate on effect typing in the
extended system, showing

• an advantage of using rows for effect types rather than sets, which are
popular in effect handler calculi [1, 15]

• how the type system checks the use of effect handlers
• an effect type restriction on open, which we call the closed prefix relation

(Section 3.4).

In particular, the closed prefix relation clarifies what program transforma-
tions are allowed. This helps us define open floating.

– We give a formal definition of the open floating algorithm, which floats up
redundant opens (Section 4).

– We implemented open floating in the Koka compiler [10]. Here we did not
extend the internal compiler core syntax with restrict but were able to express
the necessary scoping by simply using open and lambda expressions and
matching on this particular form in the backend.

Towards Efficient Adjustment of Effect Rows 3

– We evaluated open floating via a preliminary benchmark (Section 5). where
it improves performance by 2.5×. Based on the results, we make it clear that
what kind of programs benefit from open floating.

We discuss future work in Section 6 and related work in Section 7.

2. Overview
In this section, we give an overview of open floating. We first give an overview of
the calculus of study, and explain the need for open. We then show an example
with redundant opens and describe the idea of our solution.

2.1. Effect Handlers
Algebraic effects are declared with an effect label l and a list of operation sig-
natures. For instance, suppose we have a read effect with a single operation ask,
which takes a unit argument and returns an integer value.

read : { ask : ()→ int }

An effect handler for read specifies what the ask operation should do when it is
called in the handled expression.

handler { ask→λ_. λk. k 3 }λ_. perform ask () + perform ask ()

In this example, perform ask () calls operation ask with argument (), which is
evaluated to 3 according to the handler. The behavior of an operation call is
formalized as follows: (1) find the innermost handler of the effect, (2) capture
the resumption – continuation delimited by the handler –, and (3) apply the
handler clause to the argument and the resumption.

1. handler { ask→λ_. λk. k 3 }λ_. perform ask () + perform ask ()
2. resume = λz.handler { ask→λ_. λk. k 3 }λ_. z + perform ask ()
3. (λ_. λk. k 3) () resume

The handler resumes the resumption with argument 3, so that the example is
evaluated to the following.

handler { ask→λ_. λk. k 3 }λ_. 3 + perform ask ()

The two occurrences of perform ask () are both evaluated to 3, therefore the whole
expression is evaluated to 6.

Using effect handlers, it is easy to combine different effects in a single pro-
gram. Let us combine read with the exception effect exn, which has an operation
throw of type ∀α.int→α

exn : { throw : ∀α.int→α }

Using a handler for exn as we did for read, we can perform the throw operation.

handler { ask 7→λx. λk. k 3 } (λ_.
handler { throw 7→λx. λk. x } (λ_.

perform ask () + perform ask () + perform throw 1))

4 N. Furudono et al.

In this program, perform ask () is evaluated to 3 as before, but the entire ex-
pression is evaluated to 1 due to perform throw 1. The handler for the throw
operation discards the resumption k and returns the argument x, which exits the
computation out of the handler expression.

2.2. Evidence Passing Semantics and Row-based Effect System
Among different formalizations of the dynamic semantics of effect handlers, we
adopt the evidence passing semantics (EPS) [19], which utilizes the invariants
given by the row-based effect system and allows the compiler to translate pro-
grams to efficient code.

Under the EPS, we pass all handlers in scope to the handled expression so
that operation calls can access their handler locally. The operation clauses passed
to expressions are represented as an evidence vector [18]. For instance, in the read
and exn example discussed above, the expression perform ask () is performed with
the evidence vector of the form 〈〈exn : {throw 7→ . . .}, read : {ask 7→ . . . }〉〉. Xie
and Leijen [19] show that EPS often allow us to avoid lookups and resumption
captures, which are one of main sources of inefficiency in effect handler execution.

The static semantics of our calculus is defined by a row-based effect system.
In the effect system, every expression is related to an effect row type in addition
to a usual type. Effect rows indicate what kind of evidence vector is provided
from the context to evaluate the expression. For instance, in the example with
read and exn, the expression perform ask () + perform ask () + perform throw 1
has type int and effect row 〈exn, read 〉.

The typing rules maintain the correspondence between evidence vectors and
effect rows. For instance, a function application uses the same evidence vector for
the function, the argument, and the β-reduced expression. Correspondingly, the
typing rule for function application requires the effect rows of the three parts
(occurrences of ϵ in the premises) to agree with that of the entire expression
(occurrence of ϵ in the conclusion).

Γ ` e1 : σ1 → ϵ σ2 | ϵ Γ ` e2 : σ1 | ϵ
Γ ` e1 e2 : σ2 | ϵ

[APP]

We ignore the order of labels in effect rows (except for parameterized effect labels
that are discussed in Section 3.1.2 and Section 3.4). For instance, we regard two
rows 〈exn, read 〉 and 〈read, exn 〉 as equivalent. This flexible row equivalence
allows the type system to ignore the order of handlers in evaluation contexts. As
a consequence, both programs below are judged well-typed as one would expect.

handler { ask 7→λx. λk. k 3 } (λ_.
handler { throw 7→λx. λk. x } f)

handler { throw 7→λx. λk. x } (λ_.
handler { ask 7→λx. λk. k 3 } f)

where f = λ_.perform ask () + perform ask () + perform throw 1))

We formally define the effect row equivalence in Section 3.1.2 and discuss it in
Section 3.4.

Towards Efficient Adjustment of Effect Rows 5

2.3. Effect Type Adjustment for Function Types
The typing rule [APP] is too restrictive on some occasions. Consider a function
safediv of type (int, int)→〈 〉maybe int , which returns Nothing if the divider is
0, instead of throwing an exception. This function causes no effect, hence we
should be able to call the function in any context. However, the type system
prevents us from calling safediv in certain contexts. For instance, the following
expression is judged ill-typed.

handler { ask 7→λx. λk. k 3 }λ_.safediv(3, 2)

The expression safediv(3, 2) expects an evidence vector of type 〈 〉, whereas the
context provides an evidence vector of type 〈read 〉. Due to this inconsistency,
the expression is rejected by the type system.

To call functions with a “smaller” effect, we introduce the expression open ϵ′ v
into the calculus. At compile time, open allows a function to have a “bigger” effect
type according to the following typing rule.

Γ v̀al v : σ1 → ϵ σ2 ϵ ⩽ ϵ′

Γ v̀al open ϵ′ v : σ1 → ϵ′ σ2

[OPEN]

At runtime, open adjusts evidence vectors so that the callee receives an evidence
vector of the expected shape and thus runs correctly. Using open, we can make
the above example well-typed.

handler {ask 7→λx. λk. k 3}λ_.(open 〈read 〉 safediv)(3, 2)

We call the smaller effect row a closed prefix of the larger one. The closed prefix
relation is defined as:

〈l1, . . ., ln 〉 ⩽ 〈l1, . . ., ln | ϵ 〉 (n ≥ 0)

It turns out that different formulations are possible but some seemingly benign
generalizations can make the type system unsound – we discuss this in detail
the closed prefix relation in Section 3.3 and Section 3.4.

2.4. Motivating Open Floating
Our calculus is designed as an intermediate language of a compiler. This means
the user does not need to explicitly write opens; they are automatically inserted
by the type inferencer. The user expression handler { ask 7→ . . . }λ_.safediv(3, 2)
is translated to handler⟨ ⟩ { ask 7→ . . . }λ_.(open 〈read 〉 safediv) (3, 2), for exam-
ple.

Unfortunately, naive insertion of open makes programs inefficient. Consider
a program that calls safediv three times. The compiler inserts opens into each
function call as follows.

handler⟨ ⟩ { ask 7→λx : int. λk : int→〈 〉 int. k 3 }λ_.
let x = open 〈read 〉 safediv(3, 2) in
let y = open 〈read 〉 safediv(3, x) in
open 〈read 〉 safediv(3, y)

6 N. Furudono et al.

As open causes evidence vector adjustment at runtime, having many open calls
makes execution slow. In order to avoid this inefficiency, we design the open
floating optimization that eliminates redundant open calls. By open floating, the
above program is transformed to the following one.

handler⟨ ⟩ { ask 7→λx : int. λk : int→〈 〉 int. k 3 }λ⟨read ⟩_.
restrict 〈 〉 (

let x = safediv(3, 2) in
let y = safediv(3, x) in
safediv(3, y))

Here, restrict ϵ e allows e to be typed with effect ϵ, which is smaller than the
effect of the context. In this particular example, e is typed with 〈 〉, not 〈read 〉.
At runtime, as open does, restrict ϵ e changes the shape of the evidence vector to
fit ϵ and pass it to e. In general, open floating erases open in β-redex and re-
assigns appropriate open or restrict to make the whole expression type check in a
bottom-up way. The closed prefix relation plays an essential role in determining
the new effect type of each subexpression. We formally define open, restrict and
closed prefix in Section 3, the algorithm in Section 4, and show the preliminary
benchmark in Section 5. Although the benchmark code is artificial, the results
are promising and open floating may potentially encourage use of effect handlers
in various fields.

3. System Fpwo

In this section, we present System Fpwo, a calculus with algebraic effect handlers
and the open. The calculus is an extension of System Fpw [19], an explicitly typed
polymorphic lambda calculus with effect handlers. The semantics is based on ev-
idence passing semantics [19], which leads to an efficient implementation of effect
handlers. Furthermore, both calculi have row-based effect types, which denote
the static meaning of evidence vectors. We extend Fpw with open, restrict and pa-
rameterized effect labels. These features have previously discussed by Leijen [9].
In that work, the idea of open was formalized as a typing rule, and parameterized
effect labels were formalized in a way that does not fit well to our calculus.

We have confirmed the soundness of the type system through the compiler
implementation. We are currently developing formal proofs. We first introduce
the syntax, dynamic semantics, and static semantics of Fpwo. After that, we
describe the typing with effect rows, including the closed prefix.

3.1. Syntax
The syntax is defined in Figure 1.

3.1.1. Expressions Expressions e include values v, applications e e, type appli-
cations eσ, let-bindings let x = e in e, prompt prompt m h e, yield yield m v, and
restrict restrict ϵ e. Prompt and yields are internal constructs that only appear as
an intermediate result of evaluation. We will formally define internal constructs
in Definition 1.

Towards Efficient Adjustment of Effect Rows 7

Expression e ::= v | e e | eσ
| let x = e in e
| prompt m h e
| yield m v
| restrict ϵ e

Value v ::= x | λϵx : σ. e
| Λαk. v
| handlerϵ h
| perform op ϵ σ

| open ϵ v
Hnd. clauses h ::= { op 7→ f }

zero or more x x
internal constructs internal
invariants invariants

Type σ ::= αk | ck σ | σ→ ϵ σ

| ∀αk. σ
Kind k ::= ∗ | k→ k | lab | eff
Effect label l ::= σlab

Effect constant cl ::= ck

k = ∗ → . . .→ ∗ → lab
Effect row ϵ ::= 〈 〉 | 〈l | ϵ 〉 | αeff

Type env. Γ ::= • | Γ, x : σ
Effect ctx. Σ ::= { cl : sig }
Effect sig. sig ::= { op : ∀αk. τ → τ }
Type in effect sig. τ ::= σ | λα∗.τ
Evidence ev ::= (m, h, w)
Evidence vec. w ::= 〈〈 〉〉 | 〈〈l : ev | w〉〉

Figure 1. Syntax of System Fpwo

Values v include variables x, lambda abstractions λϵx : σ.e, type abstractions
Λαk.v, effect handlers handlerϵ h, operation calls perform op ϵ σ, and open open ϵ v.

Handlers clauses h consist of a sequence of pairs of an operation name op
and a function value f. The meta-variable f is syntactically a value, but we use
it specifically as a function, which takes (type) arguments. The type system
maintains the intention.

3.1.2. Types Types σ include type variables αk of kind k, type application
for type constructors ck σ (where ck is applied to arguments σ), function types
σ1 →ϵ σ2 (indicating the body of the function can cause effect ϵ), and polymor-
phic types ∀αk.σ.

Kinds k include the regular kind ∗, functions k→k, effect labels lab, and effect
rows eff. Types of the function kind k→k are either an effect constant cl, a row
type constructor 〈_ | _ 〉, or a type τ in an effect signature. Effect labels l are
types of kind lab. Effect constants cl are of kind lab parameterized with zero or
more types of regular kind. Effect labels are used to structure effect rows and
evidence vectors, while effect constants are used for effect contexts and effect
labels.

Effect rows ϵ include the empty effect 〈 〉, extension with effect label 〈l | ϵ 〉,
and type variables αeff of kind eff. We use the following abbreviation for rows:
〈l1, . . ., ln | ϵ 〉 .

= 〈l1 | . . . 〈 ln | ϵ 〉 . . . 〉 and 〈l1, . . ., ln 〉 .
= 〈l1, . . ., ln | 〈 〉 〉. The equiv-

alence of effect rows is defined in Figure 2. We can ignore the order of two effect
labels in a row if two labels consist of different effect constants. Here are examples
of row equivalence. See Section 3.4 for detail about effect rows.

〈ask, exn 〉 ∼= 〈exn, ask 〉
〈ask, polyexn string, polyexn int 〉 ∼= 〈polyexn string, ask, polyexn int 〉
〈ask, polyexn string, polyexn int 〉 6∼= 〈ask, polyexn int, polyexn string 〉

8 N. Furudono et al.

ϵ ∼= ϵ
[EQ-REFL]

ϵ1 ∼= ϵ2 ϵ2 ∼= ϵ3

ϵ1 ∼= ϵ3
[EQ-TRANS]

ϵ1 ∼= ϵ2

〈l | ϵ1 〉 ∼= 〈l | ϵ2 〉
[EQ-HEAD]

l1 6≡ l2
〈l1 | 〈l2 | ϵ〉〉∼= 〈l2 | 〈l1 | ϵ〉〉

[EQ-SWAP]
cl1 6= cl2

cl1 σ1 6≡ cl2 σ2

[UNEQ-LAB]

Figure 2. Effect Row Type Equivalence

An effect context Σ is a sequence of pairs of an effect constant and an effect
signature. It maintains the relation between the name of an effect and the type
of its operations. We assume Σ is given externally in this calculus, while in
practical language one may define Σ by top-level definitions.

Effect signatures sig are a sequence of a pair of an operation name and its
type. The type τ in an effect signature takes zero or more type arguments of
regular kind. The type arguments will be passed if the effect is parameterized.
We will show an example with type rule [PERFORM] in Section 3.3.

3.1.3. Evidence Vectors Evidence vectors w include the empty vector 〈〈 〉〉
and extension 〈〈l : ev | w〉〉 with a pair of an effect label l and an evidence ev.
Evidences ev are a triple (m, h, w) of a marker m, a handler h, and an evidence
vector w where h is defined. The evidence vector of the triple is key to general
use of effect handlers, but the discussion is out of the scope of this paper. See [19]
for details.

3.2. Dynamic Semantics
The dynamic semantics is defined in Figure 3. The semantics consists of three
rules: stepping 7−→, multi-stepping 7−→∗, and reduction −→.

3.2.1. Evaluation Steps The rules (∗stepwR) and (∗stepwT) defines multi-
stepping as the reflexive transitive closure of stepping. The rules (step) and
(stepw) reduce a redex without and with an evidence vector w, respectively. In
these rules, the evaluation context of the redex must be F, not E. F excludes
prompt frames and restrict frames.

The (promptw) rule extends the evidence vector. Conversely, the (restrictw)
rule shortens the evidence vector using the select meta-function so that the shape
of the new evidence vector fits the effect row ϵ′ of the restrict frame.

3.2.2. Reduction Rules The (app), (let) and (tapp) rules are standard. The
(handler) rule reduces a handler application by calling the passed function f
under prompt with fresh marker m. The marker acts as a control delimiter [3].
The (promptv) rule removes the prompt frame if the handled expression is a
value.

Operation call is divided into two rules: (perform) and (prompt). The (perform)
rule prepare the marker m and handler clause f using the evidence vector. In the
right-hand side of the (prompt), the handler clause is applied to (type) arguments
and wrapped by a lambda to take a resumption. The (prompt) rule captures the

Towards Efficient Adjustment of Effect Rows 9

Evaluation Contexts:
E ::= □ | E e | v E | Eσ | let x = E in e | prompt m h E | restrict ϵE
F ::= □ | F e | v F | Fσ | let x = F in e

Evaluation Steps:
e −→ e′

w ` F[e] 7−→F[e′]
(step)

w ` e −→ e′

w ` F[e] 7−→ F[e′]
(stepw)

w ` e 7−→∗ e
(∗stepwR)

〈〈l : (m, h,w) | w〉〉 ` e 7−→ e′

w ` F[prompt m h e] 7−→F[prompt m h e′]
(promptw)

restrict ϵ′ e : σ | ϵ ϵ′ ⩽ ϵ ` w : ϵ
select ϵ′ w ` e 7−→ e′

w ` F[restrict ϵ′ e] 7−→F[restrict ϵ′ e′]
(restrictw)

w ` e 7−→∗ e′ w ` e′ 7−→ e′′

w ` e 7−→∗ e′′
(∗stepwT)

Evidence Vector Operations:
select 〈 〉w = 〈〈 〉〉
select 〈l | ϵ 〉w = 〈〈l : w.l | select ϵ (w − l) 〉〉

〈〈l : ev | w〉〉.l = ev
〈〈l1 : ev | w〉〉.l2 = w.l2 if l1 6= l2

〈〈l : ev | w〉〉 − l = w
〈〈l1 : ev | w〉〉 − l2 = w − l2 if l1 6= l2

Reduction Rules:
(app) (λϵx : σ. e) v −→ e[x:=v]
(let) let x = v in e −→ e[x:=v]
(tapp) (Λαk. v)σ −→ v[α:=σ]
(handler) handlerϵ h f −→ prompt m h (f ()) with unique m
(promptv) prompt m h v −→ v
(perform) w ` perform op ϵ0 σ v −→ yield m (λϵk : (σ2 σ′)[α:=σ]→ ϵ σ. fσ v k)

with (m, h,_) = w.l ∧ (op 7→ f) ∈ h l = cl σ′

(op : ∀α. σin →σout) ∈ Σ(cl) ∧ • ` h : σ | cl σ′ | ϵ
(prompt) prompt m h E[yield m f] −→ f (λϵx : σ2. prompt m h E[x])

with • v̀al f : (σ2 → ϵ σ)→ ϵ σ
(open) (open ϵ′ f) v −→ restrict ϵ (f v)

with ϵ = effectof(f) • ` f : σ1 → ϵ σ2

(restrictv) restrict ϵ v −→ v
Effect Annotation Extractor:

effectof(λϵ x : σ.e) = ϵ
effectof(handlerϵ h) = ϵ

effectof(perform ϵ σ op) = ϵ

Figure 3. Dynamic Semantics of System Fpwo

resumption λϵx : σ2. prompt m h E[x] by finding the marker m and applies the
operation clause to it, which is instantiated by the (perform) rule.

The (open) rule generates a restrict frame using th effect annotation of the
function value. Here, effectof meta-function is used to extract the effect type

10 N. Furudono et al.

from the function value, which is either a lambda abstraction, an operation call,
or a handler.

The effect row of an open expression is used for type checking. The (restrictv)
rule removes the restrict frame if the subexpression is a value.

3.2.3. Example In System Fpwo, we can express the second program example
of Section 2.1 in the following way.

handler⟨ ⟩ hread λ⟨read ⟩_.handler⟨read ⟩ hexn f where
f = λ⟨exn, read ⟩_ . perform 〈exn, read 〉 ask () + perform 〈exn, read 〉 ask ()
hread = { ask 7→λ⟨ ⟩ _.λ⟨ ⟩ k : int→〈 〉int. k 3}
hexn = { throw 7→Λα.λ⟨read ⟩x : string.λ⟨read ⟩ k : α→〈read 〉 int. 127 }.

This expression is evaluated to 6 through the following steps (we omit some type
annotations for space reasons).

handler⟨ ⟩ hread λ⟨read ⟩_ : unit.handler⟨ ⟩ hexn f.
7−→∗ prompt m1 hread (prompt m2 hexn (

perform 〈exn, read 〉 ask () + perform 〈exn, read 〉 ask ()))
7−→ prompt m1 hread (prompt m2 hexn (

yield m1 (λ
⟨ ⟩k. (λ⟨ ⟩ x.λ⟨ ⟩ k1. k1 3) () k) + perform 〈exn 〉 ask ()))

7−→ (λ⟨ ⟩k. (λ⟨ ⟩ x.λ⟨ ⟩ k1. k1 3) () k)
(λ⟨ ⟩z : int. prompt m1 hread (prompt m2 hexn (z + perform 〈exn 〉 ask ())))

7−→∗ prompt m1 hread (prompt m2 hexn (3 + perform 〈exn 〉 ask ()))
7−→∗ prompt m1 hread (prompt m2 hexn (3 + 3))
7−→∗ 6

The first step shows the reduction of handlers. Specifically, the two handlers are
instantiated to prompts with fresh markers m1 and m2. The gray part indicates
the body of f, which is evaluated with the evidence vector 〈〈exn : (m2, hexn,w) | w〉〉
representing surrounding handlers, where w = 〈〈read : (m, hread, 〈〈 〉〉)〉〉. The sub-
sequent three steps complete the ask operation call. In the next line, the (perform)
rule prepares the marker m1 and the wrapped handler clause. After that, the
resumption is captured and the wrapped handler clause is applied to it via the
(prompt) rule. After reducing some β-redexes, 3 is obtained as the result of the
operation call.

3.3. Static Semantics
The static semantics is mutually defined with three relations ` , v̀al, and òps in
Figure 4.

– Γ ` e : σ | ϵ means expression e is typed σ under type environment Γ and
contextual effect ϵ, i.e., the type of the evidence vector provided for evalua-
tion of e.

– Γ v̀al v : σ means value v is typed σ under type environment Γ. Note that
if value v can be typed with v̀al relation, then it can be typed with any effect
type ϵ with ` relation, according to type rule [VAL].

Towards Efficient Adjustment of Effect Rows 11

– Γ òps h : σ | l | ϵ means that the sequence of operation clauses h has return
type σ and handles effect operation of label l under effect type ϵ.

We also use well-formedness relation ẁf and definitional equality of types èq
defined in Appendix 8

Let us now look at the typing rules (Figure 4). These rules are syntax directed
in the sense that the syntax of the expressions determines the applicable type
rule.

Γ ` e : σ | ϵ Γ v̀al v : σ Γ òps h : σ | l | ϵ

Γ v̀al v : σ

Γ ` v : σ | ϵ
[VAL]

x : σ ∈ Γ

Γ v̀al x : σ
[VAR]

Γ ` v : σ k 6= lab α 6∈ ftv(Γ)
Γ v̀al Λαk. v : ∀αk.σ

[TABS]

Γ, x : σ1 ` e : σ2 | ϵ
Γ v̀al λϵx : σ1. e : σ1 → ϵ σ2

[ABS]

Γ ` e1 : σ1 →ϵ σ | ϵ Γ ` e2 : σ1 | ϵ
Γ ` e1 e2 : σ | ϵ

[APP]

Γ ` e : ∀αk.σ1 | ϵ ẁf σ : k
Γ ` eσ : σ1[α:=σ] | ϵ

[TAPP]

op : ∀α.τ1 → τ2 ∈ Σ(cl)

èq (τ1[α:=σ] σ′)≡σ1 : ∗ èq (τ2[α:=σ] σ′)≡σ2 : ∗
Γ v̀al perform op 〈cl σ′ | ϵ 〉σ : σ1 →〈cl σ′ | ϵ 〉σ2

[PERFORM]

Γ òps h : σ | l | ϵ
Γ v̀al handlerϵ h : (()→〈l | ϵ 〉σ)→ ϵ σ

[HANDLER]

{opi : ∀αi.τ
in
i → τout

i }n
i=1 = Σ(cl) αi 6 ∩ftv(ϵ, σ, σ′)

èq τ in
i σ′ ≡σin

i : ∗ èq τout
i σ′ ≡σout

i : ∗
Γ v̀al fi : ∀αi.σ

in
i → ϵ ((σout

i → ϵ σ)→ ϵ σ)

Γ òps {op1 → f1, . . ., opn → fn} : σ | cl σ′ | ϵ
[OPS]

Γ v̀al f : (σ→ ϵ′ σ′)→ ϵ′ σ′

Γ ` yield m f : σ | ϵ
[YIELD]

Γ v̀al v : σ1 → ϵ′ σ2 ϵ′ ⩽ ϵ

Γ v̀al open ϵ v : σ1 → ϵ σ2

[OPEN]

Γ òps h : σ | l | ϵ Γ ` e : σ | 〈l | ϵ 〉
Γ ` prompt m h e : σ | ϵ

[PROMPT]

Γ ` e : σ | ϵ′ ϵ′ ⩽ ϵ

Γ ` restrict ϵ′ e : σ | ϵ
[RESTRICT]

Closed Prefix: 〈l1, . . ., ln 〉 ⩽ 〈l1, . . ., ln | ϵ 〉 (n ≥ 0)

Figure 4. Typing Rules of System Fpwo

12 N. Furudono et al.

The [VAL] rule types values as expressions with any effect type ϵ. The [VAR]
rule is usual. The [ABS] rule type check the body e with the effect annotation
ϵ of the lambda abstraction. The [APP] is standard except for the effect type:
the operator (e1) and operand (e2) need to be typed under the contextual effect
of entire expression (e1 e2). Furthermore, the effect type of the body of the
operator also needs to agree with the one of the entire expression. The restriction
guarantees that the evidence vector is passed correctly to sub-expressions. This
may seem too restrictive, but open construct liberates the restriction. The [TABS]
and [TAPP] rules are standard except for bound type variables, which cannot have
kind lab.

The [PERFORM] rule determines the type of the operation call referring to
the effect context Σ and the effect row 〈cl σ′ | ϵ 〉. The signature of the opera-
tion is found in the effect context and the type arguments σ are substituted for
the type variables in the argument type τ1 and the result type τ2. Furthermore,
the type arguments σ′ from the effect row are applied to τ1[α:=σ] and τ2[α:=σ].
As an example, assuming Σ = { exn : { throw : ∀α.string→α }}, we can write
λ⟨exn ⟩ x : string. 1 + perform throw 〈exn 〉 int x as a well-typed function. The op-
eration call in the body is typed with an instance of the [PERFORM] rule as
follows.

throw : ∀β.string→β ∈ Σ(exn)
èq string[β:=int]≡ string èq β[β:=int]≡ int

x : string v̀al perform throw 〈exn 〉 int : string→〈exn 〉 int

In this case, cl = exn and σ′ is an empty sequence of types. If we replace throw
with polythrow string, cl = polyexn and σ′ is a singleton sequence string.

polythrow : ∀β.(λα.α)→ (λα.β) ∈ Σ(polyexn)
èq (λα.α)[β:=int] string≡ string èq (lambdaα.β)[β:=int] string≡ int
x : string v̀al perform polythrow 〈 〉 int : string→〈polyexn string 〉 int

The [HANDLER] rule is defined for handler expressions. A handler takes a com-
putation of type (()→〈l | ϵ 〉σ) and handles the effect l. Hence, the effect row of
the entire function type is ϵ, not 〈l | ϵ 〉.

The [OPS] rule determines the effect labels cl σ′, which indicate the handled
effect. Each operation clause fi takes an operation argument of type σin

i and a
resumption of type σout

i → ϵ σ. The result type (σ) of the handler is the result
type of all resumptions and operation clauses, because handlers in System Fpwo
are deep ones. The condition αi 6 ∩ftv(ϵ, σ, σ′) avoids unexpected binding in the
type of fi. The arguments of effect constants σ′ are derived from the typing of
each operation clause. By combining them with the effect constant cl, we derive
the effect label cl σ′.

The [YIELD] rule requires careful reading. Recall that f is a wrapped handler
clause that will be applied to a resumption. The result type of f, which is the
result type of the handler clause, must agree with the result type of the resump-
tion. Therefore the two σ′ need to agree. The two σ indicate that the input type
of f, which is the type of the “result” of the operation call, must agree with the

Towards Efficient Adjustment of Effect Rows 13

type of the yield expression. Note that the effect type ϵ of yield is not related
to the effect ϵ′ of the operation clause, as the evaluation contexts of yield and
prompt (in which f will be evaluated) are different in general.

The [PROMPT] rule extends the contextual effect ϵ with the effect label l to
type check subexpression e. The result type of e and that of handler clauses h
need to agree, and it becomes the type of the entire prompt expression.

The [OPEN] rule opens (make bigger) the effect type to the given effect ϵ. The
original effect type ϵ′ must be a closed prefix of the resulting effect type ϵ. An
effect row ϵ1 is a closed prefix of ϵ2 if and only if ϵ1 consists of labels in a prefix
of ϵ2 and ends in 〈 〉. We discuss the definition of the closed prefix relation in the
next section. The [RESTRICT] rule is similar to [OPEN] and allows expression e
to be typed under a closed prefix ϵ′.

3.4. Effect Rows and Closed Prefix Relation
In this section, we discuss how the type system exploits effect rows to perform
type checking against effect handlers and discuss requirement for open and restrict
to entail type safety.

Recall the typing rule [PERFORM] for operation calls. The conclusion of the
rule has an effect row 〈cl σ′ | ϵ 〉, which tells us that evaluation of the operation
call needs to access a handler of effect label cl σ′. The accessibility of the required
handler is guaranteed by the row equivalence rules defined in Figure 2.

For instance, among the two examples below, the first one is correctly rejected
due to the inapplicability of [EQ-SWAP], and the second one is accepted as desired.

handler hpolyexn int (handler hpolyexn string (λ_. throw 1))
handler hpolyexn int (handler hpolyexn string (λ_. throw ”hello”))

We design the closed prefix relation so that restrict does not increase handlers
accessible from the sub-expressions. This is stated as the following property.
Proposition 1.
If ϵ.l is defined and ϵ ⩽ ϵ′, then ϵ′.l is also defined and ϵ.l = ϵ′.l.
It is obvious that the closed prefix relation satisfies this property, but what
about other candidates? Initially, we considered an open prefix relation defined
as follows.

〈l1, . . ., lk | µ 〉 ⩽? 〈l1, . . ., lk, lk+1, . . ., ln | µ 〉

Here, µ is a type variable of kind eff. This relation leads to loss of type safety,
as shown by the following example.

(Λµ.λ⟨polyexn int|µ ⟩ f : ()→µ (). restrictµ (f ()))
〈polyexn string 〉λ⟨polyexn string ⟩_.polythrow ”blame!”

Here, the example would be accepted with an open prefix relation because
µ ⩽? 〈polyexn int | µ 〉 holds. However, the effect annotation 〈polyexn int | µ 〉 in-
dicates that the innermost polyexn handler expects polyexn int, while polythrow
raises a string value, causing a type mismatch at runtime! Fortunately, using
the closed prefix relation will reject the example and preserve soundness.

14 N. Furudono et al.

Effect Requirement: φ::=∅ | ϵ, with an order defined as:

∅vφ
[BOTTOM]

φvφ
[REFL]

ϵ1 ⩽ ϵ2

ϵ1 v ϵ2
[PREFIX]

Smart open and restrict:
open′ φφ′ e = e (ifφ∼= φ′)
open′ ∅ φ′ e = e
open′ ϵ ϵ′ e =

let x = e in open ϵ′ x (if ϵ ⩽ ϵ′)
open′ φφ′ e = undefined (otherwise)

restrict′ φ φ′ e = e (ifφ∼= φ′)
restrict′ ∅ φ′ e = e
restrict′ ϵ ϵ′ e = restrict ϵ e (if ϵ ⩽ ϵ′)
restrict′ φ φ′ e = undefined (otherwise)

Figure 5. Effect Requirement and Auxiliary Definitions

4. Open Floating
In this section, we present open floating (in Figure 6), a transformation algorithm
defined on System Fpwo. We first overview the definition here. In Section 4.1, we
describe the auxiliary definitions and in Section 4.2, explain the main definition
of open floating in detail.

The algorithm consists of three kinds of rules taking care of expressions,
values, and operation clauses.

– Γ ` e | ϵ ⇝ e′ : σ | φ
– Γ v̀al v ⇝ v′ : σ
– Γ òps h ⇝ h′ : σ | l | ϵ

In this study, proper programs are well-typed and internal-safe expressions.
Definition 1. (Internal-free expression, Internal-safe expression)
An expression is internal-safe if it is (1) internal-free (contains no prompt or
yield expressions) or (2) reduced from an internal-safe expression.
The input of open floating is a proper program fragment. The output is a proper
program fragment with the required effect φ. Required effects are defined in
Section 4.1.

Open floating adjusts effect types at higher nodes of the abstract syntax tree
by inserting restrict, rather than at lower nodes and leaves. To achieve this, rule
[Open-App] removes open call and the entire algorithm maintains the effect type
of programs using auxiliary definitions given in Section 4.1.

We designed the algorithm so that it only changes open, restrict, and the
effect type of expressions. This ensures that the algorithm preserves the type of
expressions. The type environment given to the algorithm and the type returned
from the algorithm are used to examine the effect type of the function body (in
the [App] case). The effect row given to the expression case is used to calculate
a new effect type (in the [App] and [Bind] cases).

4.1. Auxiliary Definitions
We extend effect rows to represent required effect as effect requirement φ in
Figure 5. This extension allows us to communicate the fact that an expression
imposes no requirement on the context, using the symbol ∅. For example, values

Towards Efficient Adjustment of Effect Rows 15

can be evaluated with any evidence vector, hence the effect requirement of values
is always ∅. If we use 〈 〉 instead, open floating would generate redundant restrict
as in div(restrict 〈 〉 1, restrict 〈 〉 0). Using ∅, the algorithm can generate div(1, 0)
as desired.

We also extend the closed prefix relation, open, and restrict so that they take
an effect requirement instead of a plain effect row, as in Figure 5. Smart open
(open′) and smart restrict (restrict′) are meta-level (partial) functions; they act
as auxiliary functions of the algorithm. They generate open or restrict only if
two effect rows are different. Smart open may seem strange; it generates a let-
binding. Recall that, when we open an expression, the expression needs to be a
value as specified by the syntax rules.

We use the sup meta function in the [App] and [Bind] cases of the algorithm,
in order to calculate the result requirement satisfying the requirements generated
from the subexpressions and the original effect type. The partial function sup is
defined as follows.

sup : Requirement−→ 2Requirement −→Requirement
supϵ {φi}i = min {φ | φi vφv ϵ }

Here, ϵ is the original effect type of the expression (application or let-binding)
and each φi is the requirement from the subexpression. The result requirement
of the expression need to be smaller than the original effect and bigger than
the requirements of subexpressions. The sup function choose the best (smallest)
requirement from the candidates.

4.2. The Definition
We define the open floating algorithm in Figure 6. The light propositions are
invariants, not side conditions; we write them to clarify the intention of the
algorithm design.

Rule [Var] simply returns the variable with its type. Rule [Lam] recursively
applies the algorithm to the body e. We do not simply return λφx : σ1.e′ but
return λϵ restrict′ φϵ e′ in order to preserve the type of the lambda abstraction.
Rule [Val] assigns a null requirement ∅ to value. Rule [App] treats three effect
requirements: the requirements of the two sub-expressions (φ1 and φ2) and the
effect type of the function body. The rule uses the supremum of these require-
ments for the result. Rule [Bind] also takes the supremum of the two effect rows.
Rules [TAbs], [TApp], [Perform], [Handler], and [Ops] simply recursively call the
algorithm and propagate the results.

Rule [Open-App] processes application of an opened function. It removes open
and may assign a smaller effect to the expression. This rule conflicts with the
[App] rule, hence we give priority to [Open-App]. Rule [Open-Preserve] recursively
calls the algorithm while keeping open. This rule is required for function argu-
ments, for instance. Let us consider the following example.

safemap =
λ⟨ ⟩ lst : list〈int 〉.λ⟨ ⟩ f : int→〈exn 〉 int.

handler⟨ ⟩ { throw 7−→λ⟨ ⟩ x : string. λ⟨ ⟩ k : int→int. [] } (map int int 〈exn 〉 lst f)
safemap [1, 2, 3, 4] (open 〈exn 〉 addone)

16 N. Furudono et al.

Γ ` e | ϵ ⇝ e′ : σ′ | φ Γ v̀al v ⇝ v′ : σ Γ òps h ⇝ h′ : σ | l | ϵ

x : σ ∈ Γ

Γ v̀al x ⇝ x : σ
[Var]

Γ v̀al v ⇝ v′ : σ

Γ ` v ⇝ v′ : σ | ∅
[Val]

Γ ` e | ϵ ⇝ e′ : ∀αk.σ1 | φ
Γ ` e [σ′] | ϵ ⇝ e′ [σ′] : σ[α:=σ′] | φ

[TApp]

Γ, αk
v̀al v ⇝ v′ : σ

Γ v̀al Λαk.v ⇝ Λαk.v′ : ∀α. σ
[TAbs]

Γ, x : σ1 ` e | ϵ ⇝ e′ : σ2 | φ φv ϵ

Γ v̀al λϵ x : σ1. e ⇝ λϵ x : σ1. restrict′ φϵ e′ : σ1 → ϵ σ2

[Lam]

Γ ` e1 | ϵ ⇝ e′1 : σ2 → ϵbody σ | φ1 Γ ` e2 | ϵ ⇝ e2 : σ2 | φ2

ϵs = supϵ {ϵbody, φ1, φ2}
Γ ` e1 e2 | ϵ ⇝ (open′ ϵbody ϵs (restrict′ φ1 ϵs (e′1))) (restrict′ φ2 ϵs e′2) : σ | ϵ

[App]

Γ ` e1 | ϵ ⇝ e′1 : σ1 | φ1 Γ ` e2 | ϵ ⇝ e′2 : σ2 | φ2 φ = supϵ {φ1, φ2}
Γ ` let x = e1 in e2 | ϵ ⇝ let x = restrict′ φ1 φe′1 in restrict′ φ2 φe′2 : σ2 | φ

[Bind]

op : ∀α.τ1 → τ2 ∈ Σ(cl) α 6 ∩ftv(Γ)
èq (τ1[α:=σ] σ′)≡σ1 : ∗ èq (τ2[α:=σ] σ′)≡σ2 : ∗

Γ v̀al perform op 〈cl σ′ | ϵ 〉σ ⇝ perform op 〈cl σ′ | ϵ 〉σ : σ1→〈cl σ′ | ϵ 〉σ2

[Perform]

Γ òps h ⇝ h′ : σ | l | ϵ
Γ v̀al handlerϵ h ⇝ handlerϵ h′ : (()→〈l | ϵ 〉σ)→ ϵ σ

[Handler]

{opi : ∀αi.τ
in
i → τout

i }n
i=1 = Σ(cl) αi 6 ∩ftv(ϵ, σ, σ′)

` tiin σ′ ≡ siin : ∗ ` tiout σ′ ≡ siout : ∗
Γ v̀al fi ⇝ f′i : ∀αi.σ

in
i → ϵ ((σout

i → ϵ σ)→ ϵ σ)

Γ òps {op1 → f1, . . ., opn → fn} ⇝ {op1 → f′1, . . ., opn → f′n} : σ | cl σ′ | ϵ
[Ops]

Γ ` v e | ϵ ⇝ e′ : σ | φ φv ϵ

Γ ` (open ϵ v) e | ϵ ⇝ e′ : σ | φ
[Open-App]

Γ ` v ⇝ v′ : σ′
1 → ϵ′ σ′

2 ϵ′ ⩽ ϵ

Γ v̀al open ϵ v ⇝ open ϵ v′ : σ1 → ϵ σ2

[Open-Preserve]

Γ ` e | ϵ1 ⇝ e′ : σ | φ
Γ ` restrict ϵ1 e | ϵ ⇝ e′ : σ | φ

[Restrict]

Figure 6. Open Floating Algorithm

The safemap function expects a function argument of int→〈exn 〉 int and handles
the exception effect. If we want to pass a function of effect 〈 〉 as the argument
(addone in this case), we need to open it to make the entire program type check.
The last rule [Restrict] ignores the existing restrict.

Towards Efficient Adjustment of Effect Rows 17

fun test-one() : 〈exn,read1,read2〉 int
val x = square(1) + ... + square(1) // call `square(1)` 20 times
val y = square-ask1()
val z = square-ask2()
x + y + z

noinline fun square(i : int) : 〈exn, read1〉 int
if True then i * i else throw("impossible: " ++ ask1().show)

noinline fun square-ask1() : read1 int
ask1() * ask1()

noinline fun square-ask2() : read2 int
ask2() * ask2()

Open floating Exec. time (sec.) Open call (static) Open call (dynamic)
Enable 0.957 22 220,000
Disable 2.388 3 30,000

Figure 7. Benchmarking open floating (the ideal case)

5. Evaluation
We implemented our open floating algorithm in the Koka compiler [10] and
evaluated open floating with several artificial programs. The results show that, in
the best case, open floating makes programs about 2.5 times faster, while in some
cases, it makes programs slower. In this section, we summarize the experiments
and discuss what kind of programs are made faster by open floating.

5.1. Ideal Case
Figure 7 includes a fragment of a small benchmark with the execution times.
The number of open calls is the sum of open and restrict expressions in the
program. As we can see, open floating is very effective here and the enabling
open floating improves performance by 2.5×. The execution times are averaged
over 3 runs, on an Intel Core i5 at 3Ghz with 8GiB memory running macOS
11.6.3, with Koka v2.3.9 extended with open floating. In the program, we use
three kinds of effects: read1, read2, and exn. The function test-one has the
effect 〈read1,read2,exn〉, while the other functions use smaller effects. In the
body of test-one, the Koka type inferencer inserts the following open calls
around the square, square-ask1, and square-ask2 functions:

let x = open(square)(1) + . . . + open(square)(1) (call open(square)(1) 20 times)
let y = open(squareask1)()
let z = open(squareask2)()
x + y + z

This program contains 22 open calls initially and open floating reduces them to
3 restricts as follows:

let x = restrict(square(1) + . . . + square(1)) (call square(1) 20 times)
let y = restrict(squareask1())
let z = restrict(squareask2())
x + y + z

18 N. Furudono et al.

Open floating Exec. time (sec.) Open call (static) Open call (dynamic)
Enable 0.500 22 220,000
Disable 0.182 3 30,000

Figure 8. Benchmark of Failure Case

Here all individual open calls around each square invokation are floated up to a
single restrict, leading to the improved performance.

5.2. Failure Case
However, making a small modification to the program can make open floating
less effective. Consider a modified version of the square function in Figure 7.

noinline fun square'(i : int) : 〈exn〉 int
if True then i * i else throw("impossible: ")

We have removed ++ ask1().show and changed the effect from 〈ask1, exn〉
to 〈exn〉. Just as before, the open floating reduces the number of open calls in
the test-one function, but now the program runs slightly slower as shown in
Figure 8.

The reason why this happens is that the opened function (square') has an
effect row type of length one. In such case, the Koka runtime already optimizes
the use of open by avoiding allocating an explicit evidence vector and directly
using the single evidence as is. Since no allocation happens, this can be faster,
in particular since the current implementation of the restrict operation is not
optimized in a similar fashion yet. Instead, it is implemented combining a lambda
abstraction and an open operation, as restrict e .

= open(λ_. e)(). We plan to
improve the implementation of restrict in which case it should always be beneficial
to perform open floating.

6. Future Work
Even though our open floating algorithm is effective, there are still situations
where it can be improved. In particular, for certain higher-order programs, such
as calls of map and fold, open floating can be improved. Consider the following
program.

fun map(xs : list〈a〉, f : a → e b) : e list〈b〉
fun g(x : int) : 〈ask, ndet〉 int

fun f() : 〈ask, exn, ndet〉 int
...
map(lst, g)
...

The Koka compiler wraps the function g with an open call to make the program
type check. This gives us the following expression.

map int int 〈ask, exn,ndet 〉 lst (open〈ask, exn, ndet 〉 g)

The current open floating algorithm does not change the program due to the rule
[Open-Preserve] as we discussed in Section 4.2. At runtime, the opened function
is applied to each element in the list lst by the map function. It would be better

Towards Efficient Adjustment of Effect Rows 19

to float the open to surround the the entire map call which reduces the number
of open calls to one.

restrict〈ask, ndet 〉(map int int 〈ask, ndet 〉 lst g)

7. Related Work

Our work is in the context of passing dynamic evidence vectors at runtime that
correspond to the static effect types, as described by Xie and Leijen [19]. The
idea of passing dynamic runtime evidence for static properties is not new and is a
standard way of implementing qualified types and type classes [5, 17]. Here, the
evidence takes the form of a dictionary of overloaded operations and corresponds
to the qualified type constraints. In our work, open adjusts the runtime evidence
vectors, while with type classes instances are used to modify runtime dictionar-
ies. For example, a function with a Show a constraint may call a function with a
Show [a] constraint. To call this, the received dictionary for Show a is transformed
at runtime to a Show [a] dictionary using the instance Show a => Show [a] dec-
laration. Usually, these “evidence adjustments” are called context reduction and
generalized by the entailment relation in the theory of qualified types [6]. Peyton
Jones et al. [12] explore the design space of sound context reduction in Haskell.

Gaster and Jones [4] present a system for extensible records based on the
theory of qualified types. Here, a lacks constraint l/r corresponds to a runtime
evidence, providing the offset in the record r where the label l would be in-
serted. When modifying the record, the evidence is also adjusted at runtime to
reflect a new offset. For example, if another label is inserted before l, its offset
is incremented. A similar mechanism is used in the system of type-indexed rows
developed by Shields and Meijer [16].

In all of the above examples, we can imagine transformations similar to open
floating that try to minimize the evidence adjustments, although we are not
aware of any previous work that addresses this issue specifically.

Our formalization of effect row can roughly be understood as an instance of
scoped rows discussed by Morris and McKinna [11]. They define a general row
theory and row algebra with qualified types. Scoped rows are shown as an instance
of them. Closed prefix relation is almost represented as left containment relation.
Note that our calculus uses polymorphic effect rows such as ∀µ.〈l1, l2 | µ 〉 while
scoped rows in [11] do not seem to entail it.

8. Conclusion

In this paper, we formalized open and restrict with their restriction of the closed
prefix relation. The formalization is useful for determining the validity of a pro-
gram transformation, such as open floating. We also defined the open floating
algorithm on the formalized calculus and developed an implementation in Koka.
The benchmark shows the effectiveness of open floating and point out room to
improve the implementation.

20 N. Furudono et al.

èq λαk2 .τ1 ≡ τ ′
1 : k2→k èq τ2 ≡ τ ′

2 : k2

èq τ1 τ2 ≡ τn[α
k2 :=τ ′

2] : k
[KAPP]

èq αk ≡αk : k
[KVAR]

èq ck ≡ ck : k
[KCONST]

èq τ1 ≡ τ ′
1 : k1

èq λα∗.τ1 ≡λα∗.τ ′
1 : ∗→k1

[KABS]

ẁf τ : ∗
èq τ ≡ τ : ∗

èq τ ≡ τ : ∗
ẁf τ : ∗

ẁf σ1 : ∗ ẁf σ2 : ∗ ẁf ϵ : eff
ẁf σ1 → ϵ σ2 : ∗

[KFUN]

ẁf σ : ∗
ẁf ∀αk.σ : ∗

[KALL]

ẁf l : lab ẁf ϵ : eff
ẁf 〈l | ϵ 〉 : eff

[KEFFECT]

Figure 9. Well-formedness and Definitional Equality of Types of System Fpwo

Appendix
We present the well-formedness relation ẁf and definitional equality of types èq
in Figure 9. The type rules (Figure 4) use these relations.

Towards Efficient Adjustment of Effect Rows 21

References
1.[1] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effekt:

Lightweight Effect Polymorphism for Handlers. Technical Report. University of
Tübingen, Germany. 2020.

2.[2] Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Mad-
havapeddy. “Effective Concurrency through Algebraic Effects.” In OCaml Work-
shop, 13. 2015.

3.[3] Mattias Felleisen. “The Theory and Practice of First-Class Prompts.” In Proceed-
ings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 180–190. POPL ’88. Association for Computing Machinery, New
York, NY, USA. 1988. doi:10.1145/73560.73576.

4.[4] Ben R. Gaster, and Mark P. Jones. A Polymorphic Type System for Extensible
Records and Variants. NOTTCS-TR-96-3. University of Nottingham. 1996.

5.[5] Mark P. Jones. “A Theory of Qualified Types.” In 4th. European Symposium
on Programming (ESOP’92), 582:287–306. Lecture Notes in Computer Science.
Springer-Verlag, Rennes, France. Feb. 1992. doi:10.1007/3-540-55253-7_17.

6.[6] Mark P. Jones. “Simplifying and Improving Qualified Types.” In Proceedings of
the Seventh International Conference on Functional Programming Languages and
Computer Architecture, 160–169. FPCA ’95. La Jolla, California, USA. 1995.
doi:10.1145/224164.224198.

7.[7] Daan Leijen. “Koka: Programming with Row Polymorphic Effect Types.” In
MSFP’14, 5th Workshop on Mathematically Structured Functional Programming.
2014. doi:10.4204/EPTCS.153.8.

8.[8] Daan Leijen. “Type Directed Compilation of Row-Typed Algebraic Effects.” In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, 486–499. 2017.

9.[9] Daan Leijen. “Type Directed Compilation of Row-Typed Algebraic Effects.”
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL’17), 486–499. Paris, France. Jan. 2017.
doi:10.1145/3009837.3009872.

10.[10] Daan Leijen. “Koka Repository.” 2019. https://github.com/koka-lang/koka.
11.[11] J Garrett Morris, and James McKinna. “Abstracting Extensible Data Types: Or,

Rows by Any Other Name.” Proceedings of the ACM on Programming Languages
3 (POPL). ACM New York, NY, USA: 1–28. 2019.

12.[12] Simon Peyton Jones, Mark Jones, and Erik Meijer. “Type Classes: An Exploration
of the Design Space.” In In Haskell Workshop. 1997.

13.[13] Gordon D. Plotkin, and Matija Pretnar. “Handling Algebraic Effects.” In Logical
Methods in Computer Science, volume 9. 4. 2013. doi:10.2168/LMCS-9(4:23)2013.

14.[14] Matija Pretnar, Amr Hany Shehata Saleh, Axel Faes, and Tom Schrijvers. Efficient
Compilation of Algebraic Effects and Handlers. CW Reports. Department of Com-
puter Science, KU Leuven; Leuven, Belgium. 2017. https://lirias.kuleuven.
be/retrieve/472230.

15.[15] Amr Hany Shehata Saleh, Georgios Karachalias, Matija Pretnar, and Tom Schri-
jvers. “Explicit Effect Subtyping.” In 27th European Symposium on Programming
(ESOP). 2018.

16.[16] Mark Shields, and Erik Meijer. “Type-Indexed Rows.” In Proceedings of the 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
261–275. POPL’01. London, United Kingdom. 2001. doi:10.1145/360204.360230.

17.[17] Philip Wadler, and Stephen Blott. “How to Make Ad-Hoc Polymorphism Less
Ad Hoc.” In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on

https://dx.doi.org/10.1145/73560.73576
https://dx.doi.org/10.1007/3-540-55253-7_17
https://dx.doi.org/10.1145/224164.224198
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/3009837.3009872
https://github.com/koka-lang/koka
https://dx.doi.org/10.2168/LMCS-9%25284:23%25292013
https://lirias.kuleuven.be/retrieve/472230
https://lirias.kuleuven.be/retrieve/472230
https://dx.doi.org/10.1145/360204.360230

22 N. Furudono et al.

Principles of Programming Languages, 60–76. POPL ’89. ACM, Austin, Texas,
USA. 1989. doi:10.1145/75277.75283.

18.[18] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp
Schuster, and Daan Leijen. “Effect Handlers, Evidently.” Proceedings of the ACM
on Programming Languages 4 (ICFP). ACM New York, NY, USA: 1–29. 2020.

19.[19] Ningning Xie, and Daan Leijen. “Generalized Evidence Passing for Effect Han-
dlers: Efficient Compilation of Effect Handlers to C.” Proc. ACM Program. Lang.
5 (ICFP). Association for Computing Machinery, New York, NY, USA. Aug. 2021.
doi:10.1145/3473576.

https://dx.doi.org/10.1145/75277.75283
https://dx.doi.org/10.1145/3473576

