Table of contents

Embedding generic monadic transformer into Scala
Ruslan Shevchenko
Towards a Language for Defining Reusable Programming Language Components
Cas van der Rest and Casper Bach Poulsen
Deep Embedding with Class
Mart Lubbers
First-Class Data Types in Shallow Embedded Domain Specific Languages
using Metaprogramming
Mart Lubbers, Pieter Koopman and Rinus Plasmeijer
Creating Interactive Visualizations of TopHat Programs
Mark Gerarts, Marc de Hoog, Tim Steenvoorden and Nico Naus
Sig-adLib: A Compilable Embedded Language for Synchronous Data-Flow
Programming on the Java Virtual Machine
Baltasar Trancén Y Widemann and Markus Lepper
Understanding Algebraic Effect Handlers via Delimited Control Operators
Youyou Cong and Kenichi Asai
Reducing the Power Consumption of loT with Task-Oriented Programming
Sjoerd Crooijmans, Mart Lubbers and Pieter Koopman
Semantic equivalence of task-oriented programs in TopHat
Tosca Klijnsma and Tim Steenvoorden
Algorithm Design with the Selection Monad
Johannes Hartmann and Jeremy Gibbons
Towards the perfect union type
Michal Gajda and Mikhail Lazarev
Less arbitrary waiting time
Michal Gajda
Towards Incremental Language Definition with Reusable Components
Damian Frolich and L. Thomas van Binsbergen
Sound and Complete Type Inference for Closed Effect Rows
Kazuki Tkemori, Youyou Cong, Hidehiko Masuhara and Daan Leijen
Named Arguments as Records
Yaozhu Sun and Bruno C. D. S. Oliveira
Towards Efficient Adjustment of Effect Rows
Naoya Furudono, Youyou Cong, Hidehiko Masuhara and Daan Leijen

24

42

62

84

106

127

139

164

180

200

220

235

260

274



Abstract. Dotty-cps-async is an open-source package that consists of
scala macro, which implements generic async/await via monadic cps
transform and library, which provide monadic substitutions for high-
order functions from the standard library. It allows developers to use di-
rect control flow constructions of base language instead of monadic DSL
for various applications. Behind well-known async/await operations, the
package provides options for transforming high-order function applica-
tions, generating call-chain proxies, and automatic coloring
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1 Introduction

One of the barriers during industrial adoption of the Scala language is an un-
necessary high learning curve. The tradition of using embedded DSL instead of
base language leads to a situation when the ‘cognitive load’ of relatively simple
development tasks, such as querying an extra resource, is higher than in main-
stream languages. A programmer cannot use control flow constructions of base
language but should learn a specific DSL and use a suboptimal embedding of this
DSL, usually within monadic for comprehensions. Therefore, developers who are
proficient in java or typescript cannot be immediately proficient in scala without
additional training.

Can we provide a development environment that gives the programmer an ex-
perience comparable to the state-of-the-art mainstream back-end programming?
Dotty-cps-async intends to be an element of the possible answer. It provides the
way to embed monadic expressions into base scala language using well-known
async/await constructs, existing for nearly all mainstream programming lan-
guages. Although the main idea is not new, dotty-cps-async provides behind
well-known interfaces a set of novel features, such as support of the generic mon-
ads, transformation of high-order function applications, generation of call-chain
proxies, and automatic coloring.

The package is open-source and can be downloaded from github repository
https://github.com/rssh/dotty-cps-async.

2 Embedding generic monadic cps transform into Scala.

Dotty-cps-async implements a similar to scala-async[7] interface based on op-
timized monadic cps transform. It is implemented as scala macros and pro-
vides a simple generic interface with a well-known async/await signature, slightly
changed to support monad parametrization:

def async[F[_]][T](using m: CpsMonad[F])(T): F[T]
Where inside async block we can use an await macro:

def await[G[_],T)(x:G[T])(using CpsAwaitable[G]):T



Note that F and G can be different; if the given instance of CpsMonadCon-
version morphism from F[] to G[_] is defined in the current scope, then await[F]
can be used inside async[G].

Underlying source transformation is an optimized version of monadification
[4], similar to translating terms into continuations monad[8]. This translation is
limited to the code block inside an async argument.

monad type parameter is represented as typeclass with the next interface:

trait CpsMonad[F[_-]] {

def pure[A](v:A): F[A]

def map[A,B](fa:F[A])(f: A=B): F[B]

def flatMap [A,B](fa:F[A])(f: A=F[B]): F[B]
}

Optionally extended by error generation and handling operations:

trait CpsTryMonad[F[-]] extends CpsMonad[F] {

def error [A](e: Throwable): F[A]

def flatMapTry [A,B](fa:F[A])(f: Try[A] = F[B]):F[B]
}

We will use notations F.op as shortcut for appropriative operation over
monad typeclass for F. Cp[code] is a translation of code code in the context
of F.

Let us recap the basic monadification transformations adopted to scala control-
flow construction:

— trivia: Cp[t] = F.pure(t) if t € Constant V t € Identi fier

— sequential composition: Cr[{a;b}] = F.flatMap(CF[a])(- = Cr[b])

— variable definition: Cr[vala = b;c] = F.flatMap(Crla])(a’ = Cplby/.])
— condition: Cplif athenbelsec] =

F.flatMap(Crla])(a’ = if (a") then Cp[b] else Cr[c])
— match: Crlamatch{case ri1 = v1...7, = v,}] =
F.flatMap(Crpla)){a’" = match{caser, = Cplv1]...ry, = Cplv,]}}
— while: Crlwhile(a){b}] =
{
def tmpFun(z : F[Boolean)) : F[Unit] =
F.flatMap(x){c =

}zf(c) then F.flatMap(Cr[b])(- = tmpFun(Crla])) else F.pure(())

tmpFun(Crla))



— try/catch: Cpltry{a}{catche = b}{finallyc}] =

F.flatMap(
F.flatMapTry(Crla]){
case Success(v) => F.pure(v)
case Failure(e) => Cp[b]

}

Wz = F.map(Cr[c],x)}

throw: Cg[throw ex] = F.error(ex)
— lambda function: Crla = b] = a = Crl[b]. Note, that type of lamba function
is changed after this transformation.
functional application: Cr[f(a)] =
o F.flatMap(Crla])(z => f(x)) if  is non-functional type
o F.flatMap(Crla])(z => Cpg[f](z)) if z is a lamba-function which can
be transformed inline.
o F.flatMap(Crla])(z => f'(x)) where f’ is an external-provided shifted
variant of f. The mechanism for definition and substitution of shifted
functions is described in 2.2.

— await: Cplawaitg(a)] =
e ¢ if FF== G and F is not context-depended.
o F.adoptContert(a) if F == G and F evaluation is context-depended.
e CpsMonadConversion|F,G|(a) if F == G and F

Implementation is differ from basic transformation, by few optimizations:

— each translation is specializated for cases when transformations of some sub-
terms are trivial. For example rules for if taking into account optimizations
will looks like:

o Cplifathenbelsec] =

o F.flatMap(CFla])(v => if(v)then Cr[b] else Crlc]) if Cr[A] # F.pure(a)A
(Cr[b] # F.pure(b) V Crlc] # F.pure(c))

e ifathen Cr[blelse Cr|c] if CFla] = F.pure(a) A (Cp[b] # F.pure(b) Vv
Crlc] # F.pure(c))

o F.pure(if athenbelsec) if CFla] = F.pure(a) A Cp[b] = F.pure(b) A
Crlc] = F.pure(c)

— few sequential blocks with trivial CPS transformations are merged into one:

F.flatMap(F.pure(a))(z => F.pure(b(z)) = F.pure(b(a))

In the resulting code, the number of monad bounds is usually the same as
a number of awaits in the program, which made performance characteristics of
code, written in a direct style and then transformed to monadic, the same, as in
monadic style, writtend by hands.



2.1 Monads parametrization

Async expressions are parameterized by monads, which allows the CPS macro to
support behind the standard case of asynchronous processing other more exotic
applications, such as processing effects[16], [2], logical search[10], or probabilistic
programming[1].

Let’s look on the next example:

val prg = async [[X] =>> Resource[IO0,X]] {
val input = open(Paths. get (inputName) READ)
val output = open (outputName ,WRITE, CREATE, TRUNCATE_EXISTING)
var nBytes = 0
while
val buffer = await(read (input, BUF._SIZE))
val c¢Bytes = buffer. position ()
await (write (output, buffer))
nBytes 4= cBytes
cBytes = BUF_SIZE
do ()
nBytes

Here inside async, we construct an async expression for monad [X] =>> Resource[IO,X]
which represent an abstraction over computations with resources acquiring and
releasing logic.

Analogical expression without async/await will look as

(
for{

input <— open(Paths. get (inputName) ,READ)
output <— open (outputName ,WRITE, CREATE, TRUNCATE_EXISTING)
} yield (input, output)
).evalTap{ case (input, output) =>
var nBytes = 0
def step (): IO[Unit] = {
read (input , BUF_SIZE). flatMap{ buffer =>
val cBytes = buffer.position ()
write (output, buffer).flatMap{ - =
nBytes += cBytes
if (cBytes = BUFF_SIZE)
step ()
else
I0. pure (())
}
}
}

step ().map{ - => nBytes }

The next example illustrating a monadic representation of combinatorical
search. Monad [X] =>> ReadChannel[Future,X] represent a csp-like channel[9],



where monadic combinators applying the functions over the stream of a possible
states.

def putQueen(state:State): ReadChannel|[Future, State] =

val ch = makeChannel[State]()
async [Future] {

val i = state.queens.length

if i < N then

for{ j <— 0 until N if !state.isBusy(i,j) }
ch.write(state.put(i,j))

ch.close ()

}

ch

def solutions(state: State): ReadChannel|[Future, State] =
async [[X] =>> ReadChannel [Future ,X]] {
if (state.queens.size < N) then

val nextState = await (putQueen(state))
await (solutions (nextState))

else
state

}

Here we see one async[Future] in putQueen which spawns a concurrent pro-
cess for enumerating the next possible steps in N-Queens solution, and solution
function recursivelly explore all possible steps.

The computation is directed by reading from the stream of solutions. The
process is switched to advance for each state after writing an element to the
channel (await is hidden inside ch.write inside for loop).

ch.write is defined in ReadChannel[F,A] as

transparent inline def write(inline a:A): Unit =
await (awrite(a))(using CpsMonad[F])

transparent inline macros in scala are substituted in code at the same compiler
phase before enclosing macro, so async code transformer process this expression
in for loop instead ch.write.

In such way solutions (State.empty).take(2) will return the first two solutions
without performing a breadth-first search.

Note, that logical search can not be represented using async/await over one-
shot continuations semantics, since ReadChannel monad processing involve mul-
tiple values.

2.2 Translation of high-order functions

Support of cps-transformation of hight-order functions is important for func-
tional language, because it allows using await expression inside loops and in ar-
guments of common collection operators. As example, in previous section await
inside for loop was used for asynchronious channel write. Using await inside
hight-order function enable idiomatic functional style, such as



val v = cache.getOrElse (url, await fetch(url))

Local cps transform change the type of a lambda function. If the runtime
platform supports continuations, we can keep the shape of the arguments in
application unchanged by defining 'monad-escape’ function transformers, which
can restore the view of ¢ps(f) : A = F[B] back to A — B.

But for platform whithout continuation support, high-order functions from
other module is a barrier for local async transformations. For those runtimes
and for cases when semantic of monad does not allow us to build such escape
function, doty-cps-async implements limited support of hight-order functions.
Macro performs a set of transformations, which allows developers to describe
the substitution for the origin high-order function in their code.

Let us have a first-order function: f : A = B which have form Az : code(x)
and high-order method o.m : (A = B) = C. For simplicity, let’s assume that o
is reference to external symbol and not need cps-transformation itself, since we
want to show only function call transaltions here. Async transformation trans-
form code : X into cps(code) : F[X], where F' is our monad.

Let us informally describe a set of transformations used to translate function
call:

— cps(code ) have form F.pure(codes). We can leave the call unchanged in such

a case because no cps transformation was needed: cps(o.m(f)) = F.pure(o.m(f))

— B have form G[B’], where G is compatible with F' (i.e. exists monad conver-
sion G[-] = F[]). In such case it is possible to reshape function arguments,
to keep the same signature to receive cps(o.m(f)) =

F.pure(o.m(Ax : A = CpsMonad [F].flatMap(cps(code(x)))(identity)))

— Exists given instance of marker typeclass AsyncShift[O], which provide a sub-
stitution methods in one of the forms:
e m[F|(f: CpsMonad[F], 0:0)(f: A=>F[B]) Then we can substitute o.m(f)
to the call of

summon[AsyncShift[O]].m[F](summon[CpsMonad[F]], 0)(x => cps(codes(x))

e m(0:0, f: A=>F[B]) - substitute to
summon[AsyncShift[O]].m(o)(z => cps(codes(x))

Such substitutors for the most of high-order functions from Scala standard
library is supplied with dotty-cps-async runtime. Also developers can provide
their own substitution for third-party libraries. The return type of substi-
tuted function can be:

e (', the same as the origin

e ['[C] origin return type wrapped into the monad.

e (CalChainAsyncShiftSubst[F,C,F[C]]. This is a special marker interface for

call chain substitution, which wich will be described later.



— Exists method in O with name m_async or mAsync which accept shifted
argument f : A = F[B]. The conventions for the return type are the same
as in the previous case. This case is helpful for the fluent development of
API, which is accessible in both synchronous and asynchronous forms.

— If none of the above is satisfied, the macro generates a compile-time error.

These rules are extended to multiple parameters and multiple parameters
list, assuming that if we have one high-order async parameter, then all other
parameters should also be transformed, having only one representation of the
asynchronous method.

2.3 Call-chain substitutions

As shown in previous section, one of the possible variant of return method of
substituted high-order function is
CallChainAsyncShiftSubst[F[_],B,F[B]]. The developer can use this substitution
when he/she wants to delay applying F'[-] until the call of all the methods in the
call chain.

For example, let’s look on the next block of code:

for { url <— urls if await(score(url)) > limit)
yield await (fetchData)

wich is desugared as

urls. withFilter (
url => await (score(url)) > limit
).map(url => await (fetchData))

The programmer expects that list of URL-s will be iterated once. However, if
the result of withFilter has form F[List. WithFilter], two iterations are performed -
one for filtering list of URLs and the other over the filtered list to perform fetch-
ing data. User objects for call-chain substitution can accumulate the sequence
of high-order functions in one batch and perform iteration once. After transform
this block of code will be looks as:

summon [ AsyncShift [ List [String |]. withFilter [F]( urls ,m)(
url => m.map(score (url))(x=>x>limit)

) // CallChainAsyncShiftSubst [F, WithFilter ,F[A]]
.mapAsync(url => fetchData) // function added to builder
. _finish () // finally eval all.

2.4  Automatic coloring

Automatic coloring is the way to free the developer from writing boilerplate
await statements. Since most industrial code is built with some asynchronous
framework, await expressions often situated literally in each line. Those expres-
sions do not carry out business logic; in general, when writing code, we should
not care how an object is coming to code, synchronously or asynchronously, the



same as we do not care how memory to our objects should be allocated and
deallocated. Exists some relatively rare optimization points, where low-level in-
formation is valuable, but most of the time, we prefer to think in more high-level
terms than memory or concurrency management. L.e. if developer writing a core
of a web-server, than concurrency low-level details is important. During writ-
ing a business logic using some low-level system framework, we can expect that
framework give us a reasonable generic concurrency model and abstract from
manual coloring.

We can provide implicit conversion from F[T] to T. Can we make such con-
version safe and preserve semantics with automatic coloring? It is safe when
F[] is a cached monad with eager evaluation, such as Future. We can extend
such conversion to monads, which can provide memoization of execution, by
embedding the memoization into the transformation of val definitions.

Let we have block of code { val v =expr; tail, }, expr return value of type
F[T] and exists CpsMemoization[F] with method apply[T|(F[T]):F[F[T]].

Cps transformer can check the variable type and rewrite this to.

summon|[CpsMonad[F]].flatMap(CpsMemoization[F](expr)) (vl = cps(tail,1))

Implicit conversions often criticized as unsafe technique, which can be a
source of bugs and maintability problems. In our case, uncontrolled usage of
such conversion can broke semantics of building complex effects, where some
building parts can be automatically memoized. To prevent such situation, dotty-
cps-async implement preliminary analysis of automatically generated conversion,
which emit errors when detecting potentially unsafe usage.

To make transformation safe, we should check that developer cannot pass
memoized value to API, which expects a delayed effect. Preliminary analysis
ensures that all usages of memoized values are in synchronous contexti by forsing
the next rules:

— If some variable is used only in a synchronous context (i.e., via await), the
macro will color it as synchronous (i.e., cached if used more than once).

— If some variable is passed to other functions as effect - it is colored as asyn-
chronous (i.e., uncached).

— If the variable is simultaneously used in synchronous and asynchronous con-
texts, we cannot deduce the programmer’s intention, and the coloring macro
will report an error.

— If the variable, defined outside of the async block, is used in synchronous
context more than once - the macro also will report an error.

Behind providing implicit conversion, automatic coloring should also care
about value discarding: expressions that provide only side-effects are not an
assignment to some value but discarded. When we do automatic coloring, the
monad with side-effect generation becomes the value of an expression. So, we
should also transform statements with value discard to insert awaits there.
Dotty-cps-async interfaces has a ValueDiscard[T] typeclass. The statement in-
side async block can discard value of type T only if exists implementation



of ValueDiscard[T] interfaces: in such case macro transforms value discard into
summon|[ValueDiscard[T]].discard(t). A special marker typeclass AwaitValueDiscard[F[T]]
is used when this value discard should be a call to await.

If we will apply automatic coloring to our example with copying file, we will
see that difference between synchronous and asynchronous code become invisible.

val prg = asyncScope [IO] {
val input = open(Paths. get (inputName) READ)
val output = open (outputName ,WRITE, CREATE, TRUNCATE_EXISTING)
var nBytes = 0
while
val buffer = read(input, BUF_SIZE)
val c¢Bytes = buffer. position ()
write (output, buffer)
nBytes 4= cBytes
cBytes =— BUF_SIZE
do ()
log.info (s” transformed._${nBytes}_from_${inputName}_to_${outputName}”)
nBytes

3 Related work

The idea of ’'virtual’ program flow encapsulated in a monad is tracked to[3],
which become a foundation for Haskell concurrent library. Later F# computa-
tion expressions were implemented as further development of do-notation. Fur-
thermore, C# moves async/await from virtual monadic control-flow to 'normal
control-flow,* which becomes a pattern for other languages[15]. [11] provides an
overview of computation expression usage in different areas.

Generic monadic operation pairs [reify/reflect] and links between monadic
and cps transformations described in [5].

In scala land, the first cps transformer was implemented as a compiler plu-
gin[14]. It provides quite a powerful but complex interface based on delimited
continuations. Scala-Async[7] provides a more familiar interface for developers
for organizing asynchronous processing by compling async control flow to state
machines. The main limitation is the absence of exception handling. Last year,
a Lightbend team moved implementation of scala-async from macro to compiler
plugin and extended one to support external ’Future systems’ such as 10 or
Monix. In [6] scala-async model is extended to handle reactive streams. Scala
coroutines [12] provides a model which allows to build async/await interface on
top of coroutines. Scala Virtualized[13] devotes to solving a more general prob-
lem: provide deep embedding not only for monadic costructions but for arbitrary
language. Scala Effekt [2] allows interpretation of effect handlers inside control
monad whith delimited continuations.



4 Conclusion and further work

Ability to use direct control-flow on top of some library is a one half of program-
ming experience. The other part is the library itself. Currently, we have a set of
asynchronous scala runtimes with a different sets of capabilities and it would be
interesting to build some uniform facilities for concurrency programming. One
of the open questions is to extend eager Future runtime to support structured
concurrency; Problem from the other side — users of effect stacks, such as 10,
need to wrap impure API into effects. Can we automate this process? Also we
plan to extend integration with existing asynchronous streaming interfaces.

Another direction is the expressivity of internal language, which can be ex-
tended by building appropriative wrapper control monad.
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1 Introduction

Our goal is to build reusable programming language components from algebraic
data types and pattern matching functions. Most functional programming lan-
guages, however, are less than ideal for this purpose, because they lack built-in
solutions for the Expression Problem [13]: while adding functionality to existing
data types is easily done by writing a new function, we cannot extend data def-
initions themselves without modifying existing code. For instance, consider the
following implementation of a small expression language in Haskell:

data Expr = Lit Int | Div Expr Expr

eval :: Expr — Maybe Int

eval (Lit x) = return

eval (Div el e2) = do {z < eval el;y < eval e2; safeDiv z y}

To extend this expression language with support for pretty-printing, we can
simply define a new function pretty :: Exzpr — String. But what if we want to
extend it with a new construct corresponding to, for example, addition? Such a
change would require us to go back and add a constructor Add to the definition of
FEzpr, and extend all functions that match on Fxpr with new clauses accordingly.

This problem is amplified if we want to extend Fxpr with constructs that
introduce new side-effects other than exceptions arising from division by zero. In
that case, we also have to modify eval’s type signature, and potentially even the
implementation of clauses for existing constructors. Clearly, if we intend Expr
and ewval as reusable components this is an undesirable situation.

We improve upon this state of affairs by introducing CS (working title),
a functional meta-language for defining reusable programming language compo-
nents. In CS, we can define components that describe part of a language’s syntax,
semantics or side effects, such that they can safely be composed into larger lan-
guages without requiring modification of existing code. The key features of CS
that make this possible are (1) built-in support for per-case definitions of data
types and pattern matching functions in the style of Data Types & la Carte [12],
and (2) an effect system based on Plotkin and Pretnar’s effect handlers [9] for
the modular definition of side-effects.



CS is work in progress. There is a prototype implementation of an interpreter
and interactive programming environment which we can us to define and run the
examples from this abstract. We are, however, still in the process of developing
and implementing a type system. In particular, we should statically prevent
errors resulting from missing implementations of function clauses.

The name CS is an abbreviation of “Compositional Semantics”. It is also
the initials of Christopher Strachey, whose pioneering work [10] initiated the de-
velopment of denotational semantics. In Fundamental Concepts in Programming
Languages [11], Strachey wrote that “the urgent task in programming languages
is to explore the field of semantic possibilities”, and that we need to “recognize
and isolate the central concepts” of programming languages. Today, five decades
later, the words still ring true. The CS language aims to address this urgent
task in programming languages, by supporting the definition of reusable (cen-
tral) programming language concepts, via compositional denotation functions
that map the syntax of programming languages to their meaning.

2 CS by Example

To showcase CS’s design, we consider how to define the previous example as a
reusable language component in CS.

Signatures and Modules The first step is to define a signature that announces
the existence of an extensible data type Ezpr, and extensible function eval:

signature Eval (FX : Effects) where
sort Fxpr : Set
alg eval : Expr — {[FX] Int}
end

The braces (‘{’ and ‘}’) in the type of eval indicate that it returns a suspended
computation. Effects in CS happen eagerly, meaning that the side-effects of an
expression occur then and there unless we suspend them. For eval, we do want
suspension, leaving it up to the caller to decide when its effects take place.

The FEwval signature has an effect row parameter, FX, describing which side
effects may occur during evaluation. With the alg keyword, we allude to the
initial algebra semantics for data types [5] on which CS’s semantics for extensible
types and functions is based. Indeed, we will see shortly that function clauses
for eval are not implemented as regular functions, but as algebras instead.

We inhabit Ezpr and eval by defining modules that instantiate the Ewval
signature. We do this for the Lit and Div constructors:

module Lit : Fval where
cons Lit : Int — Fapr
case eval (Lit n) = {n}
end



module Div : Eval where
cons D : Fxpr — Expr — Expr
case eval (Div m1 m2) = {x < ml;y < m2;safeDiv x y}

Let us take a closer look at the implementation of eval in the module Div.
There are two things worth noting here. First, we do not invoke ewval recursively
on the sub-expressions m! and m2. This is because we define function clauses as
algebras, meaning that we assume that any recursive subtrees have already been
replaced with the result of evaluating those subtrees. Second, the implementation
uses the function safeDiv that guards against errors resulting from devision by
zero. We find its implementation later on in the same module:

fun safeDiv : Int — Int — [Abort] Int where
| z 0 = abort !
lzy=.

end

The function safeDiv is annotated with the Abort effect, which supplies the abort
operation, signalling abrupt termination. By invoking safeDiv in the defintion
of eval, which from the definition of Ewval has type Expr — [FX] Int, we are
implicitly imposing a constraint on the module parameter FX that it contains
at least the Abort effect. In other words, whenever we import the module Div
we better make sure that we instantiate F'X with a row that has Abort in it.

We must say a few words about the braces (‘{’ and ‘}’) that surround the
implementation of eval for Div. Their purpose is to introduce a suspended com-
putation. The opposite of suspension is enactment, which is denoted by postfix-
ing with an exclamation mark (!). We see it in action in the definition of safeDiv
(indeed, we abort immediately). Our use of braces is inspired by the similar
language feature found in Frank [3].

Now, how do we use these modules to construct an interpreter for a language
with integer literals and division? In CS, it is not necessary to explicitly compose
constructors and clauses into data types and functions. Instead, the language
manages this for us by automatically merging constructors and clauses whenever
we import multiple instances of the same signature.

module Test where
import Abort

, Eval [ Abort|
, Lit, Div
fun run : Expr — [Abort] Int where
| e = eval e

fun test : [Abort| Int
= run (Div (Lit 6) (Lit 2))
end

We are allowed to invoke eval in the body of run here, because the sole constraint
(imposed by importing Div) on its effect annotation of is that it contains Abort.



When importing the Fval signature we instantiated its effect row parameter with
the singleton row [ Abort|, which satisfies this constraint.

Effects and Handlers To use the run function, we must first invoke a handler
for the Abort effect. To understand handlers, let us look at the module that
implements the Abort effect together with its handler.

module Abort where
import Prelude

effect Abort where
| abort : [Abort] a

handler hAbort : [Abort | FX] a — [FX| (Maybe a) where
| abort & = Nothing
| return z = Just =

end

With the effect keyword we declare a new effect together with its operations. Ef-
fect declarations are much like data type declarations, but instead of constructors
they define the different ways in which we can construct effectful computations
containing a particular effect.

We use the handler keyword to declare a handler for the Abort effect, hAbort,
which removes it from the annotation of an effectful computation. The type of
hAbort contains a free type variable (a) and a free row variable (FX), both of
which are implicitly universally quantified, as is any free type or row variable.
The result of handling the Abort effect is a Maybe value. Maybe, along with its
constructors Just and Nothing is defined in the Prelude module.

Handlers must have a branch for each operation of the handled effect, plus
a return branch that decorates pure values to match the handler’s co-domain
type. All branches corresponding to operations have an extra parameter that
binds the continuation, representing the computation that succeeds the operation
we are currently handling. By convention, we name this parameter k. In the
abort case of hAbort, however, we ignore this continuation altogether, because
the semantics of this operation should correspond to abrupt termination.

We use the continuation parameter in a more interesting way when defining
a handler for a State effect:

module State (s : Set) where
effect State where
| get : [State] s
| put : s — [State] ()

handler hState : [State | FX | a — s — [FX] (axs) where

| get stk =k st st
| (put st’) stk ==k() st’
| return z st = (z. st)

end



For both the get and put operations, we use the continuation parameter £ to
implement the corresponding branch in hAbort. The continuation expects a value
whose type corresponds to the return type of the current operation, and produces
a computation with the same type as the co-domain type of the handler. For the
put operation, for example, this means that k is of type () — s — [FX]| (axs).
The implementation of hState for get and put then simply invokes k, using the
current state as both the value and input state (get), or giving a unit value and
using the given state st/ as the input state (put).

2.1 Implementing Functions as a Reusable Effect

CS’s effect system can describe much more sophisticated effects than Abort and
State, as it permits fine-grained control over the semantics of operations that
affect a program’s control flow, even in the presence of other effects. To illus-
trate its expressiveness, we will now consider how to define function abstraction
as a reusable effect, and implement two different handlers for this effect corre-
sponding to a call-by-value and call-by-name semantics. We start by declaring
the Abstracting effect and its operations:

effect Abstracting where

|lam : String — [Abstracting] Value — [ Abstracting] Value

lapp : Value — Value — [Abstracting| Value

| var  : String — [Abstracting| Value
= | ]

| thunk : [Abstracting] Value Abstracting| Value

The Abstracting effect has four operations, of which three correspond to the usual
constructs of the A-calculus. The thunk operation has no syntactical counterpart,
but will be used for implementing a call-by-value and call-by-name evaluation
strategy. Value is the type of values in our language; we will see shortly how it
is defined.

When looking at the lam and thunk operations, we find that they both
have parameters annotated with the Abstracting effect. This annotation indi-
cates that they construct effectful computations from effectful computations, a
pattern sometimes referred to as higher-order effects. Effectively, this means that
any effects belonging to a value we wrap in a closure or thunk are postponed,
leaving it up to the handler to decide when these take place.

Using the Abstracting effect To define a langue with function abstractions using
the Abstracting effect, we define constructors Abs, App, and Var for Fxpr, and
evaluate them by mapping onto the corresponding operation.

module Lambda : Fval where
cons Abs : String — FExpr — Ezpr
| App : Expr — Expr — Expr
| Var : String — Expr



case ceval (Abs © m) ={lam z m}
| eval (App m1 m2) = {t + thunk m2;app m1! ¢}

| eval (Var ) = {var z}
end

Crucially, in the case for Abs we pass the effect-annotated body m, which has
type {[FX| Value }, to the lam operation directly without extracting a pure value
first. This prevents any effects in the body of a lambda from being enacted at the
definition site, and instead leaves the decision of when these effects should take
place to the used handler for the Abstracting effect. Similarly, in the case for App,
we pass the function argument m2 to the thunk operation directly, postponing
any side-effects until we force the constructed thunk. We do, however, enact the
side-effects of evaluating the function itself (i.e., m1), because the app operation
expects its arguments to be a pure value. -

We define the call-by-value and call-by-name handlers for Abstracting in a
new module, that also defines the type of values for our language. Consequently,
we adapt the Ewval signature to use this value type in the signature for eval. To
keep the exposition simple, we do not define Value as an extensible sort, but it
is possible to do this in CS.

The values in this language are either numbers (Num), functions (Clo), or
thunked computations (Thunk):

module HLambda (FX : Effect) where
import Abstracting

type Env = List (Stringx Value)

data Value = Num Int
| Clo String (Env — [Abort | FX| Value) Env
| Thunk ([Abort | FX | Value)

end

Call-by-value We are now ready to define a hander for the Abstracting effect
that implements a call-by-value evaluation strategy. Figure 1 shows its imple-
mentation.

The return case is unremarkable: we simply ignore the environment nv and
return the value v. The cases for lam and thunk are similar, as in both cases
we do not enact the side-effects associated with the stored computation f, but
instead wrap this computation in a Closure or Thunk which is passed to the
continuation k. For variables, we resolve the identifier z in the environment and
pass the result to the continuation.

A call-by-value semantics arises from the implementation of the app case. The

highlights (e.g., t!) indicate where the thunk we constructed for the function
argument in eval is forced. In this case, we force this argument thunk immedi-



handler hCBV : [Abstracting | FX| Value
— Env — [Abort | FX| Value where

| (lam « f) m k =k (Cloz f nv) nv

| (app (Clo z f nv') ( Thunk t )) nv k = v" < f ((z, t!) = ')
i ko no

| (app ) L abort!

| (var z) nv k =k (lookup nv ) nv

| (thunk f) nv k =k (Thunk {f nv}) nv

| return v n o =

Fig. 1. A Handler for the Abstracting effect, implementing a call-by-value semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

ately when encountering a function application, meaning that any side-effects of
the argument take place before we evaluate the function body.

Call-by-name The handler in Figure 2 shows an implementation of a call-by-
name semantics for the Abstracting effect. The only cases differences with the
call-by-value handler in Figure 1 are the app and var cases.

In the case for app, we now put the argument thunk in the environment
immediately, without forcing it first. Instead, in the case for var, we check if the
variable we look up in the environment is a Thunk. If so, we force it and pass
the resulting value to the continuation. In effect, this means that for a variable
that binds an effectful computation, the associated side-effects take place every
time we use that variable, but not until we reference it for the first time.

Ezample To illustrate the difference between hCBV (Figure 1) and hCBN (Fig-
ure 2), we combine the Lambda module with a module that uses the State effect.
It defines expressions for reading and incrementing a single memory cell contain-
ing an integer:

module Mem : Eval where
import State Int
cons Incr : Fapr
| Recall : Expr
case cval Incr = {put (get!+1); Num get! }
| eval Recall = get o
end o

When combining Mem and Lambda, we can observe the difference between a
call-by-value and call-by-name evaluation strategy. Figure 3 shows an example
of this.



handler hCBN : [Abstracting | FX | Value
— Env — [Abort | FX| Value where

| (lam 7 f) nk =k (Clozfm) nv
| (app (Clo z f nv') v) nv k =v" « f ((z,v) :: nv’)
kv no

| (app — ) ~ _ = abort!

| (var z) nv k = match lookup z nv with
| ( Thunk t ) — k t! nov
| v — kv nv

end
| (thunk f) nv k =k (Thunk {f nv}) nv
| return v n o =v

Fig. 2. A Handler for the Abstracting effect, implementing a call-by-name semantics for
function arguments. The gray highlights indicate where thunks constructed for function
arguments are forced.

3 Outlook

CS is an ongoing research project. Here, we briefly summarize the current state,
and some of the challenges that still remain.

Current state There is a prototype implementation of CS, consisting of an im-
plementation of the operational semantics, a declarative type checker written in
Statix [1], and an interactive environment through which we can interact with
the language. The operational semantics is inspired by a recently-proposed fla-
vor of effect handlers called Latent Effects [2], which unlike plain effects and
handlers can describe many advanced control-flow mechanisms. The Abstracting
effect and its different evaluation strategies are an example of how we can benefit
from this extra expressivity. With this prototype, it is possible to define and run
the examples shown in this abstract.

Static Semantics We are still in the process of developing a type system for CS.
Our plan is to use row types for both effect annotations (e.g., a la Frank [3] and
Koka [6]), and for typing extensible data types and functions. The motivation
for the latter is that CS’s static semantics should prevent problems arising from
missing function clause declarations. Row types seem to be a good fit for this
requirement, since they allow pattern matching functions to reflect in their type
for which constructors they are defined. By assigning a row type to extensible
functions, we statically make the necessary information available to check that
they are not applied to an input for which there does not exist a corresponding
case declaration. We draw inspiration from the ROSE [8] language, which applies
row types to type extensible data types and records.



module Test where
import Prelude
, Abstracting
, State Int

, HLambdaCBV [State]
, HLambdaCBN | State]

, Lambda
, Mem

fun execCBV : Expr — (Maybe Valuex Int) where
| e = hState { hAbort {hRCBV (eval e) []}} 0

fun execCBN : Exzpr — (Maybe Value x Int) where
| e = hState { hAbort {hCBN (eval e) []}} 0

fun expr : Expr = App (Abs “2” Recall) Incr

fun resultl : (Maybe Valuex Int) = execCBV expr

fun result2 : (Maybe Valuex Int) = execCBN expr
end

Fig. 3. Examples of different outcomes when using a call-by-value or call-by-name
evaluation strategy.

Core Language Parallel to developing CS, we are also working on developing
a row-typed core language, which is intended as a minimal calculus to which
we can desugar programs written in full CS. We base this core language on
RoOSE [8], adapting it where necessary to encode (extensible) recursive data types
and row-typed effects. Because the core language is much smaller than the sur-
face language, it becomes more feasible to give a full formal specification of its
semantics, and verify meta-theoretical properties such as type safety. The core
language is still under development, but we hope to use it as a well-understood
foundation for CS in the future. Of course, this will introduce additional chal-
lenges with respect to usability, such as how to provide decent error messages
when type checking CS by going through the core language.

Semantics of extensible functions The current semantics of extensible functions
is given by a catamorphism (fold) over the input type. This is a limiting factor
when we try to implement traversals with a more complex recursive structure as
an extensible function. To make CS’s extensible functions in more expressive, we
could switch to a richer model of extensible functions. For this we could explore,
for example, more expressive recursion schemes [7], or mizin algebras [4].
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Abstract The two flavours of DSL embedding are shallow and deep
embedding. In functional languages, shallow embedding models the lan-
guage constructs as functions in which the semantics are embedded.
Adding semantics is therefore cumbersome while adding constructs is
a breeze. Upgrading the functions to type classes lifts this limitation to
a certain extent.

Deeply embedded languages represent their language constructs as data
and the semantics are functions on it. As a result, the language constructs
are embedded in the semantics, hence adding new language constructs
is laborious where adding semantics is trouble free.

This paper shows that by abstracting the semantics functions in deep em-
bedding to type classes, it is possible to easily add language constructs
as well. So-called classy deep embedding results in DSLs that are exten-
sible both in language constructs and in semantics while maintaining a
concrete abstract syntax tree. Additionally, little type-level trickery or
complicated boilerplate code is required to achieve this.

Keywords: functional programming, embedded domain specific lan-
guages, Haskell

1 Introduction

The two flavours of DSL embedding are deep and shallow embedding [4]. In func-
tional programming languages, shallow embedding models language constructs
as functions in the host language. As a result, adding new language constructs—
extra functions—is easy. However, the semantics of the language is embedded in
the functions, thus it is troublesome to add semantics since it requires updating
all existing language constructs.

On the other hand, deep embedding models language constructs as data
in the host language. The semantics of the language are represented by func-
tions over the data. Consequently, adding new semantics, i.e. novel functions, is
straightforward. It can be stated that the language constructs are embedded in
the functions that form a semantics. If one wants to add a language construct,
all semantics functions must be revisited and revised to avoid ending up with
partial functions.

This juxtaposition has been known for many years [22] and discussed by many
others [14] but most famously dubbed the expression problem by Wadler [25]:
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The expression problem is a new name for an old problem. The goal is
to define a data type by cases, where one can add new cases to the data
type and new functions over the data type, without recompiling existing
code, and while retaining static type safety (e.g., no casts).

In shallow embedding, abstracting the functions to type classes disentangles
the language constructs from the semantics, allowing extension both ways. This
technique is dubbed tagless-final embedding [5], nonetheless it is no silver bullet.
Some semantics that require an intensional analysis of the syntax tree, such as
transformation or optimisations, are difficult to implement in shallow embedding
due to the lack of an explicit data structure representing the abstract syntax
tree. Thus, either the semantics of the DSL must be a state or context has to be
maintained so that structural information is not lost [13].

1.1 Research contribution

This paper shows how to apply the technique observed in tagless-final embedding
to deep embedding. The presented basic technique, christened classy deep em-
bedding, does not require advanced type system extensions to be used. However,
it is suitable for type system extensions such as generalised algebraic data types.
While the examples are written in Haskell [21] using some minor extensions
provided by GHC [9], the idea is applicable to other languages as well.

2 Deep embedding

Take a DSL, take any DSL, take the language of expressions in which literal
integers and addition can be expressed. In deep embedding, terms in the language
are represented by data in the host language. Hence, defining the constructs is
as simple as creating the following algebraic data type. The suffixed to indicate
the evolution.

data Expr, = Litg Int
| Addy Ezpry Ezpr,

Semantics are defined as functions on the Fzpr, data type. For example, a
function transforming the term to an integer—an evaluator—is implemented as
follows.

evalg :: Expry — Int
evalgy (Litg e) =e
evaly (Addy e1 ex) = evaly e1 + evaly ez

Adding semantics—e.g. a printer—just means adding another function and
the existing functions remain untouched. I.e. the key property of deep embed-
ding. The following function, transforming the Expr, data type to a string,
defines a simple printer for our language.
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printy 2 Bxprg — String
printy (Litg v) = show v
printy (Addg ey ez) =" (" H printy er H "=" + print, ez H ")"

While the language is concise and elegant, it is not very expressive. Tradi-
tionally, extending the language is achieved by adding a case to the Expr, data
type. However, this means that we have to touch, and thus recompile, the orig-
inal datatype. So, adding subtraction to the language results in the following
revised data type.

data Ezpry, = Lity Int
| Addy Expr, Ezpr,
| Suby Ezpr, Ezpr,

Extending the DSL with language constructs exposes the Achilles’ heel of
deep embedding. Adding a case to the data type means that all semantic func-
tions need to be updated to be able to handle this new case. This does not seem
like an insurmountable problem, but it does pose a problem if either the func-
tions or the data type itself are written by others or are contained in a closed
library.

3 Shallow embedding

Conversely, let us see how this would be done in shallow embedding. First,
the data type is represented by functions in the host language with embedded
semantics. Therefore, the evaluators for literals and addition both become a
function in the host language as follows.

type Sem, = Int

litg :: Int — Sem,

lits 1 =1

addg :: Semg — Semg — Semy
adds e1 e2 = €1 + e

Adding subtraction to the language is as simple as adding a new function.

subg :: Semgs — Sem, — Sem
subg e1 e = €1 — €3

Adding semantics on the other hand—e.g. a printer—is not that simple be-
cause the semantics are part of the functions representing the language con-
structs. One way to add semantics is to change all functions to execute both
semantics at the same time. In our case this means changing the type of Sem,
to be (Int, String) so that all functions operate on a tuple containing the result
of the evaluator and the printed representation at the same time. Alternatively,
a single semantics can be defined that represents a fold over the language con-
structs [10], delaying the selection of semantics to the moment the fold is applied.
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3.1 Tagless-final embedding

Tagless-final embedding overcomes the limitations of standard shallow embed-
ding. To upgrade to this embedding technique, the language constructs are
changed from functions to type classes. For our language this results in the
following class definition.

class Ezpr, s where
lit; = Int — s
addy 8 —> s — s

Semantics become data types implementing these type classes, resulting in the
following instance for the evaluator.

newtype FEval, = E; Int
instance Ezpr, Eval; where
tht v = Et v
add; (E; e1) (Ey e2) = Ey (e1 + e2)

Adding constructs—e.g. subtraction—just results in an extra type class and
corresponding instances.

class Sub; s where
suby s —>s—s

instance Sub; Eval; where
suby (Ey e1) (Ey e2) = F; (e1 — e2)

Finally, adding semantics such as a printer over the language is achieved by
providing a data type representing the semantics accompanied by instances for
the language constructs.

newtype Printer; = Py String
instance Ezpr, Printer, where

lity @ = P; (show i)

add; (P e1) (Prea) =Py ("("Hep H "+"H e H")")
instance Sub; Printer; where

suby (Pt e1) (Pyea) = Py ("(" 4+ er H"=" 4 ea H ") ")

4 Lifting the backends

Let us rethink the deeply embedded DSL design. Remember that in shallow
embedding, the semantics are embedded in the language construct functions.
Obtaining extensibility both in constructs and semantics was accomplished by
abstracting the semantic functions to type classes, making the constructs over-
loaded in the semantics. In deep embedding, the constructs are embedded in the
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semantics functions instead. So, let us apply the same technique, i.e. make the
semantics overloaded in the language constructs by abstracting the semantics
functions to type classes. The same effect may be achieved when using simi-
lar techniques such as explicit dictionary passing or ML style modules. In our
language this results in the following type class.

class Fval; v where
evaly :: v — Int

data Ezpr, = Lit; Int
| Addy Ezpr, Exzpry

Implementing the semantic type class instances for the Expr; data type is
an elementary exercise. By a copy, paste and some modifications, we come to
the following implementation.

instance Eval, Ezpr,; where
evaly (Lit; v) =w
evaly (Addy e1 e3) = evaly €1 + evaly e

Subtraction can now be defined in a separate data type, leaving the original
data type intact. Instances for the additional semantics can now be implemented
separately as instances of the type classes.

data SubExpr, = Suby Expr, Expr,

instance Evaly SubExpr; where
evaly (Suby €1 e2) = evaly e; — evaly ey

5 Existential data types

The astute reader might have noticed that we have dissociated ourselves from the
original data type. It is only possible to create an expression with a subtraction
on the top level. The recursive knot is left untied and as a result, SubExpr; can
never be reached from an Expr;.

Luckily, we can reconnect them by adding a special constructor to the Ezpr;
data type for housing extensions. To allow it to house not just subtraction but
any extension, it contains an existentially quantified [18] type with class con-
straints [15,16] for all semantics type classes [9, Chp. 6.4.6].

data Ezpr, = Lity Int
| Addy Expry Expry
| Va.(Evaly x, Prints x) = FExts x
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The implementation of the extension case in the semantics type classes is in
most cases just a matter of calling the function for the argument as can be seen
in the semantics instances shown below.

instance Fvals Ezpr, where

evals (Lita v) =
evaly (Addy €1 ez) = evals e1 + evaly ey
evaly (Exts ) = evaly

Adding language construct extensions in different data types does mean that
an extra Ezt tag is introduced when using the extension. This burden can be
relieved by creating a smart constructor for it that automatically wraps the
extension with the Fzt constructor so that it is of the type of the main data

type.

subg 2 Exprg — Expry — Expr,
subs €1 ea = Exty (Subs €1 e2)

In our example this means that the programmer can write:
€y = sub2 (Litz 42) (Litz 1)
instead of having to write

eé = ECI?tQ (Sub2 (Litz 42) (Litz 1))

5.1 TUnbraiding the semantics from the data

This approach does reveal a minor problem. Namely that all semantics type-
classes are braided into our datatypes via the Ezts constructor. Say if we add the
printer again, the Exts constructor has to be updated to —Vx.(Evaly z, Printy x) =
Exty x. Thus, if we add semantics, the main data type’s class constraints in the
FExt constructor need to be updated. To avoid this, the type classes can be bun-
dled in a class alias or class collection as follows.

class (Evals x, Prints x) = Semanticss x

data Ezpr, = Lity Int
| Addy Ezxpry Expr,
| Yz.Semanticss x = Exty x

The class alias removes the need for the programmer to visit the main data
type when adding an additional semantics. Unfortunately, the compiler does
need to visit the main data type again. Some may argue that adding semantics
happens less frequently than adding language constructs but in reality it means
that we have to concede that the language is not as easily extensible in semantics
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as in language constructs. More exotic type system extensions such as constraint
kinds [3,26] can mitigate this issue by making the data types parametrised by
the particular semantics. However, by adding some boilerplate, even without
this extension the language constructs can be parametrised by the semantics
by putting the semantics functions in a data type. First the data types for the
language constructs are parametrised by the type variable ¢ as follows.

data Exprs ¢ =  Lits Int
| Adds (Expry c) (Ezprs c)
| Vz.Exts (cz)

data SubExprs ¢ = Subs (Exprs ¢) (Exprs c)

The ¢ type variable is inhabited by an explicit dictionary for the semantics.
Therefore, for all semantics type classes, a data type is made that contains
the semantics function for the given semantics. This means that for Fwvals, a
dictionary with the function EwalDicts is defined, a type class HasFvals for
retrieving the function from the dictionary and an instance for HasFwals for
FEvalDicts.

data FvalDicts v = EvalDicts (v — Int)
class HasFvals d where
hasEvalz :: d v — v — Int
instance HasFvals FvalDicts where
hasEvals (EvalDicts e) = e

The instances for the type classes change as well according to the change in
the datatype accordingly.

instance HasEvaly d = Evals (Exprs d) where
evalg (Lits v) =w
evalz (Adds ey ez) = evals e; + evals ey
evals (Exts d x) = hasBvals d x

instance HasEvalz d = Ewvals (SubExprs d) where
evals (Subs €1 ez) = evals e; — evals ey

Because the Ext3 constructor from Exprs now contains a value of type ¢, the
smart constructor for Subs must somehow come up with this value. To achieve
this, a class is introduced that allows the generation of such a dictionary.

class GDict a where
gdict :: a

This class has instances for all semantics dictionaries.

instance Fvaly v = GDict (FvalDicts v) where
gdict = EvalDicts evals
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With these instances, the semantics function can be retrieved from the Exts
constructor and in the smart constructors they can be generated as follows:

subg :: GDict (¢ (SubExprs ¢)) = Exprg ¢ — Exprg ¢ — Expry c
subs €1 ea = Extg gdict (Subz €1 es)

Finally we reached the end goal, orthogonal extension of both language con-
structs as shown by adding subtraction to the language and in language seman-
tics. Adding the printer can now be done without touching the original code as
follows. First the printer class, dictionaries and instances for GDict are defined.

class Prints v where
prints 2 v — String
data PrintDicts v = PrintDicts (v — String)
class HasPrints d where
hasPrints :: d v — v — String
instance HasPrints PrintDicts where
hasPrints (PrintDicts e) = e
instance Prints v = GDict (PrintDicts v) where
gdict = PrintDicts prints

Then the instances for Prints of all the language constructs can be defined.

instance HasPrints d = Prints (Ezprs d) where
prints (Lits v) = show v
prints (Adds er ez) = " (" H prints e; H "+" H prints ex H ")"
prints (Frts d x) = hasPrints d

instance HasPrints d = Prints (SubExprs d) where
prints (Subs ey ez) = " (" H prints e; H "=" H prints es H ")"

6 Transformation semantics

Most semantics convert a term to some final representation and can be expressed
just by functions on the cases. However, some semantics such as transformation
or optimisation require a so called intentional analysis of the abstract syntax tree.
In shallow embedding, the implementation for these type of semantics is difficult
because there is no tangible abstract syntax tree. In off-the-shelf deep embedding
this is effortless since the function can pattern match on the constructor or
structures of constructors.

To demonstrate intensional analyses in classy deep embedding we write an
optimizer that removes addition and subtraction by zero In classy deep embed-
ding, adding new semantics means first adding a new type class housing the
function including the machinery for the extension constructor.
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class Opt; v where
optz ::v — v
data OptDict; v = OptDicty (v — v)
class HasOpt; d where
hasOptg::d v —v —wv
instance HasOpt; OptDict; where
hasOpt4 (OptDicts €) = e
instance Opt; v = GDict (OptDict; v) where
gdict = OptDicts opts

The implementation of the optimizer for the Ezprs data type is no compli-
cated task. The only interesting bit in occurs in the Adds constructor, where we
pattern match on the optimised children to determine whether an addition with
zero is performed. If this is the case, the addition is removed.

instance HasOpts d = Opts (Exprs d) where

opty (Lits v) = Litz v

opts (Adds ey ex) = case (opts e, opts e2) of
(Lit3 0, €}) — €}
(e1, Lits 0) — €
(€1, €3) — Adds €] ¢

opty (Exty d x) = Exts d (hasOpts d x)

Replicating this for the Opt; instance of SubExprsy seems a clear-cut task at
first glance.

instance HasOpts; d = Opt (SubExprs d) where
opts (Subs e1 e2) = case (optg ey, opts ez) of
(ef, Lit 0) — e
(ef,€5) — SubExprs e} €

Unsurprisingly, this code is rejected by the compiler. When a literal zero is
matched as the right-hand side of a subtraction, the left hand side of type Exprs
is returned. However, the type signature of the function dictates that it should be
of type SubEzpr;. To overcome this problem we add a convolution constructor.

6.1 Convolution

Adding a loopback case or convolution constructor to the Subs allows the removal
of the Subs constructor while remaining the SubEzpr, type. It should be noted
that a loopback case is only required if the transformation actually removes tags.
This changes the SubExprsy data type as follows.

data SubExprs ¢ = Subs (Exprs c) (Exprsy c)
| SubLoops (Exprs )

instance HasEvals d = Evals (SubExprs d) where
evals (Subs e1 e2) = evalg e; — evals ey
evals (SubLoops e1) = evals e;
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With this loopback case in the toolbox, the following SubFEzpr instance op-
timises away subtraction with zero literals.

instance HasOpty d = Opty (SubExprs d) where
opts (Subs e; e2) = case (opts ey, opts ez) of
(e, Lit3 0) — SubLoop, €]
(ef, €b) — Subs e} €
opts (SubLoops e) = SubLoops (opts €)

6.2 Pattern matching

Pattern matching within datatypes and from an extension to the main data type
works out of the box. Pattern matching on values with an existential type is
not possible without leveraging dynamic typing [1,2]. To enable dynamic typing
support, the Typeable type class as provided by Data.Dynamic [8] is added to the
list of constraints in all places where we need to pattern match across extensions.
Cross-extensional pattern matching on the other hand—matching on a particular
extension—is something that requires a bit of extra care. Take for example the
optimisations negation propagation and double negation elimination. As a result,
the Typeable class constraints is added to the quantified type variable = of the
FExt4 constructor and to c¢s in the smart constructors.

data Ezpr, c = Lity Int
| Addy (Expr, c) (Ezpry c)
| Vz.Typeable © = Exty (cz) x

First let us add negation to the language by defining a datatype represent-
ing it. Negation elimination requires the removal of negation constructors so a
convolution constructor is defined as well.

data NegFzpr, ¢ = Neg, (Expr, c)

| NegLoop, (Expr, c)
neg, :: (Typeable ¢, GDict (¢ (NegExpr, c))) = Expry ¢ — Expry ¢
neg, e = Exty gdict (Neg, e)

The evaluation and printer instances for the NegExpr, datatype are defined
as follows.

instance HasEvaly d = Evaly (NegExpr, d) where
evaly (Neg, e) = negate (evaly €)
evaly (NegLoop, e) = evaly e

instance HasPrinty d = Printy (NegExpr, d) where
print4 (N€g4 6) = "("" -H-p?“mt4 e H ll) n
print, (NegLoop, e) = print, e
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The Opt, contains the interesting bit. If the sub expression of a negation is
an addition, negation is propagated downwards. If the sub expression is again a
negation, something that can only be found out by

instance ( Typeable d, GDict (d (NegExpr, d)), HasOpt, d) =
Opt, (NegExpr, d) where
opt, (Neg, (Addy e e2))
= NegLoop, (Addy (opt, (neg, e1)) (opt, (neg, e2)))
opt, (Neg, (Exty d x))
= case fromDynamic (toDyn (hasOpt, d z)) of
Just (Neg, e) — NegLoop, e
- — Negy (Fxty d (hasOpt, d z))
opty (Neg, e) = Neg, (opt, €)
opt, (NegLoop, e) = NegLoop, (opt, €)

Loopback cases do make cross-extensional pattern matching less modular
in general. For example, FEzty d (SubLoop, (Lity 0)) is equivalent to Lity 0
in the optimisation semantics and would just require an extra pattern match.
Fortunately, this problem can be mitigated—if required—by just adding an ad-
ditional optimisation semantics that removes loopback cases. Moreover, one does
not need to resort to these arguably blunt matters a lot. Dependent language
functionality often does not need to span extensions, i.e. it is possible to group
them in the same data type.

6.3 Chaining semantics

Now that the data types are parametrised by the semantics a final problem needs
to be overcome. The data type is parametrised by the semantics, thus, using
multiple semantics, such as evaluation after optimising is not straightforwardly
possible. Luckily, a solution is readily at hand: introduce an ad-hoc combining
semantics.

data OptPrintDict, v = OptPrintDict, (OptDict, v) (PrintDicty v)
instance HasOpt, OptPrintDict, where
hasOpt, (OptPrintDict, v _) = hasOpt, v
instance HasPrinty OptPrintDict, where
hasPrinty (OptPrintDict, _ v) = hasPrinty v
instance (Opt, v, Printy v) = GDict (OptPrintDict, v) where
gdict = OptPrintDict, gdict gdict

And this allows us to write print, (opt, e1) resulting in ((~42) + (~38))
when e; represents (~ (42 + 38)) — 0 and is thus defined as follows.

e; :: BExpr, OptPrintDict,
e1 = suby (negy (Addy (Lity 42) (Lity 38))) (Lit4 0)
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7 Generalised algebraic data types (GADTS)

GADTs are enriched data types that allow the type instantiation of the construc-
tor to be explicitly defined [7,11]. Leveraging GADTSs, deeply embedded DSLs
can be made statically type safe even when different value types are supported.
Even when GADTs are not supported natively in the language, they can be sim-
ulated using embedding-projection pairs or equivalence types [6, Sec. 2.2]. Where
some solutions to the expression problem do not easily generalise to GADTs (see
Section 9), classy deep embedding does. Generalising the data structure of our
DSL results in the following GADTs. Note that to make the DSL more general,
the types of the constructors have been relaxed more. For example, operations
on integers now work on all numerals instead. Moreover, the Lit, constructor
can be used to lift values of any type to the DSL domain as long as they can be
shown which is required for the printer. Since the optimisations on Neg, remove
constructors and is a cross-extensional pattern match, Typeable constraints must
be added to a. Furthermore, because the optimisations for Add, and Sub, are
now more general, they do not only work for Int but for any a for which an Num
instance is available, the Fq constraint is added to these constructors as well.

data Ezpr, ¢ a where
Lit, ::Show a = a — Ezpr, ca
Addg :: (Eq a, Num a) = Exzpr, ¢ a — Ezpr, c a — Erpr, ca
Eaty = (Typeable ) = cz —2za— Ezpr, ca

data SubEzpr, c a where
Subg :: (Eq a, Num a) = Expr, c a — Expr, c a — SubEzxpr, c a
SubLoop , :: Expr, ¢ a — SubExpr, c a

data NegEzrpr, ¢ a where
Neg, i (Typeable a, Num a) = Expr, ¢ a — NegExpr, c a
NegLoop, :: Ezpr, ¢ a — NegExpr, c a

The smart constructors for the language extensions inherit the class con-
straints of their data types and include a Typeable constraint on the c¢ type
variable for it to be usable in the Ext, constructor

subg :: (Typeable ¢, GDict (¢ (SubEzpr, c)), Eq a, Num a) =
Expr, ¢ a — Expry c a — Expr, c a
subg €1 ep = Exty gdict (Subgy e e2)
neg, :: (Typeable c, GDict (¢ (NegEzpr, c)), Typeable a, Num a) =
Expr, ¢ a — Expr, ca
neg, e = Ext, gdict (Neg, e)
Upgrading the semantics type classes to support GADTs is done by an easy

textual search and replace. All occurances of v are now parametrised by type
variable a.
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class Eval, v where
evaly v a— a

class Print, v where
print, 1 v a — String

class Opt, v where

opty mva—va

Now that the shape of the classes has changed, the dictionary data types
and the classes need to be adapted as well. The introduced type variable a is no
argument to the class so it should not be an argument to the dictionary data
type. To represent this class function, a rank-2 polymorph function is needed |9,
Chp. 6.4.15][20].

data EvalDicty, v = EvalDict, (Ya.v a = a)

class HasEval, d where
hasEvalg ::d v = v a— a

instance HasEval, EvalDict, where
hasEval, (EvalDict, e) = e

data PrintDict, v = PrintDict, (Va.v a — String)

class HasPrint, d where
hasPrintg :: d v — v a — String

instance HasPrint, PrintDict, where
hasPrint, (PrintDict, e) = e

data OptDict, v = OptDict, (Va.v a — v a)

class HasOpt, d where
hasOpt,::d v —va—va

instance HasOpt, OptDict, where
hasOpt, (OptDict, e) = e

The GDict class is general enough so the instances can remain the same.

instance Fval, v = GDict (EvalDict, v) where
gdict = EvalDict, eval,

instance Print, v = GDict (PrintDict, v) where
gdict = PrintDict g print,

instance Opt, v = GDict (OptDict, v) where
gdict = OptDict opt,

Finally, the implementations for the instances can be ported without com-
plication.

instance HasEval, d = Eval, (Erpr, d) where
evaly (Lity v) =w
evaly (Addy e1 ex) = evaly e1 + evaly e
evaly (Exty d x) = hasEvaly d ©

instance HasEval, d = Eval, (SubExpr, d) where
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evaly (Subg e1 ez) = eval, e — evaly s
evaly (SubLoop,, e) = evaly e

instance HasPrint, d = Print, (Expr, d) where
print, (Lit, v) = show v
printg (Add, e e) ="("+H printg er H "+" H printg es H ")
print, (Ext, d x) = hasPrint, d x

instance HasPrint, d = Print, (SubExpr, d) where
print,, (Subg ep ea) ="("H print, e+ "=" + print, ex + ")"
print, (SubLoop, e) = print, e

instance HasOpt, d = Opt, (Ea;prg d) where
opt, (Lity v) = Lityv
opt, (Add, e, ey) = case (opt, e, opt, e) of
(Litg 0, e5) — e
(ef, Litg 0) — €]
(ef,€5) — Add, €] €
opt, (Ext, d z) = Ext, d (hasOpt, d z)
instance HasOpt, d = Opt, (SubEzpr, d) where

opt, (Subg e e3) = case (optg e1, opt, es) of
(e1, Lity 0) — SubLoop, e
(ef,€5) — Sub, €] e

opt, (SubLoop, e) = SubLoop,, (opt, e)

instance ( Typeable d, GDict (d (NegExpr, d)), HasOpt, d) =
Opt, (NegEzpr, d) where
opt, (Neg, (Add, e e2))
= NegLoop, (Add, (opt, (neg, e1)) (opt, (neg, e2)))
opt, (Neg, (Ert, d x))
= case fromDynamic (toDyn (hasOpt, d z)) of
Just (Neg, e) — NegLoop,, e
- — Neg, (Exty d (hasOpt, d z))
opt, (Neg, e) = Neg,, (opt, e)
opt, (NegLoop,, e) = NegLoop, (opt,, e)

8 Conclusion

Classy deep embedding is a novel organically grown embedding technique that
alleviates deep embedding from the extensibility problem in most cases.

By abstracting the semantics functions to classes they become overloaded in
the language constructs. Thus, making it possible to add new language constructs
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in a separate type. These extensions are brought together in a special extension
constructor residing in the main data type. This extension case is overloaded by
the language construct using a data type containing the class dictionary. As a
result, orthogonal extension is possible for language constructs and semantics us-
ing only little syntactic overhead or type annotations. The basic technique only
requires—well established through history and relatively standard—existential
data types. However, if needed, the technique generalises to GADTs as well,
adding rank-2 types to the list of type system requirements as well.. Finally,
the abstract syntax tree remains observable which makes it suitable for inten-
sional analyses, albeit using occasional dynamic typing for truly cross-extensional
transformations.

9 Related work

Embedded DSL techniques in functional languages have been a topic of research
for many years and thus we do not claim a complete overview of related work.

Clearly, classy deep embedding bears most similarity to the Datatypes a la
Carte [24]. In Swierstra’s approach, semantics are lifted to type classes in a
similar fashion to classy deep embedding. Each language construct is their own
datatype parametrised by a type parameter. This parameter contains some type
level representation of language constructs that are in use. In classy deep em-
bedding, extensions do not have to be iterated at the type level but are captured
in the extension case. Because all the constructs are expressed in the type sys-
tem, nifty type system tricks need to be employed to convince the compiler that
everything is type safe and the class constraints can be solved. Furthermore, it
requires some boilerplate code such as functor instances for the data types. In
return, pattern matching is easier and does not require dynamic typing. Classy
deep embedding only strains the programmer with writing the extension case
for the main data type and the occasional loopback constructor.

Loh et al. proposed a language extension that allows open data types and
open functions, i.e. functions and data types that can be extended with more
cases later on [17]. They hinted at the possibility of using type classes for open
functions but had serious concerns that pattern matching would be crippled be-
cause constructors are becoming types, thus ultimately becoming impossible to
type. In contrast, this paper shows that pattern matching is easily attainable—
albeit using dynamic types—and that the terms can be typed without compli-
cated type system extensions.

A technique similar to classy deep embedding was proposed by Najd and
Peyton Jones to tackle a slightly different problem, namely that of reusing a
data type for multiple purposes in a slightly different form [19]. For example to
decorate the abstract syntax tree of a compiler differently for each phase of the
compiler. They propose to add an extension descriptor as a type variable to a
data type and a type family that can be used to decorate constructors with extra
information and add additional constructors to the data type using an extension
constructor. Classy deep embedding works similarly but uses existentially quan-
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tified type variables to describe possible extensions instead of type variables and
type families. In classy deep embedding, the extensions do not need to be en-
coded in the type system and less boilerplate is required. Furthermore, pattern
matching on extensions becomes a bit more complicated but in return it allows
for multiple extensions to be added orthogonally and avoids the necessity for
type system extensions.

Tagless embedding is the shallowly embedded counterpart of classy deep
embedding and was invented for the same purpose; overcoming the issues with
standard shallow embedding [5]. Classy deep embedding was organically grown
from observing the evolution of tagless embedding. The main difference between
tagless embedding and classy deep embedding—and in general between shallow
and deep embedding—is that intensional analyses of the abstract syntax tree is
very difficult because there is no tangible abstract syntax tree data structure.
In classy deep embedding, it is possible to define transformations even across
extensions. On the other hand, tagless embedding does allow partial semantics,
i.e. semantics that do not support every language construction. This restriction
on classy deep embedding may be lifted by using a data structure for the class
constraints [12] instead but this remains future work.

Hybrid approaches between deep and shallow embedding exist as well. For ex-
ample, Svenningson et al. show that by expressing the deeply embedded language
in a shallowly embedded core language, extensions can be made orthogonally as
well [23]. This paper differs from those approaches in the sense that it does not
require a core language in which all extensions need to be expressible.
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Abstract. Functional programming languages are excellent candidates
for hosting embedded domain specific languages (eDSLs) because of their
rich type systems, minimal syntax, referential transparency and com-
posability. However, data types defined in the host language are not
automatically available in the embedded language. To do so, all the op-
erations on the data type must be redefined by the programmer for the
eDSL resulting in a lot of boilerplate.

This paper shows that with the use of metaprogramming, all first order
user-defined data types can be automatically made first class in shallow
embedded DSLs. It does so by providing an implementation in Template
Haskell for a typical DSL with three different semantics for the language
of which one is a compiling semantics. Furthermore, we show that by util-
ising quasiquotation, there is hardly any burden on the syntax. Finally,
the paper also serves as a gentle introduction to Template Haskell.
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1 Introduction

Functional programming languages are excellent candidates for hosting embed-
ded domain specific languages (DSLs) because of their rich type systems, minimal
syntax, referential transparency and composability. By expressing the language
constructs in the host language, the parser, the type checker and sometimes
even the compiler are inherited from the host language. Unfortunately, data
types defined in the host language are not automatically available in the embed-
ded language. To do so, all the operations on the data type must be redefined
by the programmer for the eDSL.

The two main strategies for embedding DSLs in a functional language are
deep embedding (sometimes called initial) and shallow embedding (final). Deep
embedding represents the constructs in the language as data types and the se-
mantics as functions over these data types. This makes extending the language
with new semantics is effortless by adding another function Conversely, adding
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a language construct requires changing the data type and updating all existing
semantics individually to support this new constructor. Shallow embedding on
the other hand models the language constructs as functions with the semantics
embedded. Consequently, adding a construct is easy, i.e. it entails adding another
function. Contrarily, adding semantics requires adapting all language constructs.
Lifting the functions to typeclasses, i.e. parametrising the constructs over the
semantics, allows extension of the language both in constructs and in semantics
orthogonally and is called tagless final or class-based shallow embedding [15].

In tagless final embedding, the parser and the compiler are inherited from
the host language. While it often is possible to lift values of a user-defined data
type to a value in the DSL, it is not possible to interact with it using DSL
constructs. In other words, it is not possible to 1. construct values from fields
using a constructor, 2. deconstruct values deconstructors or pattern matching,
3. test which constructor the value holds. The functions for this are simply not
available automatically in the embedded languages. For some semantics it is
possible to directly lift the functions from the host language to the DSL domain,
i.e. an interpreter. In other cases—e.g. compiling DSLs such as a compiler or a
printer—this is not possible [10]. Thus they have to be defined by hand using a
lot of boilerplate code.

To relieve the burden of adding all these functions, metaprogramming, ac-
companied by custom quasiquoters, can be used. Metaprogramming entails that
some parts of the program are generated by a program itself. Quasiquotation is
a metaprogramming technique for using the host language, or custom, parser to
write syntax fragments verbatim instead of with data types. This allows func-
tions to be added at compile time to the program based on the structure of a
user-defined data type.

1.1 Contributions of the paper

This paper shows that with the use of metaprogramming, all first order user-
defined data types can be automatically made first class in shallow embedded
DSLs. It does so by providing an implementation in Template Haskell for a
typical DSL with three different semantics for the language of which one is
a compiling semantics. Furthermore, we show that by utilising quasiquotation
(see Section 5), there is hardly any burden on the syntax. Finally, the paper also
serves as a gentle introduction to Template Haskell.

2 Tagless-final embedding

Tagless-final embedding is an upgrade to standard shallow embedding achieved
by lifting all language construct functions to typeclasses. As a result, views on
the DSL are data types implementing these classes.

To illustrate the technique, a simple DSL, the language consisting of literals
and addition, is outlined. This language, implemented in tagless-final style [4] in
Haskell [29] consists initially only of one typeclass containing two functions. 1it
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lifts values from the host language to the DSL domain. The class constraint Show
is enforced on the a type variable to make sure that the value can be printed.
Secondly, @ represents the addition of two expressions in the DSL.

class Expr v where

lit :: Show a = a — v a
@ ::Numa=va—vVva—Va
infixl 6 &

The implementation of a view on the DSL is achieved by implementing the
typeclasses with the data type representing the view. In the case of our example
DSL, an interpreter accounting for failure may be implemented as an instance
for the Either String type. The standard infix functor application and infix
sequential application are used!.

instance Expr (Either String) where
1it a = Right a
@ 1lr=®E<E>1<a>r

2.1 Adding language constructs

To add an extra language construct, we define a new class housing it. For exam-
ple, to add division we define a new class as follows:

class Div v where
(@) :: Fractional a = va - va — va
infixl 7 ©

Division is an operation that fails when the right operand is equal to zero.
To capture this behaviour, the Left constructor from Either is used to represent
errors. The right-hand side of the division operator is evaluated first. If the
right-hand side is zero, the division is not performed and an error is returned
instead:

instance Div (Either String) where
(@ 1 r=r>=Alr-case 1r of
0 — Left ”Division by zero”
n - (/) <$>1 <x>Right n

2.2 Adding semantics

To add semantics to the DSL, the existing classes are implemented with a novel
data type representing the view on the DSL. First a data type representing
the semantics is defined. In this case, the printer is very simple and defined as
a newtype of a string to store the string representation. Since the language is
typed, the printer data type has type variable which is only used during typing,
it is a phantom type [17]:

<$> :: (a—-Db) - fa — fb; infixl 4 <$>
<> :: f (a—-Db) - fa— fb; infixl 4 <>
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newtype Printer a = P { runPrinter :: String }

The class instances for Expr and Div for the pretty printer are straightforward
and as follows:

instance Expr Printer where

lit a = P $ show a

@ 1r=P3$ 7" H# runPrinter 1 # "+’ H runPrinter r 4 ”)”
instance Div Printer where

@ 1r=PS$% ”(” H runPrinter 1 # ”/” H# runPrinter r H ”)”

2.3 Functions

Adding functions to the language is achieved by adding a multi-parameter class
to the DSL. The type of the class function allows for the implementation to only
allow first order function by supplying the arguments in a tuple. Furthermore, by
defining the Main type, the DSL forces all functions to be defined at the top level
and with the :- operator the syntax becomes usable. Finally, by defining the
functions as a higher order abstract syntax (HOAS) type safety is achieved [5].
The complete definition looks as follows:

class Function a v where

fun :: ( (a - vs) - In (a - v s) (Main (v u)) ) — Main (v u)
newtype Main a = Main { unmain :: a }
data In a b =a :- b

infix 1 :-

Using the Function type class can be used to define functions with little syn-
tactic overhead?. The following listing shows an expression in the DSL utilising
two user-defined functions:

fun Aincrement —» (\x —-x @ 1lit 1)
- fun Adivide— O, P->x0y )
;- Main { unmain = increment (divide (1it 38, 1lit 5)) }

The interpreter only requires one instance of the Function class that works
for any argument type. In the implementation, the resulting function g is simul-
taneously provided to the definition def. Because the laziness of Haskell’s lazy
let bindings, this results in a fixed point calculation:

instance Function a (Either String) where
fun def = Main $ let g :- m = def g in unmain m

The given Printer type is not sufficient to implement the Function instances,
it must be possible to generate fresh function names. After extending the Printer
type to contain some sort of state to generate fresh function names and a

2 The BlockArguments extension of GHC is used to reduce the number of brackets
that allows lambda’s to be an argument to a function without brackets or explicit
function application using $
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MonadWriter [String]® to streamline the output, we define an instance for every
arity. To illustrate this, the instance for unary functions is shown, all other arities
are implemented in similar fashion.

instance Function () Printer where ...
instance Function (Printer a) Printer where ...
fun def = Main $ freshLabel >= \f—
let g - m = def $
Aa0—const L <$> (tell [”f”, show £, 7 ("1 > a0 > tell [7)”])

in tell ["let f”, £, 7 a0 = 7] > g (const | <$> tell [”a0”])
> tell [” in ”] > unmain m

instance Function (Printer a, Printer b) Printer where ...

2.4 Data types

Adding data types, e.g. a list, to the DSL requires the programmer to write
functions for all the machinery—constructors, deconstructors and constructor
predicate functions—to operate the data type. Lifting the values from the host
language to the DSL is already possible using the 1it function. However, this
means that the data type has to have instances for all the class constraints that
1lit enforces, something that is not always possible. Furthermore, once lifted, it
is not possible to do anything with values of a user-defined data type. It is not
possible to construct new values from expressions in the DSL, nor to deconstruct
a value into the fields or to test of which constructor the value is. The machinery
for this must thus be added manually, resulting in the following class definitions:

data List a = Nil | Cons {hd :: a, tl :: List a}

class ListDSL v where

— Constructors

nil :: v (List a)

cons ::va — v (List a) — v (List a)

— Deconstructors

unnil :: v (List a) - vb - v b

uncons :: v (List a) - (va —- v (List a) - vb) - vb
— Predicates

isNil, isComs :: v (List a) — v Bool

Furthermore, instances for all views on the DSL need to be created. We
omit the instance for the printer for brevity because it is very similar to the
interpreter. The instance for the interpreter is as follows:

instance ListDSL (Either String) where

nil = Right Nil

cons 1 r = Cons <$> 1 <*>r

unnil _ f = £

uncons d £ = d >=A(Cons 1 r)—»f (Right 1) (Right r)

isNil d = d >=)Av—Right $ case v of Nil — True; Cons _ _ — False
isCons d = d >=Av—Right $ case v of Nil — False; Cons _ _ — True

3 freshLabel :: Printer String; tell :: MonadWriter wm = w — m ()
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Adding these classes and their corresponding instances is tedious and results
in boilerplate code. We therefore resort to metaprogramming, and in particular
Template Haskell [33].

3 Template metaprogramming

In metaprogramming, programs have the ability to treat program or program
fragments as data. There are several techniques to facilitate metaprogramming
and it has been around for many years now [19]. While it has been around for
many years, it is considered complex [32].

Template Haskell is GHC’s de facto metaprogramming system and it is im-
plemented as a compiler extension together with a library [33]. Readers familiar
with Template Haskell can safely skip this section. It adds four main concepts
to the language, namely AST data types (Section 3.1), splicing (Section 3.2),
quasiquotation (Section 3.3) and reification (Section 3.4). With this machinery,
regular Haskell functions can be defined that are called at compile time, inserting
generated code into the AST. These functions are monadic functions operating
in the Q monad. The Q monad facilitating failure, reification and fresh identifier
generation for hygienic macros [16]. Within the Q monad, capturable and non-
capturable identifiers can be generated using the mkName and newName functions
respectively. The Peter Parker principle* holds for the Q monad because it exe-
cutes at compile time. It is possible to (mis)use Template Haskell to for example
subvert module boundaries, thus accessing constructors that were hidden, and
it may cause side effects during compilation because it is possible to call IO
operations [36].However, to achieve the goal of embedding data types in a DSL
we refrain from using the unsafe features.

3.1 Data types

Firstly, for all of Haskell’s AST elements, data types are available. With these
data types, the entire syntax of a Haskell program can be specified. A selection
of datatypes available in Template Haskell is given below:

data Dec = FunD Name [Clause] | SigD Name Type | ClassD Cxt Name ...
data Clause = Clause [Pat] Body [Dec]

data Pat = LitP Lit | VarP Name | TupP [Pat] | WildP |

data Body = GuardedB [(Guard, Exp)] | NormalB Exp

data Guard = NormalG Exp | PatG [Stmt]

data Exp = VarE Name | LitE Lit | AppE Exp Exp | LamE [Pat] Exp Exp
data Lit = CharL Char | Stringl String | IntegerL Integer |

When operating in the Q monad, lowercase variants of these AST data types
are available that lift the constructor to the Q monad as as follows:

lamE :: [Q Pat] — QExp — Q Exp
lamE ps es = LamE <$> sequence ps <x> es

4 With great power comes great responsibility.
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3.2 Splicing

Special splicing syntax ($(...)) marks functions for compile-time execution.
Other than that they always produce a value of an AST data type, they are
normal functions. Depending on the context of the splice, the result type is ei-
ther a list of declarations, a type, an expression or a pattern. The result of this
function, when successful, is then spliced into the code and treated as regular
code by the compiler. The following listing shows an example of a Template
Haskell function generating on-the-fly functions for arbitrary selection of a field
in a tuple. When called as $(tsel 2 4) it expands at compile time to (A (_, £,
— )=1)

tsel :: Int —» Int — Q Exp
tsel field total = do
f « newName ”7f”
lamE [tupP [if i == total then varP f else wildP | i« [0..t-1]]]
(varE f)

3.3 Quasiquotation

Another feature of Template Haskell is the dual of splicing: Quasiquotation [3].
While it is possible to construct entire programs using the provided data types,
it is a little cumbersome. Using oxford-style brackets and single or double apos-
trophes, verbatim Haskell code is converted automatically to the corresponding
AST nodes easing the creation of language constructs. Depending on the con-
text, different quasiquotes are used: — [...] or [e...] for expressions — [q...]
for declarations — [, ...] for patterns — [;...] for types — '... for function
names — ''... for type names It is possible to escape the quasiquotes again
by splicing. Variables defined within quasiquotes are always fresh—as if defined
with newName—but it is possible to capture identifiers using mkName. For exam-
ple, [A x—x] translates to do { x « newName ”z”; lamE [varP x] (varE x)} and
does not interfere with other x’s already defined.

3.4 Reification

The final added construct is reification, querying the compiler for information
about a certain name. For example, reifying a type name results in information
about the type and the corresponding AST nodes of the type’s definition. This
information can then be used to generate code according to the structure of data
types. Reification is done using the reify :: Name — Q Info function.

4 Metaprogramming for generating DSL functions

Metaprogramming can relieve us from writing the boilerplate code by generating
it automatically at compile time. The genDSL function generates all required
boilerplate for the provided name of the type. All type names that are passed
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as arguments to this function are made available for the DSL. For example, for
the list type, this results in the following definition and Template Haskell call.

data List a = Nil | Cons { hd :: a, tl :: List a }
$(genDSL ''List)

The genDSL function is defined in a different module and has type: Name —
Q Decs, i.e. given a name, it produces a list of declarations in the Q monad. The
genDSL function first reifies the name to retrieve the structural information. If the
name matches a type constructor containing a data type declaration, the struc-
ture of the type—the type variables, the type name and information about the
constructors—is passed to the genDSL' function. The structure sometimes needs
some occasional scrubbing first using genConsName. Unsupported constructors
such as generalised ADT constructors or constructors with universally quanti-
fied type variables are rejected. From this structure of the type, genDSL' generates
a list of declarations containing a class definition (Section 4.1), instances for the
interpreter (Section 4.2), and instances of the printer (Section 4.3) respectively.

genDSL :: Name — Q [Dec]
genDSL name = reify name = Ainfo—case info of
TyConI (DataD cxt typeName tvs mkind constructors derives)
— mepVl getConsName constructors 3= genDSL' tvs typeName
where
—Invent names for non record types
getConsName :: Con — Q (Name, [(Name, Bang, Type)l)
getConsName (NormalC consName fs) = pure (consName,
[(adtFieldName consName i, b, t) | (i, (b, t))« [0..] ~zip~ £fs])
getConsName (RecC consName fs) = pure (consName, fs)
getConsName c = fail $ "genDSL does not support: ” 4 show c
t — fail $ “genDSL does mot support: ” + show t

genDSL' :: [TyVarBndr] — Name — [(Name, [(Name, Bang, Type)1)] — Q[
Dec]
genDSL' typeVars typeName constructors
= sequence [ mkClass, mkInterpreter, mkPrinter ]
where
(consNames, fields) = unzip constructors

— Helper function te generate a field name from a constructor name and an index
adtFieldName :: Name — Integer — Name

4.1 Classes

The class definition is the same for all types and the function to generate it are
defined in the where clause of the genDSL' function. Using the classD constructor,
a typeclass is created with a single type variable v. The classD function takes four
arguments: 1. context, which is empty in this case 2. a name, generated from the
type name using the className function that simply appends the text DSL 3. a list
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of type variables, in this case the only type variable is the view on the DSL, i.e. v.
4. functional dependencies, empty in our case 5. a list of function declarations, the
class members. The list of members is a concatenation of the list of constructors,
deconstructors, field selectors and constructor predicate functions . Depending on
the information needed, either zipWith or map is used to apply the generation
function to all constructors.

mkClass :: Q Dec

mkClass = classD (cxt []) (className typeName) [PlainTV (mkName “v”)] []
( zipWith mkConstructor consNames fields
+ zipWith mkDeconstructor consNames fields
-H map mkPredicate consNames

)

In all class members, the view v plays a crucial role. Therefore, a definition for
v is accessible for all generation functions. Furthermore, the res type represents
the result type, it is defined as the type including all type variables. This result
type is derived from the type name and the list of type variables. In case of the
List type, res is defined as v (List a) and is available for as well:

v = varT $ mkName "v”

res = v “appT” foldl appT (conT typeName) (map getName typeVars)
where getName (PlainTV name) = varT name
getName (KindedTV name _) = varT name

Constructors The constructor definitions are generated from just the con-
structor names and the field information. All class members are defined us-
ing the sigD constructor that represents a function signature. The first argu-
ment is the name of the constructor function, a lowercase variant of the ac-
tual constructor name generated using the constructorName function. The sec-
ond argument is the type of the function. A constructor Cj of type T where
Ttvg...tv,=...|Crap ... ay |...1s defined as a DSL function ¢ :: v ag —

.o v am = v (T vy...v,). In the implementation, first the view v is applied
to all the field types. Then, the constructor type is constructed by folding over
the lifted field types with the result type as the initial value using mkCFun.

mkConstructor :: Name — [(Var, Bang, Type)] — DecQ
mkConstructor n fs = sigD (constructorName n) $ mkCFun fs res

mkCFun :: [(Var, Bang, Type)]l] — Q Type — Q Type
mkCFun fs res = foldr O\x y— [+$x — $y]) res
$ map (appT v . pure . thd3) fs

Deconstructors The deconstructor is generated similarly to the constructor
as the function for generating the constructor is the second argument modulo a
result type change. A deconstructor C} of type T is defined as a DSL function
cp v (Twg...vn) = (Wag— ... = v ay = vb) > v b In the implementation,
mkCFun is reused to construct the type of the deconstructor as follows:
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mkDeconstructor :: Name — [(Var, Bang, Type)] — Q Dec
mkDeconstructor n fs = sigD (deconstructorName n)

[t $res — $(mkCFun fs [:$v $b]) — $v $b]

where b = varT $ mkName ”b”

Constructor predicates The last part of the class definition are the con-
structor predicates. A function that checks whether the provide value of type T
contains a value with constructor C. A constructor predicate for constructor Cy,
of type T is defined as a DSL function v (T vg...v,) = v Bool. A constructor
predicate—name prefixed by is—is generated for all constructors but they all
have the same type:

mkPredicate :: Name — Q Dec
mkPredicate n = sigD (predicateName n) [;$res — $v Bool]

4.2 Interpreter

Generating the interpreter for the DSL means generating the class instance for
the Interpreter data type using the instanceD function. The first argument of the
instance is the context, this is left empty. The second argument of the instance
is the type, the Interpreter data type applied to the class name. Finally, the
class function instances are generated using the information derived from the
structure of the type. The structure for generating the function instances is very
similar to the definitions, other than that for the constructor predicates, the field
information is required as well as the names.

mkInterpreter :: Q Dec
mkInterpreter = instanceD (cxt []) [;$(conT $ className typeName)
Interpreter]
$ =zipWith mkConstructor consNames fields
+H+ zipWith mkDeconstructor consNames fields
+H zipWith mkPredicate consNames fields
where \1dots

Constructors The interpreter is a view on the DSL that immediately executes
all operations in the Either String monad. Therefore, the constructor function
is implemented by lifting the actual constructor to the monad using sequen-
tial application. I.e. ck a0 ... al = pure Ck <*> a0 <*> ... <*> a To avoid
accidental shadowing, fresh names for all the arguments are generated.

mkConstructor :: Name — [(Var, Bang, Type)] — Q Dec
mkConstructor consName fs = do
fresh « sequence [newName ”a” | _«fs]
fun (constructorName consName) (map varP fresh)
$ foldl (ifx <*>") [pure $(conE consName)] (map varE fresh)



First-class Data Types in Shallow Embedded DSLs using Metaprogramming 11

Deconstructors

mkDeconstructor :: Name — [(Var, Bang, Type)] — Q Dec
mkDeconstructor consName [] = fun (deconstructorName consName) [] [const
id]
mkDeconstructor consName fs = do
d « newName "d”
f « newName ”f”
fresh « nmgdVl (newName . nameBase . fst3) fs
fun (deconstructorName consName) [varP d, varP f]
[$(varE d) =\ ($(pure $ ConP consName (map VarP fresh))) — $(
fapp f fresh)]|
where fapp f = foldl appE (varE f) . map (\f— [pure $(varE £)])

Constructor predicates Constructor predicates evaluate the argument and
make a case distinction on the result to determine the constructor. To be able
to generate a valid pattern in the case distinction, the total number of fields
must be known. To avoid having to explicitly generate a fresh name for the first
argument, a lambda function is used. In general, the constructor selector for Cj,
results in the following code

isCk f = f >=Ax—case x of
Ck _ ... ai ... _ — pure True
_ — pure False
mkPredicate :: Name — [(Var, Bang, Type)] — Q Dec
mkPredicate n fs = fun (predicateName n) []
[Ax—x >=Ap—case p of
$(conP n [wildP | _«£fs]) — pure True
_ — pure False

4.3 Pretty printer

5 Pattern matching

It is possible to construct and deconstruct values from other DSL expressions,
and to perform tests on the constructor but with a clunky and unwieldy syntax.
They have have become first-class citizens in a grotesque way. For example,
writing a list-based factorial function in our DSL would be done as follows:

— List.hs
data List a = Nil | Cons { hd :: a, tl :: List a }
$(genDSL ''List)
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— Main.hs
factorial
= fun Afromto— (
A(a, b)=if' (a >. b) nil (cons a (a @ 1lit 1, b))
:= fun Afacl—(
Al—if' (isNil 1) (1it 1) (unCons Ahd tl—hd *. facl tl)
:= fun Afac—(
An—facl (fromto (1lit 1, n))
;= Main{unmain=fac (1it 10)}

A similar Haskell implementation is much more consice and less cluttered be-
cause of the support for pattern matching. Pattern matching offers a convenient
syntax for doing deconstruction and constructor tests at the same time.

— List.hs
data List a = Nil | Cons { hd :: a, tl :: List a }

— Main.hs
fromto :: Int — Int — [Int]
fromto fro to
| fro > to = []
| otherwise = fro : fromto (fro+l) to

factorial :: Int — Int
factorial n = facl (1 “fromto™ n)
where

facl :: List Int — Int
facl Nil =1
facl (Cons x xs) = x * facl xs

5.1 Custom quasiquoters

The syntax burden of DSLs can be reduced using quasiquotation. In Template
Haskell, quasiquotation is a convenient way to create Haskell language constructs
by entering them verbatim using oxford brackets. However, it is also possible
to create so-called custom quasiquoters [23]. If the programmer writes down
a fragment of code between tagged oxford brackets, the compiler executes the
associated quasiquoter functions at compile time. A quasiquoter is a value of the
following data type:

data QuasiQuoter = QuasiQuoter
{ quoteExp :: String — Q Exp, quotePat :: String — Q Pat
, quoteType :: String — Q Type, quoteDec :: String — Q Dec
}

Listing 1.1. The data type for the quasiquoter, containing parsers for all contexts

Le. code between dsl brackets ([as: ... ]) is preprocessed by the ds1 quasiquo-
ter. Because the functions are executed at compile time, errors—thrown using
the MonadFail instance of the Q monad—in these functions result in compile
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time errors. The code produced by the quasiquoter is inserted into the location
and (type)checked as if it was written by the programmer.

To illustrate writing a custom quasiquoter, we show the implementation of
a quasiquoter for adding binary literals to Haskell. The bin quasiquoter is only
defined for expressions and parses subsequent zeros and ones as a binary number
and splices it back in the code as a regular integer. Thus, [5:»,101010] results in
the literal integer expression 42. If an invalid character is used, a compile time
error is shown. The quasiquoter is defined as follows:

bin :: QuasiQuoter
bin = QuasiQuoter { quoteExp = parseBin }
where parseBin :: String — Q Exp

parseBin s = LitE . IntegerL <$> foldM bindigit 0 s
where bindigit :: Integer — Char — Q Integer

bindigit acc '0' = pure $ 2*acc
bindigit acc 'l' = pure $ 2*acc + 1
bindigit acc ¢ = fail $§ ”invalid char: 7 4+ show c

5.2 Quasiquotation for pattern matching

Custom quasiquoters allow the DSL user to enter fragments verbatim, bypass-
ing the syntax of the host language. Pattern matching in general is not suitable
for a custom quasiquoter because it does not really fit in one of the four syn-
tactic categories for which custom quasiquoter support is available. However, a
concrete use of pattern matching interesting enough to be benificial but simple
enough for a demonstration is the simple case expression. Simple case expres-
sions are expressions that match a single variable. As they are not nested and
cover all constructors, they are suitable for immediate conversion to existing
DSL primitives [28, Chp. 4.4].

In contrast to the binary literal quasiquoter example, we do not parse the
String by hand. The parser combinator library parsec is used instead to ease the
creation of the parser [18]. First the location of the quasiquoted code is retrieved
using the location function that operates in the Q monad. This location is
inserted in the parsec parser so that errors are localised in the source code. Then,
the expr parser is called that returns an Exp in the Q monad. The expr parser
uses parsec’s commodity expression parser primitive buildExpressionParser. The
resulting parser translates the string directly into Template Haskell’s AST data
types in the Q monad. The most interesting parser is the parser for a case
expression that is an alternative in the basic expression parser basic. A case
expression is parsed when a keyword case is followed by an expression that is
in turn followed by a list of matches. A match is parsed when a pattern (pat)
is followed by an arrow and an expression. The results of this parser are fed
into the mkCase function that transforms the case into an expression using DSL
primitives such as conditionals, deconstructors and constructor predicates. The
above translates to the following skeleton implementation:

expr :: Parser (Q Exp)
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expr = buildExpressionParser [...] basic
where basic :: Parser (Q Exp)
basic

<|> mkCase <3 reserved ”case” <+> expr
<x reserved ”"of” <*> manyl match
<[> ...

match :: Parser (Q Pat, Q Exp)
match = (,) <$> pat <x reserved ”— ” <*> expr

The mkCase function transforms a case expression into let bindings, construc-
tors, deconstructors and constructor predicates. For every pattern except for the
wildcard, either a constructor predicate, a literal comparison or a let binding is
introduced.

For every case, the generated AST node checks whether the structure of
the pattern matches the structure of the value using constructor predicates or
comparisons. If the structure matches, let bindings and deconstructors are used
to bind all variables to the correct fields. Finally, the expression on the right of
the arrow is copied verbatim.

mkCase :: ExpQ — [(PatQ, ExpQ)] — ExpQ
mkCase ...

6 Discussion

Functional programming languages are especially suitable for embedding DSLs
but adding user-defined data types is still an issue. The tagless final style of
embedding offers great modularity, extensibility and flexibility. However, user-
defined data types are awkward to handle because the built-in operations on
them—construction, deconstruction and constructor tests—are not inherited
from the host language. We showed that by calling a Template Haskell func-
tion with the data type as the argument, the required definitions and views on
the novel DSL functions can be generated. Furthermore, by writing a custom
quasiquoter, pattern matches in natural syntax are automatically converted to
the internal representation of the DSL, thus removing the syntax burden. The
use of a custom quasiquoter does require the DSL programmer to write a parser
for their DSL, i.e. the parser is not inherited from the host language as is of-
ten the case in an embedded DSL. However, by making use of modern parser
combinator libraries, this overhead is limited and errors are already caught at
compilation.

6.1 Future work

For future work, it would be interesting to see how generating boilerplate for
user-defined data types translates from shallow embedding to deep embedding.
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In deep embedding, the language constructs are expressed as data types in the
host language. Adding new constructs, e.g. constructors, deconstructors and con-
structor tests, for the user-defined data type therefore requires extending the
data type. Techniques such as data types & la Carte [35] and open data types [22]
show that it is possible to extend data types orthogonally but whether metapro-
gramming can still readily be used is something that needs to be researched.

Another venue of research is to try to find the limits of this technique in
regards to richer data type definitions. It would be interesting to see whether
it is possible to apply the technique on data types with existentially quantified
type variables or full-fledged generalised ADTs [13]. It is not possible to straight-
forwardly lift the deconstructors to typeclasses because existentially quantified
type variables will escape. Rank-2 polymorphism offers tools to define the types
in such a way that this is not the case anymore. However, implementing compil-
ing views on the DSL is complicated because it would require inventing values
of an existentially quantified type variable to satisfy the type system which is
difficult.

6.2 Related work

Generic or polytypic programming is a promising technique at first glance for
automating the generation of function implementations [21]. However, while it
is possible to define a function that works on all first-order types, adding a new
function with a new name to the language is not possible.

Much research is going into optimising EDSL techniques but embedding data
types and pattern matching is mostly uncharted territory. Atkey et al. first
describe embedding pattern matching in a DSL by giving patterns an explicit
representation in the DSL by using pairs, sums and injections [2, Section 3.3].
McDonell et al. extend on this idea and use it in deep embedding, again by
purely within the concrete syntax of the host language [24] Their approaches
differ from this work in the sense that all its functionality is expressed in terms
of the concrete syntax of the host language, resulting in an overhead. While it
does not require an extra metaprogramming step, the syntax is clunky and it
is only possible to match on data types using the structure of the type and not
the name of the fields. Furthermore, Young et al. added pattern matching to a
deeply embedded DSL using a compiler plugin [39]. This plugin implements a
externalise :: a — E a function that allows lifting all machinery required for
pattern matching automatically from the host language to the DSL. Under the
hood, this function translates the pattern match to constructors, deconstructors,
constructor predicates. The main difference with this work is that it requires a
compiler plugin while our metaprogramming approach works on any compiler
supporting a metaprogramming system similar to Template Haskell.

6.3 Related work on Template Haskell

Metaprogramming in general is a very broad research topic and has been around
for years already. We therefore do not claim an exhaustive related work on all
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aspects of metaprogramming but have tried to present all research on metapro-
gramming in Template Haskell. Czarnecki et al. provide a more detailed compari-
son of different metaprogramming techniques. They compare staged interpreters,
metaprogramming and templating by comparing MetaOCaml, Template Haskell
and C++ templates [7]. Template Haskell has been used to implement related
work. They all differ slightly in functionality from our domain and can be divided
into several categories.

Generating extra code Using Template Haskell or other metaprogramming
systems it is possible to add extra code to you program. The original Tem-
plate Haskell paper showed that it is possible to create variadic functions such
as printf using Template Haskell that would be almost impossible to define
without [33]. Hammond et al. used Template Haskell to generate parallel pro-
gramming skeletons [12]. In practise, this means that the programmer selects
a skeleton and, at compile time, the code is massaged to suit the pattern and
information about the environment is inlined for optimisation.

Polak et al. implemented automatic GUI generation using Template Has-
kell [30]. Duregéard et al. wrote a parser generator using template haskell and
the custom quasiquoting facilities [8]. From a specification of the grammar, given
in verbatim using a custom quasiquoter, a parser is generated at compile time.
Shioda et al. used metaprogramming in the D programming language to create
a DSL toolkit [34]. They also programmatically generate parsers and a backend
for either compiling or interpretering the IR.

Optimisation Besides generating code, it is also possible to analyse existing
code and perform optimisations. Yet, this is dangerous territory because un-
wantedly the semantics of the optimised program may be slightly different than
the original program. For example, Lynagh implemented various optimisations
in Template Haskell such as automatic loop unrolling [20]. The compile time
executed functions analyse the recursive function and unroll the recursion to a
fixed depth to trade execution speed for program space. Also, O’Donnoll em-
bedded Hydra, a hardware description language, in Haskell utilising Template
Haskell [27]. Using intensional analysis of the AST, it detects cycles by labelling
nodes automatically so that it can generate netlists. Alternatively this could be
done using a monad but this hampers equational reasoning greatly, which is a
key property of Hydra. Finally, Viera et al. present an a way of embedding at-
tribute grammars in Haskell in a staged fashion [38]. Checking several aspects of
the grammar is done at compile time using Template Haskell while other safety
checks are performed at runtime.

Compiler extension Sometimes, expressing certain functionalities in the host
languages requires a lot of boilerplate, syntax wrestling or other pains. Metapro-
gramming can relief some of this stress by performing this translation to core
constructs automatically. For example, implementing generic—or polytypic—
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functions in the compiler is a major effort. Norell et al. used Template Haskell to
implement the generic machinery required to implement generic functions com-
piletime [26]. Adams et al. explores also implement generic programming using
Template Haskell to speed things up considerably compared to regular generic
programming [1]. Clifton et al. used Template Haskell with a custom quasiquo-
ter to offer skeletons for workflows and embed foreign function interfaces in a
DSL [6]. Eisenberg et al. showed that it is possible to programmatically lift some
functions from the function domain to the type domain, i.e. type families[9]. Fur-
thermore, Seefried et al. argued that it is difficult to do some optimisations in
EDSLs and that metaprogramming can be of use there [31]. They use Template
Haskell to change all types to unboxed types, unroll loops to a certain depth and
replace some expressions by equivalent more efficient ones. Torrano et al. showed
that it is possible to use Template Haskell to perform a strictness analysis and
perform let to case translation [37]. Both applications are examples of compiler
extensions that can be implemented using Template Haskell. Another example
of such a compiler extension is shown by Gill et al. [11]. They created a meta
level DSL to describe rewrite rules on Haskell syntax that are applied on the
source code at compile time.

Quasiquotation By means of quasiquotation, the host language syntax that
usually seeps through the embedding can be hidden. The original Template
Haskell quasiquotation paper [23] shows how this can be done for regular ex-
pressions, not only resulting in a nicer syntax but syntax errors are also lifted
to compile time instead of run time. Also, Kariotis et al. used Template Haskell
to automatically construct monad stacks without having to result to the monad
transformers library which requires advanced type system extensions [14].

Najd use the compiletime to be able to do normalisation for a DSL, dubbing
is QDSLs [25]. They utilise the quasiquation facilities of Template Haskell to
convert Haskell DSL code to constructs in the DSL,p applying optimisations
such as eliminating lambda abstractios and function applications along the way.
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Abstract. Many companies and institutions have automated their busi-
ness process in workflow management software. The novel programming
paradigm Task-Oriented Programming (TOP) provides an abstraction
for such software. The largest framework based on TOP, iTasks, has
been used to develop real-world software.

Workflow software often includes critical systems. In such cases it is im-
portant to reason over the software to ascertain its correctness. The lack
of a formal iTasks semantics makes it unsuitable for formal reasoning.
To this end TopHat has been developed as a TOP language with a for-
mal semantics. However, TopHat lacks a graphical user interface(GUI),
making it harder to develop practical TopHat systems.

In this paper we lay the foundation for TopHat to support GUIs. By
combining an existing server framework and user interface framework,
we have developed a fully functioning proof of concept implementation
in Haskell, on top of TopHat’s semantics. We show that implementing a
TOP framework is possible using a different host language than iTasks
uses. None of TopHat’s formal properties have been compromised, since
the Ul framework is completely separate from TopHat. We run several
example programs and evaluate their generated GUI. The results of this
paper show that one can have a TOP system with a formal semantics
and a user interface. Having such a system improves the quality and
verifiability of TOP software in general.

Keywords: Task Oriented Programming - User Interface - Functional
Programming

1 Introduction

Workflow software is present in most businesses and institutions nowadays. From
health care and first responders, to commerce and industrial processes. Busi-
nesses use workflow software to streamline their processes, increase efficiency
and reduce costs. In these sectors, reliability of software is crucial.

Previous research into workflow software in the functional programming com-
munity aimed to improve reliability, while at the same time reducing the effort
of development. This led to the development of Task-Oriented Programming
(TOP), a programming paradigm that aims to facilitate working with multiple
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people towards a shared goal over the internet. TOP separates the what from the
how. This separation allows programmers to focus on the work that has to be
done (what) instead of paying attention to design issues, implementation details,
operating system limitations, and environment requirements (how) [1, 20].
iTasks [1], implemented in the functional programming language Clean [7],
is the main TOP framework that has been around for a long time. iTasks has
been used to create real-world applications, such as an incident coordination tool
for the Dutch coast guard [14]. While this proves its practical usability, iTasks
lacks in formalization. The iTasks’ semantics are given by its implementation,
making it much harder to formally reason about iTasks programs. Previous at-
tempts to mitigate this issue by some of iTasks’ creators involved developing
a separate iTasks semantics, which allowed them to perform model-based test-
ing, but no formal verification [13]. Formal program verification is necessary to
ensure the correctness of critical software, like the incident coordination tool.
TopHat is a Domain-Specific Language (DSL) that paves the way to formally
reason about task-oriented programs [26], by defining a formal TOP semantics.
These semantics have been implemented in Haskell and Idris 3. Idris is a pro-
gramming language that features dependent types and a totality checker, which
is used to prove properties of TopHat programs. Even though TopHat has an
implementation in Haskell, it lacks an interactive user interface.

Motivation

In this paper, we develop such an interactive Ul for TopHat as a goal in and of it-
self, what challenges arise here? But it also answers several fundamental research
questions. Before the development of TopHat, it was the case that iTasks, TOP
and Clean were tied together very strongly. Previous research even suggests that
certain specific Clean features are essential to the implementation of TOP[20]:
uniqueness typing, data generic programming, dynamics [30] and a sophisticated
backend using interpreted ABC bytecode on clients [18], to name a few. We aim
to determine if it is possible to implement a true TOP framework in a different
host language, Haskell. TopHat is geared towards formal reasoning, which begs
the question, does the addition of a UI to TopHat jeopardize the formal rea-
soning properties? In other words: is a formal TOP framework that is useful in
practice possible? Can we have the best of both worlds?

Besides these research questions and challenges, we expect this work to bring
TOP to a bigger audience. The current Clean user base is quite small. Haskell
is being used in production code, has a huge number of packages available on-
line and an active online community. Task-oriented programming could benefit
from being ported to Haskell, making it available to a large community of both
developers and researchers. Developing an interactive Ul for TopHat brings this
one step closer.

3 https://github.com/timjs/tophat-proofs
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Motivated by the above, this paper presents a prototype framework written
on top of TopHat’s Haskell implementation that is able to create interactive
graphical user interfaces of TopHat programs.

Structure

The remainder of this paper is structured as follows: we first provide some back-
ground about TOP, including iTasks and TopHat in Section 2. Section 3 in-
troduces our TopHat UI prototype. Section 4 demonstrates the capabilities of
our framework, including formal reasoning, using several example TopHat pro-
grams. We highlight related work in Section 5. Section 6 reflects on the goals
and research questions outlined above. Section 7 concludes.

2 Task-Oriented Programming

This paper builds upon previous TOP research [20, 1, 26]. In this section we de-
scribe the basic idea of TOP and two TOP implementations: iTasks and TopHat.

2.1 Task-Oriented Programming

TOP is centred around the concept of tasks, which specify the work a user or
system has to perform with a high level of abstraction. Tasks can be combined
using combinators, allowing complex programs to be constructed from small
building blocks [20].

A TOP language provides a description of the work that has to be per-
formed. It is left to a TOP framework to implement technical details such as
event handling or creating a User Interface (UI). iTasks [1] is such a framework,
implemented in the functional programming language Clean [7]. An example of
a basic task in iTasks is presented in Listing 1.1. Developers only have to specify
that they want the user to enter some information. Passing this task description
to iTasks generates an application that prompts the user for their name.

enterName :: Task String
>| enterName = Hint "What is your name?" @>> enterInformation []

Listing 1.1: A simple task prompting the user for their name (Clean)

The TOP paradigm provides an abstraction over workflow software. Instead
of having to write a server, database, user interfaces, etc, programmers just
define what needs to be done. The complete application is then derived from
this specification. TOP is usually embedded in pure functional programming.
TOP is made up of four core concepts [20]:

Tasks that describe the work that has to be performed, providing an abstraction
that separates the what from the how [1].
Shared data sources that allow the sharing of data between tasks.
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Generics to generate user interfaces based on data types.
Composition of tasks through combinators, allowing the creation of arbitrary
large tasks.

Tasks lie at the heart of TOP. A task models the work that has to be done by
the system or a user. Combining small tasks allows creating large and complex
applications using simple building blocks. Tasks can be combined using com-
binators: they can be executed sequentially, in parallel, or conditionally. These
combinators closely resemble how collaboration happens in real life.

TOP aims to facilitate collaborating with multiple people towards a shared
goal, over the internet. Creating complex applications is further facilitated be-
cause tasks are first-class citizens: they can be used as input of functions, they
can be returned from them, and tasks can contain other tasks as value.

Tasks are interactive and input-driven. When a task receives input it is reeval-
uated and results in a new task. A task’s value can be observed at all times. Tasks
can share information with each other, either directly through shared data stores,
or by passing task values to continuations.

TOP itself focuses on the domain logic, with tasks providing merely a descrip-
tion of the work that has to be performed. It is left up to a TOP framework to
do the heavy lifting, such as generating the user interface, storing and handling
data, setting up a web server, and authenticating users.

2.2 iTasks

iTasks [19] is a TOP framework that uses Clean [5] as its host language. It
supplements Clean with a set of combinators, model types, and algorithms that
allow the construction of task-oriented programs.

An example of a basic task was given in Listing 1.1. iTasks will automatically
generate an entire application for this task. It uses generics to deduce that a task
of type String requires a text input field. In Listing 1.2 we combine the task
with a view task using a sequential step combinator. A user has to enter their
name and is greeted by the program after stepping to the next task. Figure 1
shows how these steps would look in iTasks.

greet :: Task String
greet = enterName >>!
\result -> viewInformation [] ("Hello " +++ result)

Listing 1.2: Combining two tasks with a step combinator (Clean)

iTasks is a work in progress, receiving constant updates and improvements.
For example, a recent addition is the usage of a distributed, dynamic infras-
tructure [18]. iTasks has formed the basis of further research as well. Tonic [2§]
facilitates the subject for non-technical people by providing graphical blueprints
of iTasks specifications. It also provides a way to monitor the process while end
users are interacting with the application [27]. iTasks acted as the starting point
for research into declarative user interfaces, first for SVG images [2]| and later as
a generalized solution [3].
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What is your name? Hello Mark

Mark 9

Continue

Fig. 1: Entering your name (left) and the result after pressing continue (right)

2.3 TopHat

When software is used in critical applications, it is important that its behavior
can be verified and formally reasoned about. iTasks is primarily focused on
practical applicability, and therefore lacks this formalization. Testing an iTasks
application is time consuming and often incomplete because of the many different
execution paths.

TopHat [26] distills TOP’s core features to provide a way to reason about
task-oriented programs. By employing symbolic execution it is possible to for-
mally verify TopHat programs [17]. Symbolic execution has also been used to
provide end-users of tasks with additional feedback [16].

Our work is based on TopHat’s Haskell implementation. Listing 1.3 gives
the TopHat implementation of the example introduced in Section 2.2. Similar to
the iTasks code, this task uses a step combinator to ask a user their name and
subsequently greet them.

greet :: Task h String
»| greet = enter >>7? \result -> view ("Hello " ++ result)

Listing 1.3: A TopHat task that greets the user (Haskell)

TopHat contains the following set of tasks and combinators:

Editors model user interaction. They are typed containers that are either empty
or hold a value. TopHat contains different kinds of editors:
Update contains a predefined value.
View is an editor with a view-only value.
Enter is an editor that is initially empty. Filling it transforms it into an
Update editor.
Watch displays the value of a shared data store.
Change is an editor that allows to change the value of a shared data store.
Done and Fail are success and failure end tasks.
Pair combines two tasks (parallel-and).
Choose makes a choice between two tasks (parallel-or).
Step sequentially moves from one task to another.
Share creates a shared data store.
Assign assigns a value to a reference in a shared data store.
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2.4 Formal reasoning

iTasks defines tasks as a “state transforming function that reacts to an event,
rewrites itself to a reduct and accumulates responses to users” [20]. For combi-
nators, iTasks takes the swiss-army-knife-approach. It defines two combinators
that perform a multitude of actions. From these combinators, more simple ones
can be constructed. For example, the »* combinator performs sequention, al-
lows the user to choose from a list of tasks, allows automatic progressing tasks,
guarded tasks, and stepping on exception. Its definition in the latest version of
iTasks is about 100 lines of Clean code, relying on many custom functions .
While iTasks is certainly an impressive engineering accomplishment, it is unfit
for formal reasoning.

TopHat on the other hand defines tasks as a simple datatype, with three base
cases and a small number of simple combinators [26]. The TopHat framework
takes care of handling events, rewriting and task rendering. The formal TopHat
semantics fits on a single page, and is largely straightforward.

To demonstrate the formal reasoning capabilities of TopHat, a symbolic ex-
ecution semantics has been developed [17]. For space reasons, we will refrain
from repeating syntax and semantics here, but will revisit an example, to use
thoughout this paper.

let today = 25 Sept 2020 in 1
let provideDocuments = X Amount >x X Date in 2
let companyConfirm = [ True ¢ [ False in
let officerApprove = X invoiceDate. \ date. \ confirmed. )
O False ¢ if (date — invoiceDate < 365 A confirmed) 5
then O True 6
else 7 in 7
provideDocuments <t companyConfirm » 8
A ((invoiceAmount, invoiceDate) , confirmed) . 9
officerApprove invoiceDate today confirmed » )\ approved. 10
let subsidyAmount = if approved 11
then min 600 (invoiceAmount / 10) else 0 in 12
O (subsidyAmount, approved, confirmed, invoiceDate, today) 13

Listing 1.4: Subsidy request and approval workflow at the Dutch tax office.

Listing 1.4 provides the code for a small example task, implementing the
process of applying for a tax subsidy. This example was inspired by a collabo-
ration with the Dutch Tax office. The user gets asked to provide documents to
back up his or her tax subsidy request for solar panel installation (line 2). The
installation company has to confirm that they installed them (line 3), this can
be done in parallel (line 8). Finally, a tax officer can either approve or deny the

4 https://gitlab.com/clean-and-itasks/itasks-sdk/-/blob/master/
Libraries/iTasks/WF/Combinators/Core.icl
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Backend Frontend
Application Client
Communication Task
Visualize TaskLoader

Fig. 2: Architecture. Each box represents a main module.

request (line 4), depending on certain conditions (line 5). After the task has been
completed, the subsidy amount is being calculated (line 12), and the details are
returned in a view (line 13).

For this task, symbolic execution allowed the authors to prove correctness
properties over the code. In Section 4.4 we will take a look at generating a Ul
using the framework presented in the coming section.

3 TopHat User Interface Framework

In this section we describe our prototype TOP UI framework, which is a proof-
of-concept and not a fully fledged TOP framework. Our application supports
TopHat tasks as mentioned in Section 2.3. We limit ourselves to a select num-
ber of datatypes: only integers, booleans, and strings are supported. Advanced
framework features such as multi-user support are out of scope as well. We will
reflect on this in Section 6 The framework is published on GitHub®, along with
the examples described below.

Key to our approach is that we leave the task specification of TopHat un-
touched. This preserves the nice formal properties for which TopHat has been
developed in the first place. The prototype Ul framework completely relies on
the TopHat semantics for handling input and rewriting tasks. The responsibility
of the UI framework is to render the task in a web browser, and hand off input
that comes in from the user to the TopHat semantics.

The prototype framework is architecturally separated in two parts: the back-
end and the frontend. Figure 2 shows the main modules of each part. The backend
is responsible for initializing tasks and handling communication with TopHat.
The frontend renders tasks and allows the user to interact with them. After a
comparative study of existing web server and UI frameworks [11], we have se-
lected Servant [21]| as our webserver and Halogen [6] for the UI. Other options
are discussed in the Section 5. Section 3.1 illustrates the communication between

® https://github.com/mark-gerarts/ou-afstuderen-artefact
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Frontend Backend

:
i
|
-._L

GET finitial-task

update value

4

Task
.‘. __________________________

reset
GET /reset

L

Task
.‘. __________________________

Fig. 3: Communication between frontend and backend. Sequence diagram that
displays requests (solid arrows) and responses (dashed arrows). update value
and reset are user actions. Task and Input are JSON objects.

frontend and backend. Section 3.2 explains the working of the backend and the
frontend is discussed in Section 3.3.

3.1 Communication between backend and frontend

Figure 3 shows the communication between frontend and backend. The frontend
first requests the initial task, which the backend returns using a JSON represen-
tation of this task. A user can now interact with the system. In this example,
the user updates a value. The frontend sends the input as JSON to the backend,
and the backend responds with the updated task. This step can be repeated
as necessary. In this case, the user resets the application, which results in the
backend resetting back to the initial task.

The frontend is written in PureScript and the backend in Haskell. We choose
JSON as data interchange format, because JSON allows custom data structures,
it is easy to use, and both backend and frontend support JSON out-of-the-box.

3.2 Backend

The backend is written in Haskell, using Servant [21] as the web server. It has
three main responsibilities, which is reflected in its module structure, shown in
Figure 2:
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1. The Application module loads the application, defines the web server and
configures the handlers.

2. The Communication module handles JSON conversion, both encoding tasks
to their JSON representation and decoding user input.

3. The Visualize module is intended for the end user. It exposes functions to
start the framework, which is demonstrated in Listing 1.5.

import Task (Task, enter, view, (>>7))
import Visualize (visualizeTask)

main :: I0 ()

main = visualizeTask greet

greet :: Task h String

greet = enter >>?7 \result -> view ("Hello " ++ result)

Listing 1.5: Starting the framework (Haskell)

Application module We create an abstract web application (WAI-application)
in the Application module (see the application function in Listing 1.6). We
define the endpoints, the request and the response formats. For example, see
the TaskAPTI in Listing 1.6. The server function provides handlers to serve the
initial task, to handle interaction with the frontend and to perform a reset.
The remainder of the module consists of functions that expose functionality
of TopHat: initializing tasks, deconstructing tasks in a representation that can
be sent to the frontend, and interacting with tasks. We have only added key
signatures to Listing 1.6.

module Application (application, State (..)) where

data State h t = State

{ currentTask :: TVar (Task RealWorld t),
initialised :: Bool,
originalTask :: Task RealWorld t

}

type TaskAPI =
"initial -task" :> Get ’[JSON] TaskDescription
:<|> "interact"
:> ReqBody ’[JSON] JsonInput :> Post ’[JSON] TaskDescription
:<|> "reset" :> Get ’[JSON] TaskDescription

type StaticAPI = Get ’[HTML] RawHtml :<|> Raw
type API = TaskAPI :<|> StaticAPI

interactI0 :: Input Concrete -> Task RealWorld a -> IO (Task RealWorld a)
initialiseIO0 :: Task RealWorld a -> I0 (Task RealWorld a)

describeIO :: Task RealWorld a -> I0 TaskDescription

server :: ToJSON t => State h t -> ServerT API (AppM h t)

application :: ToJSON t => State h t -> Application

Listing 1.6: Application module (Haskell)
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Communication module In Listing 1.7 we show the core of the communication
module. We introduce a new datatype, TaskDescription, that holds all data
we need to render a task: the task itself (JsonTask) and its possible inputs
(InputDescription), along with the describe function that extracts this data
from a TopHat task. User input, which is sent back and forth from the client to
the server, is defined in JsonInput.

module Communication (JsonTask (..), TaskDescription (..), describe) where
type JsonTask = Value
type InputDescriptions = List (Input Abstract)

data TaskDescription where
TaskDescription :: JsonTask -> InputDescriptions -> TaskDescription

instance ToJSON JsonTask
describe :: Members ’[Alloc h, Read h] r => Task h t -> Sem r TaskDescription

data JsonInput where
JsonInput :: Input Concrete -> Jsonlnput

instance FromJSON JsonInput

Listing 1.7: Communication module (Haskell)

Visualize module In Listing 1.8 we show the signatures of the visualize module.
We use this module to run the web server in production (visualizeTask) or de-
velopment (visualizeTaskDevel) mode. We differentiate between these modes
because we implemented live code reloading for development, which requires a
bit of additional setup. Both visualizeTask and visualizeTaskDevel use the
initApp function. InitApp on its turn invokes the application-function of the
Application Module.

module Visualize (visualizeTask, visualizeTaskDevel) where

initApp :: ToJSON t => Task RealWorld t -> IO Application
visualizeTaskDevel :: ToJSON t => Task RealWorld t -> IO ()
visualizeTask :: ToJSON t => Task RealWorld t -> IO ()

Listing 1.8: Visualize module (Haskell)

3.3 Frontend

The frontend renders the Ul and provides a way for the user to interact with the
it. The code is written in PureScript using the Halogen framework. The frontend
consists of three main modules and some auxiliary modules. We explain the main
modules:
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1. The Client module is the communication layer with the backend. It defines
functions which send requests to the backend and handles the responses.

2. The Task module handles JSON encoding and decoding of our domain’s
datatypes (tasks and user input).

3. The TaskLoader module is the starting point of Halogen and is responsible
for rendering the UL

Client module The client module is responsible for the communication between
frontend and backend. The backend sends a response in JSON that consists of
two parts: a Task and a description of possible inputs. We decode this JSON
object into a TaskResponse. See Listing 1.9.

module App.Client (ApiError, TaskResponse(..), getInitialTask, interact,
reset) where

data TaskResponse
= TaskResponse Task (Array InputDescription)

instance decodeJsonTaskResponse :: DecodeJson TaskResponse
getInitialTask :: Aff (Either ApiError TaskResponse)

interact :: Input -> Aff (Either ApiError TaskResponse)

reset :: Aff (Either ApiError TaskResponse)

Listing 1.9: Client module (PureScript)

Task module In the Client module we defined a TaskResponse. This TaskResponse
consists of two parts: a Task and an array of InputDescription. In the Task
module we define the decoding process of Task and InputDescription. See
Listing 1.10.

module App.Task where

data Task
= Edit Name Editor
| Select Name Task Labels
| Pair Task Task
| Choose Task Task
| Step Task
| Trans Task
| Done
| Fail

instance showTask :: Show Task
instance decodeJsonTask :: DecodeJson Task
data Input

= Insert Int Value

| Decide Int String

instance showInput :: Show Input

instance encodeInput :: EncodeJson Input
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>5| data InputDescription

= InsertDescription Int String
| OptionDescription Int String

instance showInputDescription :: Show InputDescription

instance decodeJsonInputDescription :: DecodeJson InputDescription

Listing 1.10: Task module (PureScript)

TaskLoader module The TaskLoader module renders the user interface (the
render function in Listing 1.11). The module also contains logic to handle
events (handleAction), for example when a user modifies a value. Finally, the
taskLoader function (see Listing 1.11) initializes the component.

module Component.TaskLoader (taskLoader) where

taskLoader :: forall query input output m. MonadAff m => H.Component query
input output m

handleAction :: forall output m. MonadAff m => Action -> H.HalogenM State
Action Slots output m Unit

render :: forall m. MonadAff m => State -> HH.ComponentHTML Action Slots m

Listing 1.11: TaskLoader module (PureScript)

4 Examples

We present a few examples to demonstrate how our framework handles TopHat
programs. We use a simple multiplication-by-seven machine to demonstrate the
Step task and the Edit task (with View, Enter, and Update editors) (Section ?77?).
The candy vending machine combines the Select and View editor, the Step Task,
and the Pair Task to construct a candy machine (Section 4.1). The calorie cal-
culator demonstrates a real-world application of our framework (Section 4.2).
The chat sessions demonstrates the use of shared data stores (Section 4.3), and
finally Section 4.4 describes UI generation for the tax example from Section 2.4

4.1 Candy vending machine

The candy machine allows a user to choose a chocolate bar and, after the bill is
paid, the candy machine returns the bar. The candy machine combines the Edit,
Pair and Step task. We have defined different Edit tasks with View and Select
editors. The implementation of the initial task is given in Listing 1.12. The Pair
combinator is denoted with the operator ><.

1. After the candy machine is started, the machine displays some introductory
text and a selection of chocolate bars (See Figure 4a). This is done using a
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Pair Task that consists of two Edit tasks: an Edit task with a View editor
and an Edit Task with a Select editor.
2. Select a chocolate bar. After choosing a bar, the candy machine displays the
price of the bar (see Figure 4b). This is done using another Pair Task that
consists of an Edit task with a View editor (“you need to pay:”) and a Step
Task. The Step task consists of two tasks: first a view editor is shown (with
the price) and after the step, a select editor is rendered (see Figure 4c).
Press the continue button.
4. Insert coins until you have paid the bill (see Figure 4c). The application
alternates a view and a select editor.
5. The application shows a view editor to indicate to the user that the bill is
paid (see Figure 4d).

@

data CandyMachineMood = Fair | Evil

startCandyMachine :: (Task h (Text, (Text, Text)))

startCandyMachine = view "We offer you three chocolate
bars. Pure Chocolate: It’s all in the name. IO
Chocolate: Chocolate with unpredictable side effects.
Sem Chocolate: don’t try to understand, just eat

it!" >< select candyOptions
candyOptions :: HashMap Label (Task h (Text, Text))
candyOptions =

[ entry "Pure Chocolate" 8,
entry "IO Chocolate" 7,
entry "Sem Chocolate" 9
1
where
entry :: Text -> Int -> (Label, Task h (Text, Text))
entry name price =

(name, view "You need to pay:"

>< (view price >>? payCandy))
payCandy :: Int -> Task h Text
payCandy bill =
select (payCoin bill) >>7 \billLeft ->

case compare billLeft O of

EQ -> dispenseCandy Fair

LT -> dispenseCandy Evil

GT -> payCandy billLeft

payCoin :: Int -> HashMap Label (Task h Int)
payCoin bill =
[ coinSize 5,
coinSize 2,
coinSize 1

1
where
coinSize :: Int -> (Label, Task h Int)
coinSize size = (display size, view (bill - size))
dispenseCandy :: CandyMachineMood -> Task h Text

dispenseCandy Fair =
view "You have paid. Here is your candy. Enjoy it!"
dispenseCandy Evil =
view "You have paid too much! Sorry, no change, but here is your candy."

Listing 1.12: Initial Task of the candy vending machine (Haskell)
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We offer you three chocolate bars. Pure Chocolate: Its all in the name. 10 Chocolate: Choose an option below:

Chocolate with unpredictable side effects. Sem Chocolate: don't try to understand, just
eatit! Pure Chocolate Sem Chocolate 10 Chocolate

(a) Step 1: Select a chocolate bar

We offer you three chocolate bars. Pure Chocolate: It's all in the name. 10 Chocolate: You need to pay:
Chocolate with unpredictable side effects. Sem Chocolate: don't try to understand, just
eatit!

(b) Step 2: Price of the selected candy is shown to the user

sel et TaSk

We offer you three chocolate bars. Pure Chocolate: It's all in the name. 10 Chocolate: You need to pay: Choose an option below:

Chocolate with unpredictable side effects. Sem Chocolate: don't try to understand, just . . .
. 1 2 5
eatit!

(c) Step 3: Insert a coin

We offer you three chocolate bars. Pure Chocolate: It's all in the name. 10 Chocolate: You need to pay: You have paid. Here is your candy. Enjoy
Chocolate with unpredictable side effects. Sem Chocolate: don' try to understand, just it!
eatit!

(d) Step 4: You have paid the bill

Fig. 4: Different stages of the candy vending machine

4.2 Calorie calculator

To demonstrate a more real-world application that incorporates most task types,
we created a calorie calculator. This application calculates how many calories a
person should eat per day in order to maintain their weight. The calculation de-
pends on several factors, such as age, weight, and activity level. The application
can be broken down in several steps to prompt the user for input, and finally
calculating the result. The implementation of the task is given in Listing 1.13.

1. When started, the application presents the user with some information about
the calculation using a View editor.

2. After pressing continue, the user is prompted to enter the required data in
different steps: height, weight, and age using Enter editors, and gender and
activity level using Select editors. Each prompt is wrapped in a Pair task
with a View editor on the left side to act as the label. Such a prompt is
shown in Figure 5.

3. In the last step the result is displayed using a View editor.
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data Gender = Male | Female

data ActivityLevel = Sedentary | Low | Active | VeryActive
type Height = Int

type Weight = Int

type Age = Int

calculateCaloriesTask :: Task h Text
calculateCaloriesTask =
introduction >>? \_ -> do
(_, height) <- promptHeight
(_, weight) <- promptWeight
(_, age) <- promptAge
(_, gender) <- promptGender
(_, activityLevel) <- promptActivityLevel

let calories = calculateCalories gender activityLevel height weight

age
view
( "Your resting metabolic rate is: "
<> display calories
<> " calories per day."

introduction :: Task h Text
introduction = view <| unlines
[ "This tool estimates your resting metabolic rate,",
"i.e. the number of calories you have to consume",
"per day to maintain your weight.",
"Press \"Continue\" to start"

promptGender :: Task h (Text, Gender)
promptGender =
view "Select your gender:"
>< select
[ "Male" ~> Done Male,
"Female" 7> Done Female

]

promptHeight :: Task h (Text, Height)

promptHeight = view "Enter your height in cm:"

>< enter

promptWeight :: Task h (Text, Weight)

promptWeight = view "Enter your weight in kg:" >< enter
promptAge :: Task h (Text, Age)

promptAge = view "Enter your age:" >< enter
promptActivityLevel :: Task h (Text, ActivityLevel)

promptActivitylLevel =
view "What is your activity level?"
>< select

[ "Sedentary" ~> Done Sedentary,
"Low active" 7> Done Low,
"Active" 7> Done Active,
"Very Active" 7> Done VeryActive
]
-- We omit the actual calculation here since it is a bit lengthy.
calculateCalories :: Gender -> ActivityLevel -> Height -> Weight -> Age
Int

calculateCalories gender al h w age =

Listing 1.13: Task of the calorie calculator (Haskell)
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Enter your height In cm: Value:

187 :

Fig. 5: Prompting the user to enter his/her height

4.3 Chat session

This example uses shared data stores to model a chat session between two users,
as displayed in Figure 6. Each user can write messages to the chat history on
the left hand side using their respective inputs on the right hand side.

The implementation for this example is given in Listing 1.14. The function
share creates a data store that can be accessed by multiple tasks, in this case the
two chat tasks. The <<= operator is used to transform the contents of the shared
data store.

Tim: 'Hellol' Value: Value:
Nico: "Hil'

Fig. 6: A chat session using shared data stores.
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chatSession :: Reflect h => Task h (Text, (), ())
chatSession = do
history <- share ""
watch history ><
(chat "Tim" history >< chat "Nico" history)
where
chat :: Text -> Store h Text -> Task h ()
chat name history = repeat <|
enter >>% ["Send" ~> append history namel
append :: Store h Text -> Text -> Text -> Task h ()
append history name msg = do
history <<= \h ->
(if h == "" then h else h ++ "\n")
T Dame il

++ msg ++ "0

Listing 1.14: A chat Session using shared data stores (Haskell)
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4.4 Tax example

For our final example, we revisit the tax program from Section 2.4.

tax :: Task h ((((Amount, Bool), Bool), Date), Date)
tax =
let today :: Date

today = 100

provideDocuments :: Task h (Amount, Date)
provideDocuments = enter >< enter
companyConfirm :: Task h Bool
companyConfirm = enter
officerApprove :: Date -> Date -> Bool -> Task h Bool
officerApprove invoiceDate date confirmed =

view (date - invoiceDate < 365 && confirmed)

in (provideDocuments >< companyConfirm)
>>? \((invoiceAmount, invoiceDate), confirmed) ->
officerApprove invoiceDate today confirmed
>>7 \approved ->
let subsidyAmount =
if approved
then min 600 (invoiceAmount ¢div¢ 10)

else 0
in view
<| unlines
[ "Subsidy amount: " ++ display subsidyAmount,
"Approved: " ++ display approved,
"Confirmed: " ++ display confirmed,
"Invoice date: " ++ display invoiceDate,
"Today: " ++ display today

Listing 1.15: Tax example in Haskell

Listing 1.15 gives the Haskell code that implements the task. Compared to
the original definition as given in Listing 1.4, the task is nearly identical. The only
change made is to the final line, where we have opted for a different presentation
of the final result, for simplicity sake.

Figure 7 lists the different stages of the Ul for the tax subsidy task. First, the
user requesting the subsidy can enter in information (first two tasks), while the
company can confirm or deny. Then, the tax officer can verify if the conditions
are met, and approve the request. Finally, the outcome is shown.

Since we did not have to modify the task at all, besides a minor presenta-
tion detail, this task can still be proven correct using symbolic execution. This
example clearly illustrates the advantage of TopHat with a UI over the current
state-of-the-art in the form of iTasks.

5 Related work

Section 2 presentend related work on TOP and iTasks. In this section, we will
briefly discuss Functional reactive programming as an alternative to TOP, as
well as alternatives for the Ul framework and web server we have used during
the development of the Ul for TopHat.
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Update Task Update Task Update Task

Value: Value: Value:
400 = 600 2 ® True
O False

(a) Step 1: The citizen enters the request info on the left, the installation company

confirms on the right
Iiliiiliigiillllllllll
View Task Subsidy amount: 40
Approved: True

true Confirmed: True
Invoice date: 600

Today: 100

(b) Step 2: The tax office con- (c) Step 3: The final out-
firms or denies the request come of the request is dis-
played

Fig. 7: Different stages of the tax subsidy application

5.1 Functional Reactive Programming

Functional Reactive programming (FRP) is another approach to UI develop-
ment using functional programming. FRP is a programming paradigm centered
around interactive event-based applications. It has implementations in multiple
programming languages, such as Haskell and JavaScript [4].

FRP consists of two main concepts: behaviors and events. A behavior consists
of a value and can be mapped to output, for example a label. Behaviors can
depend on other behaviors, so a change in a behavior can propagate through a
network of dependent behaviors. An event only occurs at a certain point in time
and contains a value. Input is mapped to events, for example the pressing of a
key or the position of the mouse cursor. Events can trigger changes in behaviors.

It is worth noting that, while they share some similarities, FRP and TOP
are conceptually different. FRP is a paradigm for reactive programming, whereas
TOP is a way to model collaboration between users.

5.2 User Interface frameworks

We build upon the Halogen framework to create our prototype, but many other
UI frameworks exist in the domain of functional programming. We discuss three
of these briefly below.

Elm [9] refers to both Elm, a functional programming language that compiles
to JavasScript [8], and TEA [10], a programming pattern that emerged from it.
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Elm’s ecosystem consists of a large number of available libraries that help in
creating web applications.

Miso [12] is a Haskell front-end framework inspired by Elm and Redux. It
relies on GHCJS [15], a Haskell-to-JavaScript compiler based on GHC.

Reflex [29] is an FRP framework written in Haskell with support for a variety
of platforms, including the web, desktop, and mobile. Reflex applications are
modular, which makes growing and refactoring an application efficient and swift.

We have selected PureScript and Halogen because it is a powerful functional
programming language that fits our problem domain. Halogen provides an excel-
lent developer experience, has a component based architecture and builds upon
PureScript’s power and expressiveness.

5.3 Web servers

We have opted for Servant as our web server. Servant provides combinators to im-
plement our features, which makes coding less error prone and time-consuming.
Servant is up-to-date, well-maintained, well documented and it is easy to get a
working prototype. Below we discuss Yesod and Warp as possible alternatives
for the server used in our implementation.

The Yesod Web Framework [23] is a Haskell web framework that allows for
rapid development of type-safe, RESTful and high performance web applica-
tions [24]. The Yesod Web Framework adds the strengths of Haskell (like type
safety) to the web. Especially on the boundaries of Yesod and the world, for ex-
ample a user enters input or persistent data is loaded, Yesod adds mechanisms
to define the expected types [22]. We found that developing a prototype based
on Yesod is more difficult than developing a prototype based Servant. We also
found that the Yesod Web Framework is too extensive for our purposes [11].

The Warp web server is a light-weight web server that supports the Web
Application Interface (WAI) [25]. It is meant to be easy to use and provide easy
composition of web services. Because of the design choices to achieve this, the
code of a Warp prototype is low-level. This means that implementing all features
in this way will be error prone and time-consuming. Therefore, we have chosen
Servant. However, Servant also uses Warp as its web server [11].

6 Discussion

We set out this paper with two goals in mind, to answer academic research
questions, and to develop an interactive TOP system in Haskell.

Our first questions was, are the advanced Clean features used by iTasks
essential for TOP? While these features definitely contribute to the quality of
the implementation of iTasks, it is evident that they are not essential.

We were able to develop the UI framework for TopHat in such a way that
the original TopHat semantics did not need to be altered. The task specification
and its semantics are leveraged by the framework just so it can display the task
and pass along input that is entered into the UL
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This answers our second question, do we need to compromise the formal
properties of TopHat to build a UI for it. Here the answer is clearly no. The Ul
framework is completely separate. This is possible due to the fact that TopHat
is a deeply embedded DSL, compared to iTasks, which is mostly a shallowly
embedded DSL.

The development has been largely a straight forward process. Section 5 lists
some details on how we selected the components that make up the Ul framework.
The implementation has been validated by running several example applications.

As mentioned in Section 3, TOP features such as multi-user support and
richer datatypes are out of scope for this publication. We see no technical or
formal reason prohibiting them from being included in future versions of the
UI framework. As with iTasks, the rendering of values, and editors of values, is
generic in the type of the value. Adding support for more complex datatypes
would just mean making instances for them for viewing and editing them, simi-
lar to how this is done in iTasks. As for multi-user support, this is a limitation
in the current version of TopHat. Its developers are already working on adding
multi-user support. Once this feature is released, we see no fundamental limi-
tations in supporting this in the UI. The server framework used in the current
implementation, Servant, already has extensive support for user authentication,
which could be leveraged .

7 Conclusion

We conclude that it is indeed possible to create an interactive web Ul for TopHat
programs without resorting to Clean or iTasks. Even though our implementation
does not have the full capabilities of the iTasks framework, we show that all
the basic requirements for a TOP framework can be implemented. We support
tasks, shared data stores, combinators and generics. This means that we can
really have the best of both worlds, a formal semantics for TOP, as well as an
interactive Ul that can be used to build realistic applications. The source code
for our framework is available online, and can thus be leveraged by developers
and researchers to advance the field of Task-Oriented Programming.
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Abstract. This paper presents SIG-ADLIB, an embedded domain-specific
language for complex realtime data stream processing tasks on the JVM.
It distinguishes a declarative data-flow and an imperative control-flow
aspect. SIG-ADLIB programs can be interpreted, or compiled transpar-
ently to JVM bytecode and eventually jit-compiled. Both the interpreter
and the compiler are completely modular and extensible. The compiler is
fully embedded in the host program. Interpreted and compiled code both
run indefinitely on fixed space. Benchmarks indicate a roughly 50-fold
speedup by compilation, comparable with hand-coded, statically com-
piled reimplementations.

1 Introduction

We report on the design and implementation of an embedded domain-specific
language (EDSL), SiG-ADLIB, that adds declarative support for synchronous
data-flow computations to the Java platform.

The design of the language covers a middle ground between several related
approaches, and has an unusual combination of technical properties: SIG-ADLIB
is a managed language hosted on the Java Virtual Machine (JVM), but its
programs can operate indefinitely on a very tight resource budget. It is a dy-
namic, modular and extensible language, but cooperates at runtime with the
just-in-time (jit) compiler of the host environment to generate high-performance
code, in the double sense of high throughput and ultra-low latency. It is purely
functional in one principal aspect, but procedural in another. It embodies the
abstract declarative paradigm of clocked synchronous data-flow programming,
but also age-old folklore techniques of low-level imperative stream processing.
It has been conceived initially as a backend for compilation of the standalone
high-level language SIG [22], but is also productive, educational and fun to use
directly.

Data stream programming in this sense can be considered a restricted form of array
programming, without random access.



1 S =0.0 1 S =0.0
S2 = 0.0
2 DO 4I=1, N 2 DO 4 =1, N
3 YI = - 3 YI = .-~
4 S =S+ YVYI 13 S2 =S2 + VI
T =S+ S2
23 S2 =(S -T) +S2
4 S =T
5 5

Fig. 1. Naive (left) vs. Kahan’s compensated summation (right, [10]) — imperative style

1.1 Motivating Example

It is a well-known fact that the summation of a stream of floating-point values
should not be performed in the naive way, by simply reducing the stream with
the binary addition operations. [10] Except for rare special cases, one operand
(the cumulative sum) is bound to outgrow the other (the next value element),
and hence the overlap in significant bits and ultimately the precision of the result
decrease progressively. A compensating algorithm has been proposed in 1965 [10]
already. In Fig. 1 the original Fortran formulation is depicted, juxtaposed with
a simplified variant that encodes the naive summation in the same style.

Arguably, notation has come a long way since then. The depicted code can
be considered unnecessarily convoluted by modern standards. In particular, the
style is as far removed from referential transparency as possible in such a short
code fragment: Variables are freely used both before and after being updated
in each loop iteration. A transformation of the code to static single-assignment
form [16] is able to reveal that for the variable S2 alone, there are no less than five
distinct regional meanings with different sets of relevant definitions. As a result,
reasoning about algorithms is extremely hard and non-scalable in this style.
In particular, any perturbation of the assignment statements is quite likely to
corrupt the semantics in complicated ways.

It is therefore no coincidence that in areas where this class of algorithms
is of practical relevance, such as physical modeling or signal processing, visual
approaches that display the algorithmic content as a data-flow network enjoy
great popularity (see section 2.3). Fig. 2 depicts the same two algorithms in the
graphical style that we have been using in the Sig(-adLib) context. In a data-
flow network, most operators are understood as operating repeatedly, once per
element of all connected data streams.

The “secret weapon” of the style is the special delay operator § ,4 which delays
a data stream by exactly one element. Semantically, an extra initial element is
prepended to the stream. Its value must of course be specified somewhere, but
is usually omitted from the diagram for visual hygiene reasons. Delay lines allow
data-flow networks to be specified without the need to explicitly name stream

* variously also written 2~ an abuse of notation from filter theory
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Fig. 2. Naive (white) vs. Kahan’s compensated summation (colored) — data-flow style

variables and distinguish pre-update and post-update access, by sampling the
stream after and before the delay operator, respectively.

Furthermore, delayed feedback loops are semantically relatively harmless,
but contribute greatly to the expressive power of the approach by supporting
stateful computations. In [19] we have demonstrated how to translate a data-
flow network with arbitrary delayed feedback to a countably infinite system of
equations that has both full referential transparency and well-defined operational
semantics.

2 Related Work

In this section, we give an overview and comparison of related approaches, in
order to clarify and justify the particular position in the solution space taken up
by the design of S1G-ADLIB.

2.1 Functional Reactive Programming

The paradigm of functional reactive programming (FRP) has been developed
for computation with time-dependent values in a general sense that subsumes
the one discussed above. FRP programs abstract from the nature of time and
change (continuous signals, synchronous streams, asynchronous events, etc.) [7]
with the help of high-level algebraic structures such as monads or arrows [8].

Fig. 3 depicts an implementation of Kahan’s algorithm in Rhine [1], a recent
FRP EDSL in Haskell. Note that, of the Rhine language proper, only the mealy
wrapper is used; the circuit itself is described as a recursive let construct. The
dense graph structure of this particular data-flow network makes the expression
in an arrow-based combinatorial notation exceedingly difficult; cf. Fig. 4.

The abstraction level of FRP is convincingly elegant at the level of denota-
tional semantics, but makes reasoning about resources rather hard [8], and is far
removed from traditional programming models for data stream processing. By



ksum :: (Monad m, Floating a) = MSF m a a
ksum = mealy step (0, 0)
where step y (s, s2) = (t, (t, s2b))
where s2a = s2 + vy
t =S + s2a
s2b = (s - t) + s2a

Fig. 3. Kahan’s compensated summation — simple (Mealy) FRP style in Rhine

ksum :: (Monad m, Floating a) = MSF m a a

ksum = feedback 0 $
binop (+) >> first (sum >> second (binop (-))) &&& arr id
>> arr assoc > second (binop (+))

where sum = feedback 0 $
binop (+) &&& arr snd >> arr shuffle

binop = arr o uncurry
assoc ((a, b), c) = (a, (b, ¢))
shuffle (a, b) ((a, (b, a)), a)

Fig. 4. Kahan’s compensated summation — arrow-oriented FRP style in Rhine

contrast, SIG-ADLIB is founded on a coalgebraic semantics [19] that connects
infinite Mealy machines to causal stream functions. That semantic model comes
with a significantly less abstract representation of time, but is highly compatible
with the intuitive analogy to digital circuits on one hand, and with traditional
imperative programming patterns in the stream processing domain on the other.

2.2 Synchronous Languages

Time-oriented programming, with special emphasis on low-level and safety-
critical aspects of the synchronous paradigm, has also been studied extensively
in the “French” school of synchronous languages such as Esterel [3], Signal [6]
and Lustre [4].

Fig.5 depicts an implementation of Kahan’s summation algorithm in Lus-
treV6 [18]. The operator — delays its right operand by prepending the initial

node ksum (y : real) returns (t : real);
let

s2a = S2 +y

t =S + s2a

s2 =0 — pre((s - t) + s2a)

S =0 — pre(t)
tel

Fig. 5. Kahan’s compensated summation — synchronous style in Lustre



shuffle route(2,3,1,1,1,3,2,2);
sum = (shuffle : +, )" ;
ksum (+ <: (_,(sum : shuffle : -, ))"+) : !, !, ;

Fig. 6. Kahan’s compensated summation — combinator style in Faust

value of its left operand. Note how the language elegantly avoids the tradeoff
between referential transparency and naming parsimony, by virtue of the com-
positional pre operator that distinguishes pre-update from post-update values.

In analogy to hardware description languages [2], it useful in operational
semantics of the synchronous paradigm to conceptually distinguish macro-time
and micro-time. Macro-time progresses discretely at global clock tick-like events.
Every signal is assigned a constant value per macro-time slice. Micro-time pro-
gresses as the updating of the data-flow network propagates by actual value-level
computation operations. A synchronous execution model guarantees the absence
of macro-time inconsistencies, i.e., the observation of values that have been out-
dated or prematurely overwritten in micro-time.

A typical resource-efficient implementation strategy achieves synchronicity
by data-flow dependency analysis: On one hand, signals are realized as mutable
variables, such that updates take effect globally and irreversibly. But on the
other hand, computations are sorted in a causal micro-time firing order, i.e., each
operation may execute and update its result only after its operands have been
updated. This strategy implicitly rules out macro-time instantaneous feedback
loops, but not delayed ones. For an explication of the latter, see the elimination
technique for delay operations proposed in [19].

Faust Fig.6 depicts an implementation of Kahan’s summation algorithm in
Faust[12], a functional DSL for synchronous data-flow programming, specifically
for the audio domain. Its most distinguishing feature is a very terse syntax that
provides a basis of combinators not unlike the algebra of arrows, but with a
unique flavor.

2.3 Visual Data-Flow Languages

In several application domains, visual programming tools enjoy great popularity,
being considered more accessible and appealing to domain experts. We shall men-
tion just a few very popular examples. They have in common that synchronous
stream processing and event-based flow are mixed in a pragmatic fashion that
is not grounded in unifying precise semantics.

Max, PD Max/MSP enjoys great popularity in the digital musical community,
and has even been hailed as the lingua franca for live performance[14]; PD
is its near-identical open-source twin [15]. Fig.7 depicts an example PD data-
flow network (patch), where the flow direction and micro-time precedence are
indicated by vertical and horizontal alignment, respectively.
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Fig. 7. Example patch (data-flow network) in PD

public interface Stream<A> {
Spliterator<A> spliterator();

}

public interface Spliterator<A> {
boolean tryAdvance(Consumer<A> action);

}

Fig. 8. Java Streams, Low-Level Control API [9]

Matlab/Simulink Simulink is a signal processing system which serves as front-
end for Matlab and is widely used in industrial prototyping.[17]

2.4 Java Streams

With Java Version 8, a stream-processing framework API has been introduced
into the language. Stream computations are programmed in data-flow style, by
setting up pipelines with the help of well-known higher-order functions such as
map and filter. Evaluation of actual data elements then takes place on demand.
Low-level explicit control is supported with a glorified variant of the Iterator
pattern, see Fig. 8. By contrast, usual applications use high-level implicit control
by means of terminal reduce-like operations, see Fig. 9, thus also benefiting from
potential transparent parallelization.

The resulting declarative style of usage raises the abstraction level consid-
erably, compared to the procedural, loop-oriented approach of traditional Java
patterns. But the abstraction comes at a steep price: Because the observation of
the current element and the transition to the next one are fused in an atomic
consumption event, data-flow networks are necessarily limited to linear pipelines;
it is not possible to pass the same data element to two simultaneous consumers
(unzip). This restriction of expressive power rules out many interesting algorith-
mic applications, in particular all that rely on feedback.



int total = shoppingCart.stream()
.filter(Item::isAvailable)
.limit(max0OrderSize)
.map(Item::getPrice)
.sum();

Fig. 9. Java Streams, High-Level Usage Example

As a result, algorithms such as Kahan’s summation cannot be decomposed
into Java stream combinators and expressed in the stream EDSL for fundamen-
tal reasons. Ironically, the API documentation for the stream operation sum’
suggests that compensated summation may be used, but it has to be imple-
mented under the hood by escaping into the host language. The language design
of S1IG-ADLIB can be seen as a variation on the stream framework which trades
(mildly) more explicit imperative control at evaluation time for (significantly)
enhanced declarative expressive power at construction time.

3 Design

S1G-ADLIB is an embedded domain-specific language, i.e., it does not come with
a textual syntax or execution environment of its own. Instead, programs are
represented as program object graphs (POGs) and executed as method calls by
a meta-program in the host language, Java, and share its platform, the JVM.
The structure of an embedded program can be written down statically, thus
inheriting the syntax of host language, or constructed dynamically by a meta-
programming algorithm. Every program object (PO) is at least equipped with
an implementation of its own operational semantics, such that the POG as a
whole constitutes its own modular, even decentral, interpreter.

Several key features of the design hinge on the characteristic property of
S1G-ADLIB, namely the separation of the concerns of data and control flow. The
following subsections describe the respective APIs.

3.1 Core Interfaces and Constructs

S1G-ADLIB does not require any facilities beyond a vanilla JVM to run. Thus
the implementation is a pure Java library. Its API is organized around a small
number of simple interfaces for modularity and extensibility, but also provides
a large number of implementing classes and factory operations as predefined
data-flow network constructs.

5 https://docs.oracle.com/javase/8/docs/api/java/util/stream/DoubleStream.
html#sum- - [9]
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@Functionallnterface

interface IntSignalSource extends IntSupplier {
@Override public int getAsInt();

}

Fig. 10. SiG-ADLIB Data Flow API (Excerpt)

3.2 Data Flow

The basic unit of SIG-ADLIB data-flow networks is a signal source, an abstract
consumer-perspective view on a signal, i.e., a strongly typed time-dependent
value. Fig. 10 depicts the specialized variant for the unboxed primitive data type
int;6 analogous variants exist for other primitive types of the JVM, as well as a
generic variant for reference types.

The interface is a specialization of the standard Java functional interface
Supplier, and as such a valid target type for a lambda expression. Its additional
contract stipulates that the observation of the current value (by calling the getter
method) does not constitute an event for the observed signal, i.e., it must not be
the cause of upstream state transitions. This allows multiple observers to share
the signal without interference, in marked contrast to the Java Stream API.
In general though, values may change arbitrarily between observations due to
concurrent activity.

Data-flow networks are constructed from atomic signal sources by various
constructs, implemented by constructors and factory operations. Most of these
involve the lifting of elementwise operations to signals by memoryless repeti-
tion. S1G-ADLIB provides generic constructs for lifting operations of various ar-
ities, such as constant, map and zip, as well as specializations for frequently
used operations, such as add or equal. For example, a network that computes
the instantaneous average of three input signals z,y,z could be denoted as
X.add(y).add(z) .divide(constant(3)).

3.3 Control Flow

Orthogonally to the data aspect of a SiG-ADLIB computation, its control aspect
is described in terms of the Process interface, depicted in Fig.11. A process in
the S1G-ADLIB sense is understood as a non-spontaneous provider of signals.
A process can be started (or restarted), and commanded to perform a single
transition step in macro-time, by calling the init and step methods, respec-
tively. A process is not entitled to terminate spontaneously; computation ceases
implicitly when step is called no more. Confer the programming model of the
Arduino microcontroller architecture [11], in particular the structure functions
setup and 1oop77 respectively.

 The redundant method name getAsInt is due to the lack of result-type overloading.
7 Actually, loop does not specify a loop but a loop body, and hence is a striking
misnomer.



interface Process {
public void init();
public void step(RealtimeContext context);

Fig. 11. SiG-apLiB Control Flow API (Excerpt)

XSignalSource outl Cees

ZSignalSource outn )
Process main = ...;

void run(RealtimeContext rc) {
main.init();
while (needMoreData()) {
main.step(rc);
processData(outl.getAsX(), ..., outn.getAsZ());

Fig. 12. S1G-ADLIB Driver Loop, General Pattern

Thus the basic usage of a S1G-ADLIB program follows the pattern depicted
in Fig.12. At construction time, POs are allocated and wired, and typed ref-
erences to all observable data outputs and the control flow entry point re-
tained. The POG can then be run by calling methods in the regular pattern
init (step get™)". Reuse ist supported sequentially by simply restarting the
pattern, but not concurrently, since POs may have allocated mutable internal
state.

SIG-ADLIB processes are compositional in micro-time. The most basic op-
eration combines two processes sequentially, such that r = p.andThen(q) re-
sults in a process where r.init() is equivalent to {p.init(); q.init();} and
r.step(c) is equivalent to {p.step(c); q.step(c);}. Note that this operation
is very different from sequential composition of (finite) streams in macro-time.
Sequential combinators can, and must, be used to construct a causal firing order
for a stateful data-flow network.

Besides micro-time sequential composition, various other operations on pro-
cesses exists. Most notably, rate-changing operations can be used to construct
data-flow networks with subsystems operating at different rates. For example,
q = p.every(128) constructs a process where only every 128th call of q.step
results in a call of p.step.

3.4 Synchronization

While it is often convenient and elegant to separate the data and control aspects
of a program, in analogy to digital circuits considerable additional expressive



interface IntClockedSignalSource extends IntSignalSource, Process {}

abstract class IntStoredSignalSource implements IntClockedSignalSource {
protected int value; // to be written by init & step
@Override public final int getAsInt() { return value; }

Fig. 13. S1G-ADLIB Signal Synchronization (Excerpt)

power is gained by connecting them at particular points, thus adding stateful
features such as buffering, delay and feedback to the picture.

In the simplest case, one interface for each aspect is attached by multiple in-
heritance. We call a signal source that is also a process clocked. A signal source
can be bundled with an arbitrary process (that should of course update its value)
using the factory operation clock. Fig. 13 (top) depicts the resulting intersec-
tion interface for the int data type. Its additional contract stipulates that the
observed value may only change at events caused by the process method step
of the same PO. In the absence of such calls, a clocked signal source must re-
tain a (temporarily) constant value. Thus multiple observers may never observe
inconsistent values for the same macro-time instant. Clocked signal sources can
be understood as true data streams.

The simplest implementation of a clocked signal source is a buffering com-
ponent that provides a field to store and indefinitely retain a data element.
Fig. 13 (bottom) depicts the corresponding abstract base class. Subclasses need
to implement the methods init and step to perform the actual computation
and write operations. Storing the value of a signal source has numerous uses,
most notably the caching of intermediate results for efficient retrieval by mul-
tiple observers, as opposed to redundant recalculation in multiple call contexts.
For convenience, every signal source supports the factory operation stored that
constructs such a cache.

Stateful components in general, and stored signal sources in particular, need
to be included in the main process of the program, in a causally consistent firing
sequence, in order to work correctly. By nature of being an EDSL with local
and compositional programming support only, SIG-ADLIB provides no automatic
checks on this correspondence requirement on data and control flow, leaving the
task to the user. Errors in the control flow of the program manifest as data races
and unexpected latency of signals, analogously to wrongly timed clocked digital
circuits.

3.5 Delay

Besides value caches, the most important primitive synchronized operation is
delay. Delay components are stateful, requiring buffer storage of fixed size and
type to retain each value between the macro-time steps where it figures as input
and output, respectively. The basic case is a single-step delay as required for



delay :: Monad m => a -> MSF m a a
delay = mealy step
where step (x, p) = (y, q)
where y = p -- load
q =X -- store

Fig. 14. Single-step Delay — FRP style in Rhine

interface Register extends Process {
public Process getlLoadPhase();
public Process getStorePhase();

Fig. 15. S1G-ADLIB Load/Store-phased Control Flow (Excerpt)

Kahan’s algorithm. Longer delays can be constructed by “shift register” cascad-
ing; only for significantly more than a few steps it is beneficial to use optimized
implementation strategies such as ring buffers.

A single-step delay requires a buffer of size one. In each step, it forwards
the current buffer state to the output (load) and the current input to the buffer
(store). Fig. 14 depicts an implementation in FRP style. The delay elimination
technique proposed in [19] hinges on the observation that the load and store
phases are separable in the causal firing order, and can accomodate arbitrary
feedback loops in between.

SiG-ADLIB provides a generic interface Register for components with sep-
arable phases, depicted in Fig. 15. Instances act as load.andThen(store) when
used as atomic processes, but they also provide a sequential control-flow op-
eration andMeanwhile that sandwiches another register or process between the
phases.

Fig. 16 depicts the SiG-ADLIB implementation of single-step delay for the
primitive data type int. Note that each method of each phase performs just a
single assignment, and that the double-buffering strategy with next and value
is quite analogous to the design of D-flipflops in hardware.

3.6 Motivating Example, Revisited

The S1G-ADLIB implementation of Kahan’s algorithm is depicted in Fig. 17. Since
the host language Java does not support mutually recursive value definitions,
cycles are introduced imperatively using the setInput method. Otherwise, the
program structure is strikingly analogous to the Lustre variant (Fig.5): The
description of data flow is identical; owing to its low-level compositional nature
S1G-ADLIB adds explicit caching of shared values (corresponding to “fan-out
solder blobs” in Fig.2) and a causal firing order.

For ease of reference, colors are used to indicate the distinct aspects of SIG-
ADLIB programming, namely , data and synchronization.



class IntDelay extends IntStoredSignalSource {
private final int initial;
private final IntSignalSource input;

private int next;

Process load = new Process() {
@Override public void init() {}
@Override public void step(RealtimeContext rc) {
value = next;

}

Process store = new Process() {
@Override public void init() {
next = initial;
}
@Override public void step(RealtimeContext rc) {
next = input.getAsInt();

Fig. 16. S1c-ADLIB Single-step Delay

FloatClockedSignalSource ksum(FloatSignalSource y) {

FloatDelay s = new FloatDelay(0),

s2 = new FloatDelay(0);
FloatClockedSignalSource s2a = s2.add(y).stored();

t = s.add(s2a).stored();
FloatSignalSource s2b = s.subtract(t).add(s2a);

s2.setInput(s2b);
s.setInput(t);
return clock(t, s2. (s). (s2a.

(t)));

Fig.17. Kahan’s compensated summation — S1G-ADLIB style. (For color legend see

text section 3.6)

Note that SIG-ADLIB is not a textual language; thus not the depicted Java
code is the actual program, but the resulting POG. Hence the data-flow aspect of
the program is purely declarative, in spite of the use of setInput in its construc-
tion. While the library API provides many notational constructs to express such
directly hosted programs (i.e., as construction statements with trivial linear con-
trol flow), other means of production, such as component abstraction and reuse,
algorithmic meta-programming, or translation from a different input format, are

all effectively equivalent.



4 Execution Environment

Each S1G-ADLIB PO carries a modular fragment of operational semantics, in the
form of its implementations of the interface methods detailed above. Thus the
interfaces constitute entry points for a decentral interpreter that is distributed
over the abstract syntax POG. The external interface of this interpreter follows
an inversion-of-control (IoC) architectural pattern: References to (sub-)processes
and signal sources serve as clock inputs and data outputs of the data-flow net-
work, respectively. See Fig. 12 and its discussion given above.

The clock inputs can be driven in various manners: as fast as possible for
offline processing, by hardware timers for realtime, or by consumer speed (such
as a display frame rate) for modeled time. Iterations of step can be performed
in a tight loop until terminated externally, in small batches to fill a buffer, or
individually in interrupt-handler style for ultra-low-latency computation.

4.1 Memory Usage

The Java language and the JVM have been criticized for not being fully object-
oriented, but maintaining the distinction between primitive data types and ob-
ject reference types.[13] However, the distinction works to our advantage for the
efficiency and realtime behavior of SIG-ADLIB program execution.

The predefined implementations of signal sources of primitive value type
have been designed carefully to avoid any dynamic use of objects at runtime; in
particular, they do not box or otherwise wrap values, or hold them in collections.
By virtue of the distjoint subdomains in both the type system and the instruction
set of the JVM, this property is easy to specify, realize and check. Furthermore,
typical data-flow algorithms that do require stateful constructs can be limited
to fixed amounts of memory that are allocated at construction time of the POG.

As a result of these two properties, SIG-ADLIB programs, unless explicitly
constructed to allocate objects, run idefinitely on constant memory, and do not
cause any garbage collector load. Experiments have shown that this eliminates
the crucial obstacle to the use of a vanilla JVM, or any managed language
environment that is not realtime-hardened for that matter, in low-latency soft-
realtime applications such as online audio synthesis.

4.2 Compilation

While a modular, extensible, dynamically meta-programmed embedded language
is very convenient for the user, it can be quite challenging to execute efficiently.
The fine-grained use of strongly encapsulating interfaces creates numerous ab-
straction barriers that hinder non-local optimization. Thus the jit compiler of
the JVM can not be expected to generate particularly short or fast machine code
for S1G-ADLIB programs.

For this reason, S1G-ADLIB is also equipped with a dedicated compiler that
dynamiclly creates specialized JVM bytecode for a particular whole POG, which



obliterates abstraction barriers and dynamic bindings and is far more suitable
for both bytecode interpretation and jit compilation.

In this situation, the apparent curse of modularity turns into a blessing: Be-
cause all implementations are hidden behind interfaces, interpreted SiG-ADLIB
POGs can be transparently replaced, wholesale or in parts of arbitrary granular-
ity, by compiled counterparts. For example, the abstract type IntClockedSignal-
Source comes equipped with a default method IntClockedSignalSource compile()
that generates, loads and instantiates a freshly specialized implementation class
on the fly.

The implementation of the bytecode generator is modular and distributed
alongside the interpreter. Compilation support is optional for extension classes;
since the interpreter is context-free, specialized code can call back into inter-
pretation at any time, if an embedded PO does not come with a specific code
generator fragment. At compile time, a context object is passed around, which
is responsible for the upper structure of the generated class and acts as a cen-
tral sink for the bytecode instructions emitted by the per-PO code generator
fragments.

Despite the fact that the modular bytecode generator is not able to per-
form complex non-local optimizations, vast performance gains are obtained by
the well-known combination of early binding, control-flow unfolding, constant
propagation and aggressive inlining. The latter is aided in particular by the non-
recursive nature of micro-time computations. The resulting mostly sequential
instruction sequences can then be attacked effectively by the jit compiler with
SSA-based non-local optimizations.

The only non-local optimization currently supported by the SIG-ADLIB com-
piler is the localization of data cache variables: Any such variables that are
introduced by the stored() construct and not accessible at the interface of the
compiled network may be demoted from heap to stack allocation. This is pos-
sible because, with full inlining, the writer and reader code end up in the same
method body.

The SiG-ADLIB compiler is based on the LLJAVA-LIVE bytecode genera-
tor framework, which is an experimental implementation of the staged meta-
programming paradigm for the JVM, and has been applied to educational ex-
amples [21] and a real-world Java-hosted EDSL for nondeterministic pattern
matching [20]. The basic idea is to pair each interpreter fragment with a corre-
sponding inlining bytecode generator fragment. The heteroiconic staged meta-
programming style ensures that the two are reasonably similar in appearance.
Fig. 18 depicts an example, namely the inner structure of the class that imple-
ments the construct input.map(op) for element type type int. Note how the
compiler uses andThen, the sequential combinator of a pair of code generators,
to realize implicit data flow via the JVM operand stack: the former produces
(pushes) a value, and the latter consumes (pops) it. The code generator prim-
itive storeOutput replaces the interprocedural return of the interpreter by a
local assignment, in order to behave ideally in an inlining context.



final IntSignalSource input;
final CompilableIntUnaryOperator op;

@Override public int getAsInt() {
return op.applyAsInt(input.getAsInt());
}

@Override public Consumer<CompilationContext> compileGetAsInt() {
return storeQutput(input.compileGetAsInt()
.andThen(op.compileApplyAsInt()));

Fig. 18. Compilation of S1G-ADLIB construct input.map(op) (Excerpt)

5 Case Study: Zero-Crossing Detection

As an example of a realistic problem of nontrivial but manageable algorithmic
complexity, we investigate zero-crossing detection. The idealized continuous ver-
sion of this problem is deceptively simple: Given a real-valued time-dependent
signal x : R = R, detect the points ¢; in time where some e > 0 exists such that

(sgnz(to—0))(sgna(ty +6)) = -1 forall 0<§<e .

For actual synchronous data-flow implementations, things become more dif-
ficult because of four key differences:

1. Signals are discretized in time by sampling. Zero-crossing detection must
work by comparing the signs of successive sampled values, but regardless
whether the actual zero value happens precisely at a sampling point, or in
between two adjacent ones.

2. Signals can have zero intervals. For many analytic functions, zeroes occur
as isolated points. By contrast, arbitrary signals are prone to retaining zero
values for arbitrarily long periods. (E.g., consider the output of a sensor that
has been switched off to reduce energy consumption.) Zero-crossing detection
must not raise false alarms during these periods.

3. Floating-point numbers come with additional semantics that extend the reals.
Zero-crossing detection must work robustly in the presence of signed infinities
and, notoriously, missing values (not-a-number, NaN).

4. Signals do not continue an infinite past, but start at some particular point
in time. Zero-crossing detection must work right away, with arbitrary initial
values.

5.1 Algorithm Design

The most elegant formulation, at least to our knowledge, of an algorithm that
decisively settles all of these issues is depicted in Fig.19. The leftmost column
of operations classifies the input signal x into three cases, namely
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Fig. 19. Data-Flow Network for Zero-Crossing Detector

— positive numbers including infinity (p),
— negative numbers including infinity (n),

— signless numbers, i.e. positive and negative zero (sic!) and NaN (0).®

The signals p/n encode the observation that the input signal x is currently
definitely in the positive/negative half-space, respectively.

To prevent jitter in case of signless values, in the second column each is fed
into a sample-and-hold (S&H) component, to the effect that the previous hy-
pothesis value is retained if the current input is signless. Thus the signals P/N
encode the observation that the input signal x has last been in the positive/neg-
ative half-space respectively.

The third column of operations detect rising flanks ([) in the preceding sig-
nals, i.e., u/d encode the observation that the input signal has newly moved into
the positive/negative half-space, respectively, in the current sampling interval,
thereby having crossed zero. Assuming that the direction of crossing is irrelevant,
both can be or-ed together, resulting in the output signal c.

By initializing all stateful components, namely the sample-and-hold and
rising-flank components highlighted with white background, with true for the
virtual preceding values, the danger of false positives is averted for signals that
start with an indefinitely long sequence of signless values.

The straightforward S1G-ADLIB implementation, together with those of its
subcomponents, is depicted in Fig.20. Note how the different aspects can be
segregated into easily discernible clusters in the code; we have found this likely
to hold for any well-designed algorithm.

® The test for this final condition can of course be replaced by a NOR of the preceding
two, but apparent improvement in empirical performance is insignificant.



public BooleanClockedSignalSource zeroCrossing() {
final FloatClockedSignalSource copy = this.stored();
final BooleanClockedSignalSource
neut = copy.guard(zero.or(notANumber)).stored(),
pos = copy.guard(positive).sampleAndHold(neut, true),
neg = copy.guard(negative).sampleAndHold(neut, true),

up = pos.rising(true),
down = neg.rising(true);
return up.or(down).stored(). (copy, neut, pos, neg, up, down);

}

public BooleanClockedSignalSource sampleAndHold(BooleanSignalSource hold,
boolean initValue) {
return delayedFeedback(initValue, prev -> hold.choose(prev, this));

}

public BooleanClockedSignalSource rising(boolean initialValue) {
final BooleanClockedSignalSource prev = delayed(initialValue);
return zipWith((now, before) -> now & !before, prev)
.stored(). (prev);

Fig. 20. S1G-ADLIB Implementation of Zero-Crossing Detector

5.2 Evaluation

The Sic-ADLIB POG as implemented above has been evaluated empirically by
a number-crunching benchmark. In this setup, the input stream consists of
K = 10° iterations over a pre-computed array of M = 10° values generated
by an autoregressive random process, such that zero crossings are abundant but
occur irregularly. All measurements have been carried out on a dual Core i5-
10210U CPU at 1.6 GHz with 8 GiB of RAM, running Ubuntu 20.04LTS and
the OpenJDK 11.0.10 64-bit Server VM. Computation times have been mea-
sured as whole-loop wallclock times with System.nanoTime precision. Every run
has been immediately preceded by an identical dry run to allow for jit compiler
warmup.

The Java test harness for interpreted/compiled execution of the same POG
differs only dynamically, precisely by the occurrence of a call to the factory
method FloatClockedSignalSource.compile(). Compilation itself runs in few
milliseconds, including bytecode generation, loading, verification and instantia-
tion, and requires no external resources besides the LLJAVA-LIVE library. [21]

On average, the interpreted and compiled variant have been measured to
take 197.1ns and 4.2ns per element, respectively. This translates to a speedup
of 47, which indicates that significant abstraction barriers have been removed by
compilation. For comparison, a simple baseline experiment with a hand-written
monolithic C function, statically compiled with gcc 9.3.0 with options -03 -fno-



0x7935d141: vmovss 0x10(%rll,%r9,4) ,%xmm2 ; load x from array

’

0x7935d17a: vxorps %xmml, %sxmml, Ssxmml

0x7935d17e: vucomiss %xmm2,%xmml ; X =07

0x7935d182: jp 0x7935d18a

0x7935d184: je 0x7935d211 ; goto side path (0)
0x7935d18a: vucomiss %xmm2,%xmm2 ; X NaN?

0x7935d18e: jp 0x7935d249 ; goto side path (NaN)
0x7935d194: jne 0x7935d249 ; goto side path (NaN)
0x7935d19a: movzbl 0x13(%rsi),%rlld ; load P.prev
0x7935d19f: movzbl 0x12(%rsi),%rlod ; load N.prev
0x7935d1lad4: xor $0x1,%rlld ; IP.prev
0x7935d1a8: xor $0x1,%rlod ; IN.prev
0x7935dlac: xor %rod, %sroad

0x7935dlaf: mov $0x1,%ecx

0x7935d1b4: vucomiss %xmm2,%xmml ;X > 0?

0x7935d1b8: mov $0x1, %ebx

0x7935d1lbd: cmovbe %rod, sebx ; p=(x>0)
0x7935d1cl: mov %b1l,0x11(%rsi) ; Store p
0x7935d1c4: mov %b1,0x13(%rsi) ; store P
0x7935d1c7: vucomiss Oxffffffll(%srip),%xmm2 ;X <07

0x7935d1cf: cmovbe %rod, secx ;n=(x<20)
0x7935d1d3: mov %cl,0x10(%rsi) ; store n
0x7935d1d6: mov %cl,0x12(%rsi) ; store N
0x7935d1d9: and %ebx,%rlld ; u=P& !P.prev
0x7935d1dc: and %ecx,%rlod ; d=N& IN.prev
0x7935d1df: or %rlld,%r10d ; c=u | d
0x7935d1le2: and $0x1,%rloed

0x7935d1e6: mov %rlol,0x14 (%rsi) ; store c

’

; (side paths)

Fig. 21. Disassembly of JIT-Compiled Zero-Crossing Detector

inline” on the same machine has yielded 4.2 ns as well; the apparent difference
is less than the precision of measurement. This finding can be confirmed by dis-
assembly of the resulting jit-compiled machine code. Fig. 21 depicts the relevant
excerpt for the hottest path. It can be clearly seen that each SiG-ApLIB PO
translates into a small number of instructions, selected from the most adequate
extension layer supported by the host CPU, in this case MMX registers and the
AVX instruction set.

9 Inlining into the main loop must be prevented to preserve the IoC architecture;
otherwise benefits from loop unrolling enter the picture.




6 Conclusion

We have demonstrated how data stream processing can be implemented as an
EDSL in Java, or for that matter in any mainstream managed language. The S1G-
ADLIB approach relies on an extensible framework of PO classes and POG con-
structs. Every node type is equipped at least with decentral self-interpretation,
and optionally with a bytecode generator. Programs are constructed by meta-
programming in the host language, and executed by a straightforward IoC API
with neglectible overhead.

In contrast to purely declarative language designs, SIG-ADLIB makes the
control flow aspects of programs, namely the causal firing order of POs, visible
to the client. While this is perfectly acceptable for use in a compiler backend,
it places some unwelcome burden on the human programmer. Since it is well-
known that causality is a non-local property [5], a fully automatic solution that
is also compatible with the compositional and extensible nature of the language
is not easily conceivable. We foresee the possibility of automation by reflection
on the completed POG structure, assuming cooperation of all POs, but leave
the topic for future research.

The transparent support for compilation for S1G-ADLIB POGs promises the
best of both worlds: Interpreted programs, which can be constructed dynamically
(and debugged with vanilla host language IDEs) for rapid prototyping on the
one hand, and their compiled counterparts with full participation in JVM code
acceleration techniques and competitive real-world performance on the other,
just a method call apart. Future experience with realistic projects will tell if
there are also substantial downsides, but so far the results are consistent with
optimism.
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Appendix

final float[] data = new float[N];
// prepare data ...
final FloatClockedSignalSource input = cycle(data);
BooleanClockedSignalSource cross = input.zeroCrossing(). (input);
if (COMPILE)

cross = cross.compile();
final ConstantRealtimeContext rc = rate(1l);

// warm-up

cross.init();

for (int 1 = 0; i < K * N; i++) {
cross.step(rc);
cross.getAsBoolean();

// race

cross.init();

final long tstart = System.nanoTime();

for (int i = 0; i < K * N; i++) {
cross.step(rc);
cross.getAsBoolean();

}

final long tend = System.nanoTime();

Fig. 22. Zero-crossing detection — SIG-ADLIB benchmark harness



#include <stdbool.h>

#define K 1000
#define M 1000000

static float data[M];

static int i;

static bool P, N, Pprev, Nprev;
static volatile bool cross;

void zero cross init()
{

P = true;

N = true;

Pprev = true;

Nprev = true;

}

void zero cross step()

{
float x = data[il;
i=(i+1) %M
bool p = x > 0;
bool n = x < 0;
bool 0 = (x == 0) | (x != x);
P=07?7P: p;
N=o0o?N:n;
bool up = P & !Pprev;
bool down = N & !Nprev;

Pprev = P;
Nprev = N;
cross = up | down;
}
int main()
{
zero _cross_init();
i=0;

for (int t = 0; t < K; t++)
for (int j = 0; j < M; j++)
zero _cross_step();

Fig. 23. Zero-crossing detection — C99 baseline implementation
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Abstract. Algebraic effects and handlers are a powerful and convenient
abstraction for user-defined effects. In this paper, we present three re-
sults from our ongoing work on enhancing the understanding of effect
handlers via control operators. Specifically, we establish two program
transformations and a type system for effect handlers, all by reusing the
existing results about control operators and their relationship to effect
handlers.
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- Macro translation - CPS translation - Type systems.

1 Introduction

Algebraic effects [33] and handlers [34] have become an essential element of a
programmer’s toolbox. Effect handlers provide a convenient interface for defining
and composing effects. They also enable concise implementation of sophisticated
behavior by giving the programmer access to continuations.

Over the past decade, researchers have been actively studying the theory
of effect handlers. As an outcome of these studies, we have obtained various
program transformations for effect handlers, which can be used to compile effect
handlers into plain A-terms [T6J36I38]. There are also a variety of type systems
for effect handlers, in which effects are represented as sets [2], rows [I3], or
capabilities [7].

We continue the study of effect handlers, but from a different point of view.
Instead of directly developing the theory of effect handlers, we derive it from
the theory of delimited control operators [QIT7I27T0]. Control operators have a
longer history than effect handlers, and their theory is closely connected to that
of effect handlers [I2I31]. We aim to enhance the understanding of effect handlers
by using the existing results about control operators, as well as the connection
between effect handlers and control operators.

In this paper, we discuss a variant of control operators known as shiftO and
dollar [28], and a variant of effect handlers that are called deep handlers [I§].
Our goal is to answer the following research questions.
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— The dollar operator extends the more traditional resetO operator with a
return clause, and this extension is known to cause no change in the expres-
siveness [28]. Does this result apply to deep effect handlers as well?

— The shift0 and dollar operators are associated with a CPS translation that
can be viewed as a definitional interpreter. What CPS translation can we
derive for deep effect handlers from the CPS translation for shiftO and
dollar?

— The typing of shift0 and dollar is directed by their CPS translation [SIT7I27],
rather than their direct-style form. What type system can we derive for deep
effect handlers using the CPS approach?

We begin by defining a calculus of shift0/dollar (Section and another
calculus of deep effect handlers (Section . We next answer the three questions
one by one (Sections {4| to @ We then discuss related work (Section @ and
conclude with future perspectives (Section .

2  Ag,: A Calculus of Shift0 and Dollar

As a calculus of control operators, we consider a minor variation of Forster et
al.’s calculus of shift0 and dollar [12], which we call Ag,. In Figure[l] we present
the syntax and reduction rules of Ag,. The calculus differs from that of Forster
et al. in that it is formalized as a fine-grain call-by-value calculus [24] instead
of call-by-push-value [23]. This means (i) functions are classified as values; and
(ii) computations must be explicitly sequenced using the let expression. The
fine-grain syntax simplifies the CPS translation and type system developed in
later sections.

Among the control constructs, Sok. M (pronounced “shift”) captures a con-
tinuation surrounding itself. The other construct (M | z.N) (pronounced “dol-
lar”) computes the main computation M in a delimited context that ends with
the continuation NEL

There are two reduction rules for the control constructs. If the main com-
putation of dollar evaluates to a value V| the whole expression evaluates to the
ending continuation N with V' bound to z (rule (8s,)). If the main computa-
tion evaluates to F[Spk. M|, where F is a pure evaluation context that has no
dollar surrounding a hole, the whole expression evaluates to M with k being
the captured continuation Ay. (F[return y| | z.N) (rule (Bs)). Notice that the
continuation includes the dollar construct that was originally surrounding the
shift0 operator. This design is shared with the shift operator of Danvy and
Filinski [9]. Notice next that the body of shift0 is evaluated without being
surrounded by the original dollar. This differentiates shiftO from shift, and
allows shiftO to capture a meta-contert, i.e., a context that resides outside of
the lexically closest dollar.

3 The original dollar operator proposed by Materzok and Biernacki [28] takes the form
N $ M, where M is the main computation and N is an arbitrary expression repre-
senting an ending continuation. We are in essence restricting N to be an abstraction
Az. N.
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Syntax

V.We=za|Xe. M Values
M,N :=returnV |V V |let 2 =M in M | Sok. M | (M | z.M) Computations

Pure Evaluation Contexts

F:=[|letz=Fin M

Reduction
Ax. M) V ~ M[V/x] (Bv)
let z =return V in M ~ M[V/x] (C)
(return V | 2. M) ~ M[V/x] (Bs)
(F[Sok. M] | x.N) ~ M[\y. (F[return y] | z.N) /K] (Bso)

Fig. 1. Syntax and Reduction Rules of Ag,

3 An: A Calculus of Effect Handlers

As a calculus of effect handlers, we consider a restricted variant of Hillerstrom et
al.’s calculus of deep handlers [16], which we call A,. In Figure [2| we present the
syntax and reduction rules of Aj. The calculus differs from Hillerstrom et al.’s in
that it features unlabeled operations. This means handlers in A;, can only handle
a single operation. The restriction helps us concentrate on the connection to the
As, calculus.

Among the effect constructs, do V performs an operation with argument
V. The other construct handle M with {z.M,; =, k. M} computes the main
computation M in a delimited context, and handles the result of M using the
return clause M, and the operation clause Mj,.

There are again two reduction rules for the effect constructs. If the main
computation of a handler evaluates to a value V', the whole expression evaluates
to the return clause N with V' bound to z (rule (8,)). If the main computation
evaluates to F[do V], where F is a pure evaluation context that has no handler
surrounding a hole, the whole expression evaluates to the operation clause My,
with 2 being V and k being the captured continuation (often called “resumption”
in the effect handlers literature) \y.handle F[return y| with {z. M,; x, k. My}
(rule (B40)). Notice that the continuation includes the handler that was originally
surrounding the operation. This design is shared with shift0, and characterizes
handlers in A, as deep ones [I8]. Notice next that the operation clause is evalu-
ated without being surrounded by the original handler. This is another similarity
to shift0, and allows handlers to capture a metacontext.



4 Y. Cong
Syntax

VW e=za| . M Values
M,N :=returnV |V V |let z =M in M Computations
| do V' | handle M with {z.M; z,k. M}

Pure Evaluation Contexts

F:=[|letz=Fin M

Reduction

Ax. M) V ~> M[V/x]
let z = return V in M ~» M[V/x]
handle return V with {z. M,; z, k. M} ~ M, [V/x]
handle F[do V] with {z. M,; z, k. Mp} ~ My[V/z, f/k]
where f = A\y.handle F[return y|
with {z. M,; x, k. My}

Fig. 2. Syntax and Reduction Rules of Ap,

4 Adding and Removing the Return Clause

The dollar construct (M | z.N) in Ag, is a generalization of the “reset” construct
(M), which is more commonly found in the continuations literature. The reset
construct does not have an ending continuation; it simply evaluates the body
M in an empty context. As shown by Materzok and Biernacki [26], the dollar
and reset constructs can macro-express [I1] each other. That is, there is a pair
of local translations, called macro translations, that add and remove the ending
continuation while preserving the meaning of the program.

It is easy to see that the return clause of an effect handler plays a similar role
to the ending continuation of dollar. Thus, we can naturally consider a variant
of effect handlers without the return clause. Such handlers are not uncommon
in formalizations [36/38/40] as they simplify the reduction and typing rules. Now
the reader might wonder: Does the existence of the return clause affects the
expressiveness of an effect handler calculus?

In this section, we define macro translations between handlers with and with-
out the return clause. We show that, to remove the return clause, we need
to equip the target language with facilities for distinguishing between different
kinds of operations. In what follows, we review the macro translations between
dollar and reset (Section 7 then adapt the translations to effect handlers
(Section , and lastly prove the correctness of the translations (Section .
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4.1 Translating Between Dollar and Reset0

Materzok and Biernacki [28] define the macro translations [_],, between dollar
and reset0 as followd1

From dollar to reset
(M| 2.N)]m = (Let y = [M]m in Soz. (Ax. [N]m) )

From reset to dollar

(M) = ([M]m | x.return z)

The translation from reset to dollar is straightforward: it simply adds a trivial
ending continuation. The translation from dollar to reset is more involved: it
wraps the computation [M],, around a reset, and inserts a shift0 to remove the
surrounding reset. The removal of reset is necessary for preservation of meaning
(the return clause should not be evaluated under the original handler), and is
realized by discarding the captured continuation z.

Note that the translation of other constructs is defined homomorphically. For
instance, we have [Az. M., = Az. [M],.

4.2 Translating Between Handlers with and without Return Clause

Guided by the translations between dollar and reset, we define macro translations
between handlers with and without the return clause. We can easily imagine
that adding the return clause is simple. To remove the return clause, we must
somehow implement the removal of a handler. In a calculus of effect handlers,
any non-local control is triggered by an operation call. This means we need
to make an operation call when we wish to remove a handler. Unlike shiftO,
however, an operation call does not have an interpretation on its own. This
means we need to implement the removing behavior in the surrounding handler,
while distinguishing the “return operation” from regular operations.

In Figure 3] we define a calculus of effect handlers without the return clause,
which we call A, . The calculus has labels [ and pairs ([, V'), allowing us to repre-
sent the return and regular operations as do (ret, V') and do (op, V'), respectively.
The calculus also has pattern matching constructs, with which we can interpret
the two kinds of operations differently in a handler. Note that these facilities
are introduced only for the translation purpose. That is, we assume that the
user can only program with unlabeled operations; they do not have access to the
shaded constructs in Figure

We now define the macro translations between A; and )\g

4 The macro translation is originally defined as:
(M. (Az. Soz. k z) [M]m)) [N]m

We adapted the translation by sequencing the application, and by incorporating the
fact that N is always a A-abstraction.

® Note that these translations are not designed for a typed setting. Specifically, the
translation of regular handlers yields a single pattern variable x representing the
arguments of the ret and op operations, which may be of different types.
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Syntax
V,We=z|Xe. M| (I,V) Values
M,N:=returnV |V V |letz =M in M |do V Computations

| case, V of {(l,z) = M} | case; | of {ret — M;op — M}
| handle M with {z,k. M}

l:= op | ret Labels
Reduction
(Az. M) V ~ M[V/z)] (Bv)
let x = return V in M ~ M[V/z] (Cv)
case, (I, V) of {(I',x) — M,} ~ M,[lJl',V/x] (tp)
case; ret of {ret — M,;op — My} ~~ M, (tret)
case; op of {ret — M,;op — My} ~ M, (top)
handle return V with {z, k. M)} ~» return V (Bn)
handle F[do V| with {z, k. Mp} ~ M[V/z, f/k] (Bao)

where f = Ay.handle Fy] with {x, k. My}

Fig. 3. A, : A Calculus of Effect Handlers without the Return Clause

From )\, to A\,

[do V] = do {op, [V]m)
[handle M with {x. M,; x,k. My}]m, = handle (let y = [M],, in do (ret,y)) with
{p,k — case, p of (l,z) —
{case; | of {ret — [M,]m;op — [Mn]m}}}

From user fragment of )\, to ),

[do V]m =do [V]m
[handle M with {x, k. My}]m = handle [M],, with {z.return z; x, k. [Mp]m}
The first translation attaches a label op to regular operations and simulates the

return clause by performing a ret operation, which removes the surrounding
handler by discarding the continuation k. The second translation is fairly easy.

4.3 Correctness

The macro translations defined above preserve the meaning of programs. We
state this property as the following theorem.
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Theorem 1 (Correctness of Macro Translations). Let = be the least con-
gruence relation that includes the reduction ~ in A\, and A, .

1. If M = N in X\, then [M],, = [N]m in X, .
2. If M = N in the user fragment of A, (i.e., the fragment consisting of non-
shaded constructs), then [M]ym = [N]m in Ap.

Proof. By cases on the reduction relation M ~» N. We provide the proof of
interesting cases in Appendix @

5 Deriving a CPS Translation

The classical way of specifying the semantics of control operators is to give a
translation into continuation-passing style (CPS) [32], which converts control
operators into plain lambda terms. In the case of shift0 and dollar (or reset),
there exist several variants of CPS translation, differing in the representation of
continuations [BIIOB7I27I28].

Compared to control operators, the semantics of effect handlers seems to be
less tightly tied to the CPS translation. In fact, the CPS translation of effect
handlers has not been formally studied until recently [T6/I5]. This gives rise to
a question: What would we obtain if we derive the CPS translation of effect
handlers from that of control operators, which is considered definitional?

In this section, we derive the CPS translation of effect handlers by composing
the following translations.

1. The macro translation from effect handlers to shift0/dollar [12]
2. The CPS translation of shift0/dollar [28]

We show that, by not introducing “administrative” constructs in the macro
translation, we obtain the same CPS translation as the unoptimizedﬁ translation
given by Hillerstrom et al. [16]. In what follows, we review the existing CPS
translations of shift0/dollar and effect handlers (Sections and , as well
as the macr