
Alternative Methods for Retaining Explicit and
Finding Implicit Sharing in Embedded DSLs

Curtis D’Alves, Lucas Dutton, Steven Gonder, and Christopher Kumar Anand

McMaster University, 1280 Main St W Hamilton, Canada

Abstract. Detection of sharing is a known challenge for implementers of
embedded domain specific languages (DSLs). There are many solutions,
each with their advantages and drawbacks. Many solutions are based
on observable sharing, that requires either a monadic interface or use
of unsafe referencing, e.g., Data.Reify. Monadic interfaces are considered
unsuitable for domain experts, and the use of unsafe referencing leads to
fragile software.
Kiselyov’s methods for implicit and explicit sharing detection for finally
tagless style DSLs is an elegant solution without having to resort un-
safe observable sharing. However these methods are not applicable to all
types of DSLs (including those generating hypergraphs). We will present
alternative methods which handle these cases. The main difference comes
from the use of a trie to perform hashconsing. Our method for implicit
sharing essentially trades worst-case exponential growth in computation
for increased memory footprint. To mitigate this issue, our method for
explicit sharing reduces the memory footprint.

Keywords: DSL · sharing · common-subexpression elimination · Haskell.

1 Introduction

Kiselyov [5] presents a method for implementing eDSLs in finally tagless form
that generate a directed acyclic graph (DAG) with sharing. However, as we will
explain in sections 2.3 and 2.4, for DSL functions that return multiple outputs
(e.g., tuples, lists, etc.), Kiselyov’s method of detecting sharing may require
computation exponential in the size of the program, and his method of explicitly
declaring sharing is inapplicable.

In the toy example

class Exp repr where
variable :: String -> repr Int
constant :: String -> repr Int
add :: repr Int -> repr Int -> repr Int
novel :: (repr Int,repr Int) -> (repr Int,repr Int)

the function novel exhibits this problem. In our work, this translated into the
inability to process large library functions.



2 C. D’Alves et al.

In this paper, we review Kiselyov’s methods, identifying the core issue, and
present methods for implementing embedded DSLs with sharing that avoid un-
safe referencing (i.e., unsafePerformIO) [4], maintain all the benefits of be-
ing embedded in the Haskell ecosystem and are computationally feasible. This
means DSL functions are pure, type-safe and can return Haskell container types
(i.e., tuples, lists, etc.) without breaking sharing. All code will be hosted at
https://github.com/dalvescb/AltSharingInEDSL_Paper

2 Background: Detecting Sharing

Consider the naive DSL implemented as a Haskell data type:

data Exp
= Add Exp Exp
| Variable String
| Constant Int

Expressions generate Abstract Syntax Trees (ASTs), but consider this example,

v0 = Variable "v0"
exp0 = Add v0 (Constant 0)
exp1 = Add exp0 exp0

in which the expression exp0 is shared, and will therefore be stored once in
memory. For large expressions with lots of sharing, this can make a substantial
difference.

One of the first things the developer will do is write a pretty printer. That
recursive function will traverse the data structure as a tree, and pretty print
exp0 twice. This inefficiency is a real problem for code generation, and naive
traversal of the AST does the opposite of the common-subexpression elimination
performed by a good optimizing compiler. To avoid this, rather than representing
the code as an AST, we should use a DAG, retaining all of the sharing in the
original DSL code.

One way of maintaining sharing is by observable sharing (see Section 3 in
[5]). In Haskell, this requires a monadic interface. Monads are useful, but don’t
match the expectations of domain experts [6].

2.1 Finally Tagless DSLs

It would be nice to make use of monadic state when we need it (i.e., for convert-
ing to a DAG) while hiding it behind a nice pure interface. The finally tagless
approach [1] is popular for accomplishing this. In this approach, DSL expres-
sions are built using type-class methods that wrap the DSL in a parameterized
representation. For example, the previous data-type-based DSL could be written
in finally tagless style as

https://github.com/dalvescb/AltSharingInEDSL_Paper


Alternative Explicit and Implicit Sharing 3

class Exp repr where
add :: repr Int -> repr Int -> repr Int
variable :: String -> repr Int
constant :: Int -> repr Int

We can then create different instances to implement different functionality.
For example, we can implement a pretty printer for our AST as

newtype Pretty a = Pretty { unPretty :: String }

instance Exp Pretty where
add x y = Pretty $ "("++unPretty x++") + ("++unPretty y++")"
variable x = Pretty x
constant x = Pretty $ show x

Finally tagless style provides extensible, user friendly DSLs.

2.2 Implicit Sharing via Hash-Consing

Kiselyov’s method for detecting implicit sharing in finally tagless style uses hash-
consing [5]. Hash-consing is based on a bijection of nodes and a set of identifiers,
e.g., with interface

data BiMap a -- abstract
lookup_key :: Ord a => a -> BiMap a -> Maybe Int
lookup_val :: Int -> BiMap a -> a
insert :: Ord a => a -> BiMap a -> (Int,BiMap a)
empty :: BiMap a

An efficient implementation using hashing and linear probing is given by Thai
in his Master’s thesis [7].

Nodes need to be uniquely identifiable, and shouldn’t be a recursive data
type, such as

type NodeID = Int
data Node = NAdd NodeID NodeID

| NVariable String
| NConstant Int

The representation for the finally tagless instance is then a wrapper around a
state monad that holds the DAG being constructed in its state and returns the
current (top) NodeID:

newtype DAG = DAG (BiMap Node) deriving Show

newtype Graph a = Graph { unGraph :: State DAG NodeID }

instance Exp Graph where



4 C. D’Alves et al.

constant x = Graph (hashcons $ NConstant x)
variable x = Graph (hashcons $ NVariable x)
add e1 e2 = Graph (do

h1 <- unGraph e1
h2 <- unGraph e2
hashcons $ NAdd h1 h2)

The trick to uncovering sharing is in the hashcons function, which inserts a new
node into the current DAG, but not before checking if it is already there.

hashcons :: Node -> State DAG NodeID
hashcons e = do

DAG m <- get
case lookup_key e m of

Nothing -> let (k,m') = insert e m
in put (DAG m') >> return k

Just k -> return k

The technique is essentially that of hash-consing, popularized by its use in LISP
compilers, but discovered by Ershov in 1958 [2]. Other works have explored the
use of type-safe hash-consing in embedded DSLs, see [3].

2.3 Limitations of Hash-Consing

When we wrap our state monad in finally tagless style, we lose some expected
sharing. In the following code, the use of the let causes the computation x + y
to only occur once

haskellSharing x y=
let

z = x + y
in z + z

Implicit sharing via hash-consing prevents duplication in the resulting DAG,
but unfortunately doesn’t prevent redundant computation. Consider the follow-
ing equivalent attempt at using Haskell’s built-in sharing in the finally tagless
DSL

dslSharing :: Exp Graph -> Exp Graph -> Exp Graph
dslSharing x y =

let
z = add x y

in add z z

Knowing that z is a wrapper around a state monad, and recalling the imple-
mentation of add via hash-consing above, the values h1 and h2 are separately
evaluated through the state monad, even if e1 and e2 are the same shared Haskell



Alternative Explicit and Implicit Sharing 5

value. Hash-consing will prevent these redundancies from appearing in the re-
sulting DAG, but in the process of discovering the sharing, the entire unshared
AST will still be traversed.

Consider a chain of adds with sharing, for example

addChains :: Exp repr => Expr Int -> Expr Int
addChains x0 =

let
x1 = add x0 x0
x2 = add x1 x1
...

in xn

Fig. 1. Number of calls to hashcons plotted against the number of add operations
performed. Hashcons is performed without explicit sharing and is clearly exponential,
Triecons (without explicit sharing) and HashCons Explicit (with explicit sharing) over-
lap and are both linear

As shown in Fig. 1, this code will perform approximately 2n+1 hashcons
operations, where n is the number of adds.

2.4 Explicit Sharing and Limitations

Kiselyov [5] recognized that the amount of computation with hash-consing “may
take a long time for large programs,” and proposed an ad-hoc solution, explicit
sharing via a custom let construct

class ExpLet repr where
let_ :: repr a -> (repr a -> repr b) -> repr b

instance ExpLet Graph where
let_ e f = Graph (do x <- unGraph e

unGraph $ f (Graph (return x)))



6 C. D’Alves et al.

which can be used to rewrite addChains as

addChains x =
let_ x (\x0 ->
let_ (add x0 x0) (\x1 ->
let_ (add x1 x1) (\x2 ->
...

)))

This makes the code a bit clunky and adds an extra burden on the DSL writer,
but it prevents unnecessary hash-consing in our example.

However the method does not work for DSL functions returning multiple
outputs via tuples or container types like lists. Recall the definition

novel :: (repr Int,repr Int) -> (repr Int,repr Int)

The problem is that DAG generation requires splitting the state monad in two:

instance Exp Graph where
...
novel e1 e2 = let

g1 = Graph (do h1 <- unGraph e1
h2 <- unGraph e2
hashcons $ Novel1 h1 h2)

g2 = Graph (do h1 <- unGraph e1
h2 <- unGraph e2
hashcons $ Novel2 h1 h2)

in (g1,g2)

Each output it returns will now have to be individually evaluated, so a chain of
DSL functions that output 2 or more values will suffer from the same exponential
explosion of hashcons operations, and trying to adapt the let construct above,
just creates another function with the same problem (multiple outputs).

One solution to this issue is to integrate container types such as tuples and
lists into the DSL language. However doing this eliminates the advantage of
having an embedded language. Manipulating tuple values will be cumbersome,
constantly requiring calls to custom implementations of fst, snd etc. And for
lists you’ll lose access to built-in Haskell list functionality.

3 Implicit Sharing Via Byte String ASTs

The heart of our problem is that whenever we need to sequence the state of the
inputs for one of our DSL functions we want to first check if it’s already been
evaluated. But how do we do that without first evaluating it to gain access to its
unique identifier? We need some way to uniquely identify it outside the monad.

Our proposed solution is to build a serialized AST using byte strings for each
node along with our DAG. The byte string stays outside the monad, while the
DAG remains inside. We can do this efficiently by replacing the BiMap with a
trie. In our toy example, we use the package bytestring-trie.



Alternative Explicit and Implicit Sharing 7

data Graph a = Graph { unGraph :: State DAG NodeID
, stringAST :: ByteString }

data DAG = DAG { unTrie :: Trie (Node,NodeID)
, maxID :: NodeID
} deriving Show

This looks a bit different because the BiMap was a bijective relation between
nodes and node ids, whereas the trie maps byte strings to pairs (node,node id).
To get the DAG expressed as a relation, project out the values of the trie.

To prevent confusion, we name the hash-consing function in our method
triecons:

triecons :: ByteString -> Node -> State DAG NodeID
triecons sAST node = do

DAG trie maxID <- get
case Trie.lookup sAST trie of

Nothing -> let maxID' = maxID+1
trie' = Trie.insert sAST (node,maxID') trie

in do put $ DAG trie' maxID'
return maxID'

Just (_,nodeID) -> return nodeID

We use it to implement the DAG-building instance of the DSL, which looks a lot
like the previous instance. The substantial differences are the buildStringAST
calls which you can think of as pretty printing, but optimized for the trie, and
the use of seqArgs (explained below):

instance Exp Graph where
constant x = let

node = NConstant x
sAST = buildStringAST node []
in Graph (triecons sAST $ NConstant x) sAST

variable x = let
node = NVariable x
sAST = buildStringAST node []
in Graph (triecons sAST $ NVariable x) sAST

add e1 e2 = let
sAST = buildStringAST "nadd" [e1,e2]
sT = do ns <- seqArgs [e1,e2]

case ns of
[n1,n2] -> triecons sAST $ NAdd n1 n2
_ -> error "black magic"

in Graph sT sAST

The magic is in seqArgs. We only evaluate the inner state sT of each argument
if we fail to find its corresponding serialized AST in the Trie.



8 C. D’Alves et al.

seqArgs :: [Graph a] -> State DAG [NodeID]
seqArgs inps =

let
seqArg (Graph sT sAST) =

do DAG trie _ <- get
case Trie.lookup sAST trie of

Nothing -> sT
Just (_,nodeID) -> return nodeID

in sequence $ map seqArg inps

This will prevent redundant hashconsing without the need for explicit shar-
ing, but at the expense of storing redundant byte strings.

3.1 Memory Limitations

The byte string AST being built will itself suffer from lack of sharing. We’re es-
sentially trading extra computation for extra memory. In our addChains example
from Section 2.3, our method now has exponential scaling in memory instead
of computation. This can be a good tradeoff, since memory is so plentiful in
modern hardware, but still presents an issue.

4 Explicit Sharing Of ByteString ASTs

We propose another solution to this issue, taking inspiration again from Kise-
lyov [5], by introducing an explicit construct for specifying sharing. This time,
the construct will substitute the current byte string for a more compact label.
For safety purposes, we need to keep track of a table of these labels and their
corresponding ASTs, to make sure we don’t use the same label for different ASTs.

data DAG = DAG { dagTrie :: Trie (Node,NodeID)
, dagSubMap :: Map ByteString ByteString
, dagMaxID :: Int
} deriving Show

data Graph a = Graph { unGraph :: State DAG NodeID
, unStringAST :: ByteString
, unSubT :: Maybe ByteString }

class Substitute repr where
subT :: ByteString -> repr a -> repr a

instance Substitute Graph where
subT s' (Graph g s _) = Graph g s' (Just s)

exampleSubT x y = let
z = subT "z" (add x y)
in add z z



Alternative Explicit and Implicit Sharing 9

The subT operation substitutes the current byte string AST with a new one,
and we define a new operation subTInsert to check if the label already exists
in the cache map before inserting it.

seqArgs :: [Graph a] -> State DAG [NodeID]
seqArgs inps =

let
seqArg (Graph sT sAST mSubt) =

do DAG trie _ _ <- get
let sAST' = case mSubt of

Just s -> s
Nothing -> sAST

case Trie.lookup sAST' trie of
Nothing -> sT -- error "missing ast"
Just (node,nodeID) ->

do subTInsert mSubt sAST (node,nodeID)
return nodeID

in sequence $ map seqArg inps

subTInsert :: Maybe ByteString -> ByteString
-> (Node, NodeID) -> State DAG ()

subTInsert Nothing _ _ = return ()
subTInsert (Just s) sAST nodeID =

do DAG trie subtMap _ <- get
case Map.lookup sAST subtMap of

Just sAST' -> if sAST == sAST'
then return ()
else error "tried to resubT"

Nothing -> let cMap' = Map.insert sAST s subtMap
trie' = Trie.insert sAST nodeID trie

in modify (\dag -> dag { dagTrie = trie'
, dagSubMap = cMap' })

We need to make sure we don’t attempt to insert the same substitution for two
different ASTs. Unfortunately, if there is a collision there’s no way to escape
the state monad to prevent or modify the substitution. In the toy example,
compilation crashes, but we could catch an exception instead. Either way it’s up
to the DSL writer to ensure they don’t reuse the same label.

5 BenchMarking

Even with explicit sharing via substitutions, our method contains a reasonable
amount of overhead in order to overcome the shortcomings of Kiselyov’s method.
The addChains example altered for explicit sharing with both methods presents
a worst case scenario in terms of overhead comparison. Kiselyov’s method is able



10 C. D’Alves et al.

Size 150 200 10000 50000
HashCons time 0.0 secs 0.0 secs 0.01 secs 0.03 secs
HashCons alloc 619,296 bytes 739,304 bytes 28,662,592 bytes 155,993,544 bytes
TrieCons time 0.0 secs 0.0 secs 0.03 secs 0.16 secs
TrieCons alloc 1,773,416 bytes 2,333,680 bytes 129,146,808 bytes 723,437,504 bytes

Table 1. Benchmarks of addChains example with full explicit sharing.

to fully utilize its’ explicit sharing and our method requires many substitution
lookups.

Table 1 gives a set of benchmarks comparing our method with Kiselyov’s,
both taking full advantage of explicit sharing. It’s clear Kiselyov’s method per-
forms better in this situation, however it should be noted our method is still
viable for solving very large DAG’s in reasonable amounts of time / memory.

6 Conclusion

We have presented a method for constructing finally tagless style DSLs with
sharing detection, that allows for DSLs specifying hypergraphs (e.g., functions
with multiple outputs). It also avoids the use of unsafe referencing as performed
when doing observable sharing, c.f. [4].

The method has its drawbacks in terms of memory usage, but these can be
mitigated by explicitly specifying sharing. This does present an extra burden on
the DSL writer to implement explicit sharing when necessary and ensure labels
are not reused. Future work may investigate the use of a preprocessor or plugin
to automate explicit sharing.

Acknowledgements We thank NSERC and IBM Canada Advanced Studies
for supporting this work.

References

1. Carette, J., Kiselyov, O., Shan, C.c.: Finally tagless, partially evaluated. In: Asian
Symposium on Programming Languages and Systems. pp. 222–238. Springer (2007)

2. Ershov, A.P.: On programming of arithmetic operations. Communications of the
ACM 1(8), 3–6 (1958)

3. Filliâtre, J.C., Conchon, S.: Type-safe modular hash-consing. In: Proceedings of the
2006 Workshop on ML. pp. 12–19 (2006)

4. Gill, A.: Type-safe observable sharing in haskell. In: Proceedings of the 2nd ACM
SIGPLAN symposium on Haskell. pp. 117–128 (2009)

5. Kiselyov, O.: Implementing explicit and finding implicit sharing in embedded dsls.
arXiv preprint arXiv:1109.0784 (2011)

6. O’Donnell, J.T.: Embedding a hardware description language in Template Haskell.
In: Domain-Specific Program Generation, pp. 143–164. Springer (2004)

7. Thai, N.: Type-Safe Modeling for Optimization. Master’s thesis (2021)


	Alternative Methods for Retaining Explicit and Finding Implicit Sharing in Embedded DSLs

