© ® N o o

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Applying a Query Language to Querying
Languages

Matteo Cimini[0000—0003—0162—9997]

University of Massachusetts Lowell, Lowell MA 01854, USA

Abstract. Language validation is an important part of programming
languages development. In prior work, we have developed LANG-SQL, a
SQL-style domain-specific language for interrogating language definitions
and retrieve information about their grammar, typing rules, reduction
rules, and the other components of the language.

However, it remains to be demonstrated whether LANG-SQL can express
interesting queries on various aspects of programming languages, and
whether it can be used to model a full language analysis method.

This paper puts LANG-SQL at work by illustrating a number of language
queries, and by developing a full checker for the de Simone rule format.
Along the way, we have extended LANG-SQL with operations that are
natural in the context of interrogating operational semantics.

Paper category: Research

1 Introduction

After designing a programming language (PL), the work of language designers is
not finished yet. Ideally, language designers would engage in an effort to establish
whether their language meets the expectations that were intended at the time
of design. This effort may range from extensive endeavors such as establishing
type safety or strong normalization to more lightweight sanity checks such as
determining what type of binders the language includes and whether reduction
is allowed to take place underneath binders. A quick way to interrogate language
definitions is desirable as it goes a long way to help debug language definitions.

In prior work, we have developed an approach based on storing languages as
databases and we have equipped it with LANG-SQL [L1], a SQL-style domain-
specific language (DSL) for interrogating language definitions and retrieving in-
formation about their grammar, typing rules, reduction rules, and the other
components of the language. LANG-SQL starts from the perspective that inter-
rogating language definitions should be akin to interrogating databases. One of
the problems with tools that automate language analysis/manipulation [2}{4}[12]
13/17|19}121,[24L126,27] is that they store languages as a data type of the PL of
their implementations, and their methods for retrieving information from lan-
guages usually encompass several lines of code that are within a large project.
Therefore, they are hard to locate, understand, maintain and share among differ-
ent projects. LANG-SQL, as SQL in the context of databases, can instead express

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

retrieval methods as queries that are separate from application code and that
are concise, declarative and mostly readable.
However, the work in [11] presents some limitations that we wish to address.

Lack of Examples. |11] shows three example queries (besides the project de-
scribed in the next paragraph): A query that counts the number of typing rules
for each constructor, a query that retrieves the elimination forms, and a query
that computes the canonical forms of the language in input. These are too few
examples and do not sufficiently demonstrate that the approach can be used to
query language definitions with some generality.

Our question: Can we use the LANG-SQL approach to interrogate language
definitions insofar various aspects of programming languages is concerned?

To provide some evidence of this, we have developed a number of LANG-SQL
queries, which overall touch on diverse aspects of PL such as binders, reduction,
state and evaluation contexts. We show the following queries:

(|11] only mentions the existence of the first two queries.)

A query that retrieves the state of a language,

— a query that retrieves which operators evaluate underneath a binder,

— a query that retrieves which syntactic categories are bound by types, and
a query that transforms evaluation contexts into reduction rules.

To write these queries naturally, we have extended LANG-SQL with new op-
erators that are natural to have available in the context of interrogating oper-
ational semantics. For example, we have added an operation to extract all the
variables of a term. Furthermore, we observe that many inference rules in oper-
ational semantics are defined so that they apply to any term that can be built
with a top-level constructor. For example, the typing rule for the if-operator
handles (if e; then ey else e3), that is, a top-level operator applied to distinct
metavariables. We here call such a term a skeleton of if, and we have added an
operation that can be called as GET-SKELETON(if, Expression) to obtain it. Sim-
ilarly, we observe that indexed metavariables such as ey, es, and ez above, and
primed metavariables such as ¢’ of a typical premise e — ¢’ of contextual rules,
are pervasive in operational semantics. We have therefore added the operations
ADD-INDEX and ADD-PRIME to add indices and prime symbols to metavariables.

We have tested the above-mentioned queries and confirm that we obtain
the expected outcome. Our tests are described in Section [6] The fact that we
have extended LANG-SQL does not invalidate the approach of [11]. The main
contribution of [11] is to demonstrate that a “language-as-databases” approach
is feasible and to show what it looks like. [11] does not attempt to include, in
one go, all possible operations that are interesting when querying languages.
It is reasonable to add operations as we put LANG-SQL into use when these
operations are deemed natural.

Failed Attempt at Modeling a Language Analysis Method. To demonstrate that
LANG-SQL can be used to build practical tools, [11] makes an attempt to rewrite

81

82

83

84

85

86

87

88

89

20

91

292

93

94

95

926

97

298

a language analysis tool called LANG-N-CHECK [12] as LANG-SQL queries. This
tool takes a language definition as input and checks that all is in order so that
type safety automatically holds. (LANG-N-CHECK only applies to a restricted
class of functional languages.) However, [11] fails to accomplish what the paper
is set to do. [11] reports that there are parts of LANG-N-CHECK that cannot be
modeled. This makes the LANG-SQL version of LANG-N-CHECK of limited use:
While LANG-N-CHECK has been proven to establish type safety [12], executing
its LANG-SQL version does not establish any property.

The related work section of [11] provides ideas on how LANG-SQL could be
applied to other language analysis methods but still speaks about applying the
approach incompletely. For example, [11] mentions that LANG-SQL could help
the VERITAS tool [15H17] in building the canonical form lemmas before feeding
them to an automated prover. It also mentions that LANG-SQL could help find
the reduction rules that apply to terms during the model checking process of
Roberson et al. [25]. (|11] offers other ideas, which we do not mention here.)

Overall, this cements the following doubt: Can LANG-SQL be used to model
a full language analysis method?

To answer this question, we focus on the de Simone’s rule format [14], which
says that if the inference rules of the language adhere to certain syntactic re-
strictions (which we review in Section , then bisimilarity is guaranteed to be
a congruence for the language at hand. We have used LANG-SQL queries to
formulate a (full) checker of the de Simone’s rule format. We have applied our
LANG-SQL rule format checker to several process algebras and have validated
them against the format. Furthermore, our implementation only amounts to 23
lines of LANG-SQL code.

In summary, this paper makes the following contributions.

— We extend LANG-SQL with new operations that are natural in the context
of interrogating operational semantics (Section .

— We demonstrate LANG-SQL with a number of queries that touch diverse as-
pects of programming languages, whereas prior work [11] does not sufficiently
demonstrate the approach (Section [4)).

— We formulate a full checker for the de Simone’s format as LANG-SQL queries
(Section . This demonstrates that LANG-SQL can be used to model a full
language analysis, whereas prior work justified doubts about achieving that.

The next section reviews how LANG-SQL stores languages as databases.

2 Languages Definitions in LANG-SQL

This section reviews the representation of language definitions of [11]. LANG-SQL
works with languages defined with operational semantics. Fig. [I] shows two lan-
guage definitions. The first is that of the strong A-calculus, where reduction can
take place under a A-binder. (Integers only serve as base type in Fig.) The
second is the language definition of a process algebra that we call pa, , which
is a subset of CCS [20]. In this process algebra, processes P perform labeled

Strong A-calculus
Type Tu=Int| T—-T
Expression e z=n|z|Az:Telee
Value v o=Xr:Te
EvalCtx E:=0|Ee|vE|Xx:T.E
TypeEnv =@ |lx:T

(T-ABS)
F,CCIT1|_ 62T2
'k Al‘:Tl.eZTl—)TQ

(T-INT) (T-VAR)
I'tn:Int e :Thrx:T

(T-APP)
I+ T = T I+ : T N
Qo 2 2ot Az : T.e) v — e[v/x] 6—6,
I+ 6162:T2 E[e}_)E[e}

Process Algebra with Choice (pa,)

Label [==a|b]...
Process P::=0|l.P|P+ P

PP P, - P

P1+P2*l>P1/ P1+P2L>P2,

Fig. 1. Language definition of the Strong A-calculus and pa

transitions of the form P — P’. We have the terminated process 0, the prefix
operator [.P, which performs a transition with label [and executes P, and the
choice operator P; + P», which non-deterministically executes a transition of Py
or P, and discards the other process.

A language has a grammar, and an inference rule system. cname denotes a
syntactic category such as Fxpression, and we use X for metavariables. pname
denotes a predicate name such as I, and rname denotes a name of an inference
rule. LANG-SQL stores both grammars and inference rule systems as tables in
the way that we review below. For the sake of a uniform notation, the terms that
are used in grammars, which we range over ¢, are in abstract syntax, that is,
they have a top-level constructor opname applied to a list of terms. The notation
(X).t is also used for unary binding [9], which denotes that X is bound in ¢. For
example, (e e) is stored as app e e, and Az : T'.e is stored as abs T (z)e.

LANG-SQL stores grammars with two tables: grammar-info, and grammar.
Table grammar-info records, for each category, its metavariable and its object
variable (like z in Az.e). Table grammar-info has three attributes: category, ..
contains a cname, meta-var contains an X, and obj-var contains an X. Most
categories do not have a corresponding object level variable, such as evaluation
contexts in most languages. We then use an unused variable in those cases.

Table grammar stores, for each category, its grammar productions. That is, for
a grammar rule Type T'::= Int | T — T, grammar stores Int and T'— T, and
associates them to Type. Table grammar has two attributes: category contains
a cname, and term contains a term ¢. Fig. [2] contains these tables for Fig.

LANG-SQL stores rules in the table rule. Each row of rule contains the name
of the rule, a formula, and whether the formula is a premise or the conclusion.
A formula has a predicate name, and a list of terms. Therefore, table rule
has four attributes: rulename contains a rname, predname contains a pname,
args contains a list of terms, and role contains either the constant PREM or the
constant CONCL. Fig. [3| shows rule for our examples.

LANG-SQL stores the signature of the predicates in the table declarationge;.
A row in this table has two attributes: relation contains the name of the
predicate (pname), and rel-args contains a list of category names (cname)
that determines the sort of the arguments. Our examples have tables:

declaration;e (Strong A-calculus)

relation rel-args
[[TypeEnv; Expression; Type]
— [Ezpression; Expression]

declarationse: (pa })

relation rel-args

— [Process; Label; Process|

grammar-info of Strong A-calculus

category, .. meta-var obj-var

Type T —
Ezxpression e T
Value v -

grammar-info of pa
category; s, meta-var obj-var

Process P —
Label l —

grammar of Strong A-calculus

category term
Type int
Type arrowT T
Ezxpression var T
Expression abs T (z)e

grammar of pa

category term
Process null
Process prefiz | P
Process choice P P

Fig. 2. grammar and grammar-info of Strong A-calculus (first rows) and pa

rule of Strong A-calculus

rulename predname args role
(T-APP) = [[;e1; Ty — To] PREM
(T-APP) = [I';e2; T1] PREM
(T-APP) - [I'; app e1 e2;T) CONCL
(BETA) — [app (abs T (z)e) v;e[v/x]] CONCL
rule of pa,
rulename predname args role
(PREFIX) — [prefizl P;l; P) CONCL
(CHOICE-LEFT) — [Pr;1; Pi] PREM
(CHOICE-LEFT) — [choice P1 Ps;l; PI] CONCL

Fig. 3. rule of Strong A-calculus (first rows) and pa__

158

3 The Lang-SQL Query Language

Fig. |4 presents the syntax of LANG-SQL from [11] and highlights the parts that
we add to it in this paper. The queries of LANG-SQL have a typical SELECT
statement, which behaves as that of ordinary SQL. Queries return a table such as
those that we have seen in the previous section. As
SQL, queries can also be combined by union, inter-
section and except (rows of the first queries that do numn
not appear in the second) operations. Additionally,
LANG-SQL can refer to the tables of Section [2| Also,
the name of a category is treated as a table with at- abs T (x)e
tribute term having a row for each of its productions. app e e

For example, Ezpression is the table on the right.

Expressions can be numbers, terms, attributes, names (of constructors, cate-
gories, predicates, and rules), CONCL, and PREM. LANG-SQL also includes lists and
two operations for retrieving the n-th element (NTH(l,n)) and the n-th element
from the end of the list (LAST(/,n)). GET-OPNAME((opname t; - - - t,)) returns op-
name. GET-ARGS((opnamety - - - t,)) returns the list [t1;- - ;¢,]. The expression
GET-BOUND-TERM((X).t) returns ¢. GET-BOUND-VAR((X).t) returns X. COUNT(),
as in standard SQL, is the number of rows returned by a query.

Formulae can use syntactic equality =. The formula X IS cname VAR is true
when X is a meta-variable of the category cname, e.g., es IS Expression VAR is
true. ¢ IS CONSTRUCTED is true when ¢ = (opname ty--- t,), for some top-
level constructor opname. t IS BOUND is true when t is of the form (X)¢.
t IS DERIVED BY cname checks that the term ¢ is derived by the grammar of
the category cname. Formulae can also be combined with OR, AND and NOT.

The operations in Fig. [4] that are highlighted are newly introduced in this
paper. GET-VARS(e) evaluates e into a term ¢ and returns a list with all the
variables in ¢. For example, GET-VARS(arrow Ty T3) returns the list [T;T3].
This operation is useful to know the variables that are used in some parts of
an inference rule. For example, we use GET-VARS in Section [5] to check that the
source and target of reduction premises use different variables, e.g., a premise

term

var x

P L5 Ptests that a process has a reduction that results to itself. Such a premise
is unusual in a rule, and also breaks the de Simone rule format (see Section .

GET-SKELETON(ep,e2) evaluates e; into an opname and evaluates e into
a category name cname. This operation returns what we here call the skele-
ton of opname according to the grammar of cname. Intuitively, the skeleton
of opname is the term that unifies with any (valid) term built with opname
as top-level constructor. It is (opname X;--- X,), where X;, ..., X, are
metavariables of the correct category at each position. These metavariables
are also indexed by their position within opname so that they are distinct
one another. For example, GET-SKELETON(arrow, Type) = (arrow Ty T»), and
GET-SKELETON(abs, Ezpression) = (abs Ty (x2)ez2). Skeletons are widespread in
operational semantics because inference rules are often defined by induction on
the form of expressions. For example, (T-APP) of Fig. [I] applies to (e7 e3), that
is, the skeleton of app, and (T-ABS) applies to Az : T} .e, which is essentially the

attr denotes an attribute name.
attr can be one of the attribute names of Section [2| or a new one introduced with AS.

Table tbl ::= grammar | grammar-info | rule | declaration,e: | declarationop
| ecname
Expression e :=mn|t| attr| opname | cname | pname | rname | CONCL | PREM

| [e;e--- ;e] | NTH(e, e) | LAST(e, €)
| GET-OPNAME(e) | GET-ARGS(e)
| GET-BOUND-TERM(e) | GET-BOUND-VAR(e) | COUNT()
| GET-VARS(e) | GET-SKELETON(e, €)
| ADD-PRIME(e) | ADD-PRIME-AT(e, €)
| ADD-INDEXyar (€, €) | ADD-INDEXpame (€, €)
| POSITION()
Formula f n=e=-¢e|eISeVAR|e IS CONSTRUCTED | e IS BOUND | ¢ IS DERIVED BY ¢
| e IS e SKELETON
| f AND f | f OR f | NOT f
Select Item e* ::= x| e AS (ROWS) attr
Query q = tbl
| SELECT e* (DISTINCT) FROM g
(WHERE f (GROUP BY attr (HAVING (ALL) f)))
| ¢ UNION g | ¢ INTERSECT q | g EXCEPT ¢

Fig. 4. Syntax of LANG-SQL. The notation - denotes finite sequences.

skeleton of A when indices are not needed for some variables. (Our GET-SKELETON
is algorithmically simple and does not try to detect whether a meta-variable e
with no index can be used.) We use GET-SKELETON in Section [4] to create new
contextual reduction rules for operators. Indeed, these rules must unify with any
(valid) term built with the top-level operator they are about.

ADD-PRIME(e) evaluates e to a metavariable and adds a prime symbol ’ to
it as in ADD-PRIME(es) = eh. We use this operation in Section [4] to create
premises of the form e; — e for contextual reduction rules. The expres-
sion ADD-PRIME-AT(ej,e3) evaluates e; into a term (opname ---) and eval-
uates es into a number n. This operation gives a prime to the n-th argu-
ment of the term (opname ---). We use this operation in Section {4| to mark
what argument had a reduction in a contextual reduction rules. For exam-
ple, the rule that evaluates the second argument of app states that the tar-
get of the step is ADD-PRIME-AT((app e1 e2),1) = (app ey €}). The expression
ADD-INDEXyar(e1, e2) evaluates e; to a metavariable, evaluates e; to a number,
and adds the number as index to the metavariable as in ADD-INDEX,a,(€,2) = es.
ADD-INDEXpane (€1, €2) evaluates e to a name (which can be an opname, cname,
pname, or an rname), evaluates es to a number, and adds the number to the
name. For example, ADD-INDEX,ne (app, 2) = app,. We use this operation in Sec-

239

254

N
o
@

2

6

2

7

tion M| to give unique names to new rules that we create. POSITION() returns
the sequential number of the selected row in the result of a query. (Some SQL
systems use the name ROW_NUMBER()).

The formula e; IS eo SKELETON evaluates e into a term (opname X - - X,,),
evaluates ey into a category name cname, and is true when (opname Xy -+ X,,)
is the skeleton of opname according to the grammar of cname. We use this for-
mula to check that existing rules do apply to any valid term build with opname.

Also, when we apply the keywords

“ASROWS” to an attribute that contains attr attr-number
a list, say attr, then the resulting table varx 0
expands with a row for each of the el- abs T (z)e 1
ements of the list, and tracks the posi-

tion of each element with an additional app € ¢ 2

column called attr-number. For example,
SELECT attr AS ROWS produces the table above on the right when attr is the list
[var z; abs T (x)e; app e e].

4 Applying Lang-SQL to Querying Languages

We provide a series of LANG-SQL queries in the following paragraphs. Our queries
interrogate language definitions on several aspects of programming languages
such as binders, reduction, state and evaluation contexts. Also, we have designed
our queries with the aim of interrogating functional languages in our mind.

What State Does the Language Have? Intuitively, given the A-calculus with ref-
erences with reduction relation e | u — e | u we would like to inform the user
that Heap is the state, which is the category name of u. We assume that the user
gives the main syntactic category that the evaluator evaluates, which we fix to
be Ezpression here. The following query retrieves the categories of the signature
of —» that are not Fxpression.

1 SELECT DISTINCT relation, arg

2 FROM (SELECT relation, rel-args AS ROWS arg

3 FROM declarationy)

1+ WHERE relation = — AND NOT (arg = FEzpression)

The nested SELECT statement at Line 2 produces a table in which each com-
ponent of the reduction relation has its own row, thanks to AS ROWS. For the
untyped A-calculus with references we have the following declaration,.; table,
followed by the table produced by SELECT at Line 2.

declarationye of untyped A-calculus with refs

relation rel-args

— [Expression; Heap; Expression; Heap|

260

274

275

276

277

278

279

2

)

0

281

282

N
@

3

Table produced by SELECT at Line 2

relation arg arg-number
— FExpression 0
— Heap 1
— FEzxpression 2
— Heap 3

Line 4, then, selects the categories that are not Ezpression, and DISTINCT
avoids duplicates in the result. Therefore, the SELECT statement of Line 1 returns
a table with the second row only of the table above, where only the columns
relation and arg are selected.

What Operators Evaluate underneath a Binder? Strong calculi can reduce un-
derneath a binder [7]. Strong calculi are harder to implement, and their meta-
theoretic proofs go differently than weak calculi. Given a language, it is inter-
esting then to check whether some operators reduce underneath a binder.

The following query addresses this aspect.

1 SELECT =*

2 FROM (SELECT GET-OPNAME(term) AS opname,
3 GET-ARGS(term) AS ROWS aryg

4 FROM EwalCtx)

s WHERE arg IS BOUND AND GET-BOUND-TERM(arg) = E

Recall that EvalCtz refers to a table with column term, as described at the
beginning of Section [3] SELECT at Line 2-4 creates a table where, for each gram-
mar item of EvalCtz, the top-level constructor of the grammar item (obtained
with GET-OPNAME(term)) has a row with each of its arguments and their argu-
ment position. This query produces the following table on our Strong A-calculus.

Table produced by SELECT at Line 2

opname arg arg-number
abs T 0
abs (x)E 1
app E 0
app e 1

SELECT at Line 1 selects those rows where the argument in arg has a bound
term and where the metavariable E of evaluation contexts is under a binder (Line
5). In our example, SELECT at Line 1 produces a table with only the second row
of the table above.

10

304

Which Syntactic Categories are Bound in Types? The design of the types of a
language has an overall impact on the language. For example, dependent and
refinement types can bind expressions, they have a notoriously complicated meta-
theory, and are hard to implement. Given a language, it is interesting then to
compute what syntactic categories can be bound in types. To explain how our
query works, suppose that we have a language with dependent types through
the typical type II(x : T).T that binds expressions. Our query operates on the
grammar of types and finds that I has an argument that has a bound term,
whose bound variable is x. Then, it interrogates the table grammar-info to see
what category has x as its object variable (which is obj-var in grammar-info),
which we assume is Fzpression. Our query is the following.

1 SELECT opname, categoryinso
2 FROM (SELECT GET-0OPNAME(term) AS opname,

3 GET-ARGS(term) AS ROWS arg
4 FROM Type) ,
5 grammar-info

¢ WHERE arg IS BOUND AND GET-BOUND-VAR(arg) = obj-var

SELECT at Lines 2-4 is similar to that of the previous example but it retrieves
from Type. In the example with IT(x : T').T we produce the table on the left.

Table produced by SELECT at Line 2 grammar-info

opname arg arg-number category;,, | meta-var | obj-var
I T 0 Type T —
I ()T 1 Expression e x

SELECT at Line 1 works on the table produced by SELECT at Lines 2-4 and the
grammar-info table. Line 6 finds those arg that use a binder, extracts the bound
variable, and searches this variable among the obj-var values in grammar-info.
If we fairly assume that our example with IT(x : T).T has the grammar-info
above on the right, the result of our query would be a table with one row with
two attributes: opname = II, and category, ., = Ezpression.

Create Reduction Rules from Fvaluation Contexts Evaluation contexts are useful
for declaring the evaluation order of the arguments of operators. However, they
have some drawbacks. They require their own data type, and a plug-in function
when implementing them. Mechanized proofs often need extra lemmas to handle
them. Implementors and proof assistant users often resolve evaluation contexts
as reduction rules: (app v E) as
valueey eg — €]

(app eg e1) — (app eg €})

where the predicate value holds for values. Language designers may want to
enjoy evaluation contexts in their specifications, and have automated tools to

(cTx-APP-1)

11

compute their corresponding reduction rules. The following LANG-SQL queries
do just that. Notice that we only handle a relation e — e, i.e., only pure
functional languages.

ctzArgs = SELECT POSITION() AS id,
GET-0PNAME (term) AS opname,
GET-ARGS(term) AS ROWS arg
FROM FEwvalCtx

ctrArgs contains rows that record, for each grammar production in FvalCtz,
its constructor and one of its arguments. We use POSITION(), that is, the row
position of such production in EwvalCtz, to give a unique id to each evaluation
context. For the A-calculus (not its strong version, for simplicity), ctzArgs pro-
duces the following table.

Table produced by ctzArgs

id opname arg arg-number
0 app E 0

0 app e 1

1 app v 0

1 app E 1

The two lines with id = 1 refer to the evaluation context (v E). We use this
id later to give a unique name for the rule we create. In this case, the name of
the reduction rule that corresponds to (v E) will be app!.

1 valuePremises 2 rule UNION

2 SELECT ADD-INDEX,.. Copname,id) AS rulename,
3 value AS predname,

4 [ADD-INDEX,. (e, arg-number)] AS args,
PREM AS role

¢ FROM ctzArgs WHERE arg IS Value VAR

o

valuePremises adds premises such as value ey of rule (CTX-APP-1) to the
table rule. The name of the rule is formed at Line 2 with the constructor name
and the id, such as app! for (v E). Other premises of the same rule, as well
as the conclusion of the rule, will form the same rule name. Line 6 selects only
arguments that are values (as in the third row of ctzArgs above). Their position
within their operator is in the attribute arg-number. The attribute predname is
set to value, which has only one argument, hence a list with just one argument is
given at Line 4. This argument is formed with the metavariable e of Fzpression
to which we append the position of the argument. In our example, valuePremises
produces the table rule extended with only one row (with UNION at Line 1).

12

350

376

rulename | predname args role

appl value €o PREM

\ stepPremise = valuePremises UNION
2 SELECT ADD-INDEX,.ne Copname,id) AS rulename,

3 — AS predname,

4 [ADD-INDEX,., (e, arg-number) ;

5 ADD-PRIME (ADD-INDEX,q., (e, arg-number))] AS args,
6 PREM AS role

7 FROM ctrzArgs WHERE arg IS FEwalCtr VAR

stepPremises adds premises such as e; — ¢} of (CTX-APP-1). It follows the
same lines of valuePremises. Line 7 selects arguments in ctzArgs that use the
metavariable of EvalCtx, that is, arguments that are the subject of an evaluation
context. (These are first and last row in ctzArgs above.) The attribute predname
is set to —. There are two arguments for it, the source and the target, hence a
list with two elements at Line 4 and 5. The source is formed with the metavariable
e to which we append the position of the argument. The target is the source to
which we add a prime symbol. stepPremises adds the following rows to the table
produced by valuePremises.

rulename | predname args role
appl — [eo; €] PREM
appl — [e1; 1] PREM

1 conclusion = stepPremises UNION
2 SELECT ADD-INDEXp.pne(opname,id) AS rulename,

3 — AS predname,

4 [GET-SKELETON (opname, Expression) ;

5 ADD-PRIME-AT (GET-SKELETON Copname, Fxpression) , arg-number)]
6 AS args,

7 CONCL AS role

s FROM ctzArgs WHERE arg IS FEwalCtr VAR

conclusion adds conclusions such as (app eg e1) — (app ey €}) of (CTX-
APP-1). The attribute role is set to CONCL. Line 8 selects the arguments that
are the subject of an evaluation context. Line 4 sets the source of the step as
a skeleton of opname (this is app eg e for app). Line 5 sets the target as this
skeleton in which we add a prime to the variable that is the subject of the
evaluation context. conclusion adds the following rows to the table produced by
stepPremises, which forms the expected rules completely.

13

383

384

385

386

387

389

rulename | predname args role

app0 — [app eo e1; app e e1] CONCL

appl — [app eo e1; app eo €] CONCL

All together, the new rows define the expected contextual reduction rules.

5 A Rule Format Checker in Lang-SQL

We now use LANG-SQL to write a full language analysis method. We show queries
that check the adherence of process algebras such as pa, to the de Simone’s rule
format [14]. The shape of de Simone rules is given in the rule template (DE-
SIMONE-TEMPLATE). (We refer to the other two rules shortly.)

(DE-SIMONE-TEMPLATE) (INTERLEAVING-LEFT) (REPLICATION)
{z; —liy; |ieT} P -5 P (P|'P) % P
(opxy...wy) —'t P | P, PPy P2 P

Notice that xs and ys are metavariables for metavariables, so that some
relation can be stated among different metavariables. In other words, xs and ys
all denote metavariables such as P, P, P», and so on. We have that x; and y; are
all distinct. T is a subset of {1,...,n}, that is, s in the premises come from the
conclusion. The metavariables that occur in ¢ can only come from ys, or those
xs that were not the source of a step in a premise. Also, if a metavariable occurs
in ¢ then it occurs only once. Finally, labels Is are constants, i.e., a top-level
constructor with no arguments.

For example, (INTERLEAVING-LEFT), which is one of the rules of the parallel
operator is a de Simone rules, and so are all the rules of pa , . Rule (REPLICATION)
for the replication operator, instead, does not adhere to the format because the
source of the premise is (P | | P) rather than a variable.

The following is a classic result: If all the rules of the language are de Simone
rules then bisimilarity is a congruence for the language [14].

Let us recall from Sectionthat a transition P; L> P, is stored with args =
[P1;1; P3] in the table rule. Then, NTH(args, 0) is the source (P;), NTH(args, 1)
is the label (1), and NTH(args, 2) is the target (Ps).

We divide our checks into seven parts. Given a language definition, we aim at
automating the checking of its adherence to the format. Therefore, the queries
below are designed to produce the empty table, which can be easily checked, if
their corresponding test is succesful.

Part 1: Reduction Relation Is of the Form P 'y P The following query

SELECT * FROM declaration, WHERE
(relation = — AND (NOT (args = [Process ; Label ; Process])))
OR (NOT (relation = —))

14

416

417

418

returns a record only when the shape of the reduction relation is not valid,
and/or when the language uses relations other than —, which is disallowed.

Part 2: Conclusions Are of the Form (op ---) —L5 t We check Part 2 with the
following query.

1 SELECT rulename FROM rule

2 EXCEPT

3 SELECT rulename FROM rule WHERE predname = —
4 AND role = CONCL

5 AND NTH(args,0) IS Process SKELETON

6 AND NTH(args,1) IS CONSTRUCTED

7 AND GET-ARGS(NTH(args,1)) = []

SELECT at Line 3 produces a table with the names of all the rules whose
conclusion has the following characteristics. The source of the step (NTH(args, 0))
is a skeleton (Line 5), which means that it is (opname - --) with distinct variables
as arguments. The label of the step (NTH(args, 1)) has a constructor (Line 5)
and no arguments (Line 6). EXCEPT removes all these rules from the table of
all the rules. Therefore, this query returns the empty table when the language
passes this check. Otherwise, it returns the name of the rules that are not valid.

Part 3: Premises Are of the Form x SN y We check Part 3 with the following.

SELECT rulename FROM rule
EXCEPT
SELECT rulename FROM rule WHERE predname = —
AND role = PREM
AND NTH(args,0) IS Process VAR
AND NTH(args,1) IS CONSTRUCTED
AND GET-ARGS(NTH(args,1)) = []
AND NTH(args,2) IS Process VAR

This query follows similar lines as the previous query. The difference is that
we retrieve premises rather than conclusions, and we check that the source
(NTH(args, 0)) and the target (NTH(args,?2)) are metavariables of Process. As
before, we remove these rules from all the rules. This query returns the empty
table when the language passes this check.

Part 4: zs in Premises Come from the Conclusion We check Part 4 with the
following queries.

zs &

SELECT rulename, wvar

FROM (SELECT rulename, GET-VARS(NTH(args,0)) AS ROWS war
FROM rule WHERE role = CONCL)

15

zs produces a table where each row contains a rule name and a variable from
the source of the conclusion (NTH(args,0)). (The first SELECT simply discards
the attribute var-number.)

xsInPremises £ SELECT rulename, NTH(args,0) AS war
FROM rule WHERE role = PREM
zsInPremises EXCEPT s

xsInPremises produces a table where each row contains a rule name and the
source of a step premise. (When Part 3 is successful, this source is a variable.)
We check that zsInPremises are all from xs with EXCEPT. This query returns the
empty table for valid languages. Otherwise, it returns names of rules and their
variables in premises that are not coming from the conclusion.

Part 5: xs and ys Are All Distinct We check Part 5 with the following queries.

1Ys £ SELECT rulename, NTH(args,2) AS wvar
2 FROM rule WHERE role = PREM

3 SELECT rulename, var FROM (zs UNION ys)

4+ GROUP BY rulename, wvar HAVING COUNT() > 1

ys follows the same lines as zs above, though it selects the targets of the steps
(NTH(args, 2)) in premises. Line 3 and 4 check that zs and ys are all distinct.
To do that, we first make groups by the same name of rule. Working on those
groups, we make groups based on the same variable, also. When a x or y variable
occurs only once in a rule then its group has only one row. COUNTS() is 1 in this
case. Otherwise, COUNTS() is greater than 1. This query returns the empty table
for languages that pass the check. Otherwise, it returns some rows with the name
of a rule and a variable of its conclusion that makes the count greater than 1,
that is, a variable that is used more than once.

Part 6: Variables of t Are xs Not in Premises, and ys We check Part 6 with the
following queries.

zsNotInPremises & zs EXCEPT zsInPremises

varsInTarget =

SELECT rulename, wvar

FROM (SELECT rulename, GET-VARS(NTH(args,2)) AS ROWS wvar
FROM rule WHERE role = CONCL)

(varsInTarget EXCEPT zsNotInPremises) EXCEPT ys

xsNotInPremises removes zsInPremises from xs. varsInTarget contains the
pairs (rulename, variable) for those variables that are in the target (NTH(args, 2))
of the conclusion of the rule. (The first SELECT discards the attribute var-number.)
The last line removes zsNotInPremises and ys from varsinTarget. This query re-
turns the empty table for languages that pass the check. Otherwise, it returns
some rows with the name of a rule and a variable of its conclusion that does not
come from zsNotInPremises nor ys.

16

Part 7: t Contains No Duplicate Variables We check Part 7 with the following.

SELECT rulename, war FROM wvarsInTarget
GROUP BY rulename, war HAVING COUNT() > 1

This query works on varsInTarget. It checks that varsinTarget does not con-
tain duplicates in the same way that the query of Part 5 (Line 3 and 4) checks
that s and ys are all distinct.

6 Evaluation

We have extended the implementation of LANG-SQL with the new operations
described in Section 3] Our tool and all the tests described below are at [10].

Evaluation of our FExample Queries We have tested our query for detecting
reductions under binders with the strong A-calculus and its strong variants with
let-declarations, let rec, and a type annotated let rec. We confirm that our
query detects that abs, let and letrec reduce under their binders.

We have tested our query on what categories can be bound by types with
the following. Universal types and recursive types, for which our query correctly
outputs that V and p bind Type. Dependent types, for which our query correctly
outputs that IT binds Fxpression.

We have tested our query on retrieving the state of a language with the A-
calculus with references, the CK machine, and the CEK machine. We confirm
that our query correctly outputs the state Heap for references, Continuation for
CK, and Environment and Continuation for CEK.

We have tested our query that generates contextual reduction rules on the
A-calculus and with a dozen of its variants: with integers, booleans, pairs, lists,
sums, tuples, fix, let, letrec, universal types, recursive types, option types, ex-
ceptions, list operations such as append, map, mapi, filter, filteri, range, list
length, and reverse. We confirm that our queries return the excepted output.
Our website carefully reports on these tests [10].

We have also formulated two queries which, due to lack of space, we omit
showing. The first query retrieves the inductive types of a language. (Examples
are the list type, the function type, the option type, and so on, but not, for
example, integers, booleans and other base types). The second query checks
that the typing rule for errors (such as raise) has a fresh variable as its output
type, so that errors can be typed at any type, as it is often the case. Our website
documents these queries and their tests [10], also.

FEvaluation of the de Simone’s Format Case Study We have applied the queries
of Section [f] to a series of process algebras. We have defined an initial process
algebra: a subset of the Basic Process Algebra (BPA) [8] with only the prefix op-
erator [.P. Then, we have created several languages by adding common process
algebra operators: the interleaving parallel operator, the parallel operator with
communication of CCS |20], the synchronous parallel composition from CSP [18§],

17

543

the external choice of CCS (which forms pa), the internal choice of CSP, pro-
jection of ACP, hiding of CSP, left merge parallel operator, the rename operator
of CCS, the restriction operator of CCS, the “hourglass” operator from |[1], sig-
naling [5], and the disrupt operator [6]. Our repo contains 14 process algebras
that adhere to the de Simone’s rule format.

We confirm that our queries check that these languages satisfy the rule for-
mat. We have also created languages that do not adhere to the format, by dupli-
cating variables, and including the replication operator, for example. We confirm
that our queries fail in these cases. Our website carefully reports on them [10].
Overall, we could write a checker for the de Simone’s rule format in 23 lines.

7 Related Work

|[11] is the main related work for this paper, and we have carefully addressed
the relation between this and that work in Section 1 (Introduction).

We are not aware of domain-specific languages that have been designed to
interrogate language definitions. However, Statix [3,[26] and scope graphs [23]
provide a specification language for name resolution rules that applies to lan-
guages. The checking of these rules is performed with queries on the language in
input. However, these queries are confined to the domain of name resolution and
reachability of definitions, and do not express the type of queries that we have
shown in this paper. On the other hand, LANG-SQL cannot express the queries
that these works can formulate, and cannot solve name resolution problems.

There are several rule formats in the literature [22] and there are only a
couple of tools that address their implementation. Meta SOS [2]| and the tool of
Mousavi and Reniers [21] do implement rule formats, but they implement rule
formats other than the de Simone’s format, and therefore a direct comparison
with our work is not possible.

8 Conclusion

Prior work [11] has proposed an approach based on storing languages as databases,
and has developed a domain-specific query language called LANG-SQL to inter-
rogate language definitions. However, that work does not provide enough exam-
ples, and has failed in capturing a language analysis method. In this paper, we
address these two drawbacks. We have shown a number of queries on diverse
aspects of programming languages, and we have written a full checker for the
de Simone rule format, which establishes that bisimilarity is a congruence for
process algebras. This shows that the approach can be used to build a full lan-
guage analysis method. Our queries are declarative and concise. In particular,
our rule format checker is only 23 lines of LANG-SQL code, which makes for a
very concise implementation.

In the future, we would like to extend LANG-SQL with high-level operations.
Indeed, although we have added some operations in this paper, we certainly do
not claim that LANG-SQL now contains everything we need. For example, we

18

584

would like to add an operation for testing that variables are distinct in lieu of
using COUNT(). We also would like to access the components of a relation with
operations such as getOutput(predname) and setOutput(predname) because, as
of now, LANG-SQL can access the components of a relation by their index, which
means that the shape of relations must be known beforehand.

We also would like to continue formulating queries about different aspects of
programming languages, and we would like to implement other language analysis
tools, including implementing other rule formats [22].

The LANG-SQL tool, our example queries, our rule format checker, and all
our tests are publicly available at |10ﬂ

References

1. Aceto, L., Bloom, B., Vaandrager, F.: Turning sos rules into equations. Information
and Computation 111(1), 1-52 (May 1994)

2. Aceto, L., Goriac, E., Ingélfsdottir, A.: Meta SOS - A maude based SOS meta-
theory framework. In: Proceedings Combined 20th International Workshop on Ex-
pressiveness in Concurrency and 10th Workshop on Structural Operational Se-
mantics, EXPRESS/SOS 2013, Buenos Aires, Argentina, 26th August, 2013. pp.
93-107 (2013)

3. van Antwerpen, H., Bach Poulsen, C., Rouvoet, A., Visser, E.: Scopes as types
2(OOPSLA) (2018)

4. Bach Poulsen, C., Rouvoet, A., Tolmach, A., Krebbers, R., Visser, E.: Intrinsically-
typed definitional interpreters for imperative languages 2(POPL) (2017)

5. Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In:
Broy, M. (ed.) Programming and Mathematical Method. pp. 273-323. Springer
Berlin Heidelberg, Berlin, Heidelberg (1992)

6. Baeten, J.C.M., Bergstra, J.A.: Mode transfer in process algebra, Computing Sci-
ence Reports, vol. 00-01. Technische Universiteit Eindhoven (2000)

7. Barendregt, H.P.: Lambda Calculus: its Syntax and Semantics. North Holland
(1984)

8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-
formation and Control 60(1-3), 109-137 (1984)

9. Cheney, J.: Toward a general theory of names: Binding and scope. Association for
Computing Machinery, New York, NY, USA (2005)

10. Cimini, M.: Lang-sql. https://github.com/mcimini/lang-sql (2022)

11. Cimini, M.: A query language for language analysis. In: Schlingloff, B., Chai, M.
(eds.) Software Engineering and Formal Methods - 20th International Conference,
SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings. Lecture Notes
in Computer Science, vol. 13550, pp. 57-73. Springer, Cham, Switzerland (2022)

12. Cimini, M., Miller, D., Siek, J.G.: Extrinsically typed operational semantics for
functional languages. In: Ladmmel, R., Tratt, L., de Lara, J. (eds.) Proceedings of
the 13th ACM SIGPLAN International Conference on Software Language Engi-
neering, SLE 2020, Virtual Event, USA, November 16-17, 2020. pp. 108-125. ACM,
New York, NY, USA (2020)

! To reviewers: Although LANG-SQL is not a functional language, we believe that this
paper is a good fit for TFP’23. Most of our queries are about interrogating functional
languages, and LANG-SQL is a declarative language.

19

https://github.com/mcimini/lang-sql

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

Cimini, M., Siek, J.G.: The gradualizer: A methodology and algorithm for gener-
ating gradual type systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 443-455.
POPL ’16, Association for Computing Machinery, New York, NY, USA (2016)
de Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science 37(3), 245-267 (1985)

Grewe, S., Erdweg, S., Mezini, M.: Using vampire in soundness proofs of type sys-
tems. In: Kovéacs, L., Voronkov, A. (eds.) Proceedings of the 1st and 2nd Vampire
Workshops. EPiC Series in Computing, vol. 38, pp. 33-51 (2016)

Grewe, S., Erdweg, S., Mezini, M.: Automating proof steps of progress proofs:
Comparing vampire and dafny. In: Kovécs, L., Voronkov, A. (eds.) Vampire 2016.
Proceedings of the 3rd Vampire Workshop. EPiC Series in Computing, vol. 44, pp.
33-45. EasyChair (2017)

Grewe, S., Erdweg, S., Wittmann, P., Mezini, M.: Type systems for the masses:
Deriving soundness proofs and efficient checkers. In: 2015 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward!). pp. 137-150. Onward! 2015 (2015)

Hoare, C.: Communicating Sequential Processes. Prentice-Hall International Series
in Computer Science, Prentice Hall

Mensing, A.D., van Antwerpen, H., Poulsen, C.B., Visser, E.: From definitional
interpreter to symbolic executor. In: Scholliers, C., Chari, G. (eds.) Proceedings
of the 4th ACM SIGPLAN International Workshop on Meta-Programming Tech-
niques and Reflection, METAQSPLASH 2019, Athens, Greece, October 20, 2019.
pp. 11-20. ACM (2019)

Milner, R.: A Calculus of Communicating Systems, vol. 92. Springer-Verlag (1980)
Mousavi, M.R., Reniers, M.A.: Prototyping SOS meta-theory in maude. Electronic
Notes in Theoretical Computer Science 156(1), 135-150 (2006)

Mousavi, M.R., Reniers, M.A., Groote, J.F.: Sos formats and meta-theory: 20 years
after (2007)

Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A theory of name resolution
(2015)

Pelsmaeker, D.A.A., van Antwerpen, H., Visser, E.: Towards language-parametric
semantic editor services based on declarative type system specifications (brave
new idea paper). In: 33rd European Conference on Object-Oriented Programming,
ECOOP 2019, July 15-19, 2019, London, United Kingdom. pp. 26:1-26:18 (2019)
Roberson, M., Harries, M., Darga, P.T., Boyapati, C.: Efficient software model
checking of soundness of type systems. Association for Computing Machinery, New
York, NY, USA (2008)

Rouvoet, A., van Antwerpen, H., Bach Poulsen, C., Krebbers, R., Visser, E.: Know-
ing when to ask: Sound scheduling of name resolution in type checkers derived from
declarative specifications 4(OOPSLA) (2020)

Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program
verifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30 - November 4, 2016. pp. 74-91 (2016)

20

	Applying a Query Language to Querying Languages

