
Impredicative Encodings of Inductive-Inductive
Data in Cedille

Andrew Marmaduke, Larry Diehl, and Aaron Stump

The University of Iowa, Iowa City, Iowa, U.S.A. {first}-{last}@uiowa.edu

Abstract. Cedille is a dependently typed programming language known
for expressive and efficient impredicative encodings. In this work, we
show that encodings of induction-induction are also possible by employ-
ing a standard technique from other encodings in Cedille by intersecting
a type representing the shape of data with a predicate that further con-
strains it. Thus, just as with indexed inductive data, Cedille can encode
a notion that is often axiomatically postulated or directly implemented
in other dependent type theories without sacrificing efficiency.

Keywords: Impredicative Encoding · Induction-Induction · Cedille.

1 Introduction

Induction-induction is an extension of mutual inductive datatypes that further
empowers a user to specify exactly the associated inhabitants. Denoted correct-
by-construction, constructors are specified so that only the data of interest is
expressible which prevents error handling or other boilerplate code for so-called
“junk” data. These kinds of definitions where explored in detail by Forsberg
et al. [9,4,2]. Mutual inductive datatypes in its simplest incarnation define two
datatypes whose constructors may refer to the type of one another. The canonical
example is the indexed datatypes Even and Odd.

data Even : N → ⋆ where
ezer : Even 0

esuc : (n : N) → Odd n → Even (suc n)

data Odd : N → ⋆ where
osuc : (n : N) → Even n → Odd (suc n)

Induction-induction expands on this by allowing a type to be the index of the
other. Thus, instead of two mutually defined types A,B : ⋆ there are two types
A : ⋆ and B : A → ⋆ mutually defined. Of course, the types can refer to one
another in their constructors as before. The canonical example of induction-
induction is a type representing the syntax of a dependent type theory, below

2 A. Marmaduke et al.

the Ctx and Ty types (excluding a type representing terms) are defined.

data Ctx : ⋆ where
nil : Ctx

cons : (Γ : Ctx) → Ty Γ → Ctx
data Ty : Ctx → ⋆ where

base : (Γ : Ctx) → Ty Γ

arrow : (Γ : Ctx) → (A : Ty Γ) → (B : Ty (cons Γ A)) → Ty Γ

Induction-induction is of particular interest when modeling programming lan-
guage syntax. Indeed, a more general formulation of quotient inductive-inductive
datatypes has been used to model dependent type theories with induction prin-
ciples modulo definitional equality over syntax [1]. From the perspective of con-
structing Domain Specific Languages (DSLs) induction-induction is a desirable
technique if available.

DSLs are not the only interesting data that can be modelled with induction-
induction. Suppose we have a type A then a predicate P : A → ⋆ may be
mutually defined by induction-induction to enforce some desired property on the
data of A. For example, a ListSet where all elements must be unique. While such
a type can be defined via other methods (e.g. using quotients [7]), it is sometimes
easier or more natural to define the property inductively. Additionally, the initial
data without the constraining predicate may have no other use, thus a stronger
guarantee is conveyed by demanding the data adheres to some predicate in its
definition. Finally, there are some constructions in mathematical practice that
have natural definitions via induction-induction in dependent type theory such
as Conway’s Surreal Numbers [9].

This paper reports a novel result that induction-induction is a derivable concept
within the dependently typed programming language Cedille. In fact, all notions
of data are derived by other type constructors in Cedille with induction-induction
being the latest example. While other dependent type theories support induction-
induction they do so by extending the core theory of datatypes. This is a valid
approach, but it is the philosophy of Cedille that a smaller trusted computing
base (i.e. a small core type checker) is a more desirable feature when designing
a tool for dependent type theories. Moreover, other tools (as of 2022, Coq is one
such example) do not permit induction-induction when defining data.

2 Background on Cedille

Cedille is a dependently typed programming language with a type theory based
on the Calculus of Constructions with three extensions [10,11]. Many interesting
encodings are possible with this theory including inductive data and simulated
large eliminations as some examples [3,5].

Impredicative Encodings of Inductive-Inductive Data in Cedille 3

Γ, x : T ⊢ t′ : T ′ x ̸∈ FV(|t′|)
Γ ⊢ Λx :T. t′ : ∀x :T. T ′

Γ ⊢ t : ∀x :T ′. T Γ ⊢ t′ : T ′

Γ ⊢ t -t′ : [t′/x]T

|Λx :T. t| = |t| |t -t′| = |t|

Fig. 1: Implicit Functions

2.1 Erased Functions and Erasure

Erased functions as shown in Figure 1 represent function spaces where the vari-
able may not appear free in the erasure of the body. This type former is inspired
by the implicit functions of Miquel [8]. The erasure of a term, |t|, is defined
with each corresponding extension. Additionally, the definitional equality of the
theory is extended to mean |t1| ≡βη |t2| i.e. that two terms are definitionally
equal if the βη-normal forms of their erasures are equivalent up-to renaming.
We take the liberty of a more Agda-like syntax style than traditional Cedille
and use (x : T1) ⇒ T2 to be an equivalent syntax for ∀x :T1. T2. Note that types
in Cedille are always erased at the term level.

2.2 Dependent Intersections

Γ ⊢ t1 : T1 Γ ⊢ t2 : [t1/x]T2 |t1| = |t2|
Γ ⊢ [t1, t2] : ι x :T1. T2

Γ ⊢ t : ι x :T1. T2

Γ ⊢ t.1 : T1

Γ ⊢ t : ι x :T1. T2

Γ ⊢ t.2 : [t.1/x]T2

|[t1, t2]| = |t1| |t.1| = |t| |t.2| = |t|

Fig. 2: Dependent Intersection

Inspired by Kopylov [6], dependent intersections, as shown in Figure 2, can be
interpreted intuitively as a kind of refinement type. While the namesake makes
sense, because the terms of an intersection must be definitionally equal, the
usage we are primarily interested in is to constrain some type via a predicate
that matches its shape. Again, a more Agda-like syntax style is used with (x :
T1) ∩ (T2) being equivalent syntax for ι x :T1. T2.

2.3 Equality

The propositional equality of Cedille, as shown in Figure 3, is necessary for rea-
soning about the shape of terms and finalizing the development of an induction
principle for the various possible encodings in Cedille. We will not directly use

4 A. Marmaduke et al.

FV (t t′) ⊆ dom(Γ)

Γ ⊢ β{t′} : {t ≃ t}
Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t′ : [t2/x]T

Γ ⊢ ρ t @ x.T − t′ : [t1/x]T

Γ ⊢ t : {t1 ≃ t2} Γ ⊢ t1 : T

Γ ⊢ φ t− t1 {t2} : T

Γ ⊢ t : {λx. λ y. x ≃ λx. λ y. y}
Γ ⊢ δ − t : T

|β{t′}| = |t′| |ρ t @ x.T − t′| = |t′|

|φ t− t1 {t2}| = |t2| |δ − t| = λx. x

Fig. 3: Equality

the equality type in this work as it is not necessary for the core idea. However,
it is still necessary to complete the proof of induction for the final encoding, but
the process to do so is standard for every other impredicative encoding carried
out in Cedille.

3 Induction-Induction Encoding

Impredicative encodings of inductive data follow from the observation that a
simple view of the type in terms of System F and an induction principle stated
relative to this simpler view yields the full inductive type when intersected. For
example, consider a Church encoded natural number where we first define the
standard impredicative encoding in System F.

CNat = (X : ⋆) ⇒ X → (X → X) → X

Then, the inductive predicate we expect of natural numbers but stated relative
to CNats:

CNatInd = λn. (P : CNat → ⋆) ⇒ P czero
→ ((x : CNat) ⇒ P x → P (csucc x)) → P n

Note that, critically, the subdata in the successor case of the induction predica-
tive is quantified with an erased arrow. This allows the computational content
of both types to match while simultaneously allowing for the expected induction
principle to be stated. Now, the full inductive type is the intersection as shown
below

Nat = (x : CNat) ∩ CNatInd x

where the correct induction principle in terms of Nat is derivable.

The same core idea works for reducing induction-induction to indexed inductive
types. For example, the canonical example of Ctx and Ty is encoded first by

Impredicative Encodings of Inductive-Inductive Data in Cedille 5

defining a mutual inductive type representing the shape of the type.

data Pre : B → ⋆ where
pnil : Pre tt
pcons : Pre tt → Pre ff → Pre tt
pbase : Pre tt → Pre ff
parrow : Pre tt → Pre ff → Pre ff → Pre ff

Now Pre tt is the PreCtx and Pre ff is the PreTy, the initial shapes of both types.
Second, we construct a predicate over Pre types capturing induction relative to
a Pre value.

data Ind : (b : B) → elim b → ⋆ where
gnil : Ind tt (in1 pnil)
gcons : (c : PreCtx) ⇒ Ind tt (in1 c)

→ (t : PreTy) ⇒ Ind ff (in2 c t)
→ Ind tt (in1 (pcons c t))

gbase : (c : PreCtx) ⇒ Ind tt (in1 c) → Ind ff (in2 (pbase c))
garrow : (c : PreCtx) ⇒ Ind tt (in1 c)

→ (a : PreTy) ⇒ Ind ff (in2 c a)
→ (b : PreTy) ⇒ Ind ff (in2 (pcons c a) b)
→ Ind ff (in2 c (parrow c a b))

Where elim b is a simulated large elimination with in1 : Pre tt → elim tt and
in2 : Pre tt → Pre ff → elim ff [5]. Then, the complete inductive-inductive types
may be defined by the intersections.

Ctx = (x : PreCtx) ∩ Ind tt (in1 x)
Ty = λ c. (x : PreTy) ∩ Ind ff (in2 c.1 x)

Again, the expected induction principles are derivable in terms of Ctx and Ty.

References
1. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quo-

tient inductive-inductive types. In: International Conference on Foundations of
Software Science and Computation Structures. pp. 293–310. Springer, Cham (2018)

2. Altenkirch, T., Morris, P., Nordvall Forsberg, F., Setzer, A.: A categorical seman-
tics for inductive-inductive definitions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.)
Algebra and Coalgebra in Computer Science. pp. 70–84. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2011)

3. Firsov, D., Blair, R., Stump, A.: Efficient Mendler-style lambda-encodings in
Cedille. In: International Conference on Interactive Theorem Proving. pp. 235–
252. Springer (2018)

6 A. Marmaduke et al.

4. Forsberg, F.N., Setzer, A.: A finite axiomatisation of inductive-inductive defini-
tions. Logic, Construction, Computation 3, 259–287 (2012)

5. Jenkins, C., Marmaduke, A., Stump, A.: Simulating Large Eliminations in Cedille.
In: Basold, H., Cockx, J., Ghilezan, S. (eds.) 27th International Conference on
Types for Proofs and Programs (TYPES 2021). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 239, pp. 9:1–9:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.
TYPES.2021.9, https://drops.dagstuhl.de/opus/volltexte/2022/16778

6. Kopylov, A.: Dependent intersection: A new way of defining records in type the-
ory. In: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science. pp. 86–. LICS ’03, IEEE Computer Society, Washington, DC, USA (2003)

7. Marmaduke, A., Jenkins, C., Stump, A.: Quotients by idempotent functions in
cedille. In: Bowman, W.J., Garcia, R. (eds.) Trends in Functional Programming.
pp. 1–20. Springer International Publishing, Cham (2020)

8. Miquel, A.: The implicit calculus of constructions: Extending pure type systems
with an intersection type binder and subtyping. In: Proceedings of the 5th In-
ternational Conference on Typed Lambda Calculi and Applications. pp. 344–359.
TLCA’01, Springer-Verlag, Berlin, Heidelberg (2001)

9. Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Dawar, A.,
Veith, H. (eds.) Computer Science Logic. pp. 454–468. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

10. Stump, A.: The calculus of dependent lambda eliminations. Journal of Functional
Programming 27, e14 (2017)

11. Stump, A.: From realizability to induction via dependent intersection. Ann. Pure
Appl. Logic 169(7), 637–655 (2018). https://doi.org/10.1016/j.apal.2018.03.
002, https://doi.org/10.1016/j.apal.2018.03.002

https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://doi.org/10.4230/LIPIcs.TYPES.2021.9
https://drops.dagstuhl.de/opus/volltexte/2022/16778
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002
https://doi.org/10.1016/j.apal.2018.03.002

	Impredicative Encodings of Inductive-Inductive Data in Cedille

