
Applying a Query Language to Querying1

Languages2

Matteo Cimini[0000−0003−0162−9997]3

University of Massachusetts Lowell, Lowell MA 01854, USA4

Abstract. Language validation is an important part of programming5

languages development. In prior work, we have developed Lang-Sql, a6

SQL-style domain-specific language for interrogating language definitions7

and retrieve information about their grammar, typing rules, reduction8

rules, and the other components of the language.9

However, it remains to be demonstrated whether Lang-Sql can express10

interesting queries on various aspects of programming languages, and11

whether it can be used to model a full language analysis method.12

This paper puts Lang-Sql at work by illustrating a number of language13

queries, and by developing a full checker for the de Simone rule format.14

Along the way, we have extended Lang-Sql with operations that are15

natural in the context of interrogating operational semantics.16

Paper category: Research17

1 Introduction18

After designing a programming language (PL), the work of language designers is19

not finished yet. Ideally, language designers would engage in an effort to establish20

whether their language meets the expectations that were intended at the time21

of design. This effort may range from extensive endeavors such as establishing22

type safety or strong normalization to more lightweight sanity checks such as23

determining what type of binders the language includes and whether reduction24

is allowed to take place underneath binders. A quick way to interrogate language25

definitions is desirable as it goes a long way to help debug language definitions.26

In prior work, we have developed an approach based on storing languages as27

databases and we have equipped it with Lang-Sql [11], a SQL-style domain-28

specific language (DSL) for interrogating language definitions and retrieving in-29

formation about their grammar, typing rules, reduction rules, and the other30

components of the language. Lang-Sql starts from the perspective that inter-31

rogating language definitions should be akin to interrogating databases. One of32

the problems with tools that automate language analysis/manipulation [2,4,12,33

13, 17, 19, 21, 24, 26, 27] is that they store languages as a data type of the PL of34

their implementations, and their methods for retrieving information from lan-35

guages usually encompass several lines of code that are within a large project.36

Therefore, they are hard to locate, understand, maintain and share among differ-37

ent projects. Lang-Sql, as SQL in the context of databases, can instead express38

retrieval methods as queries that are separate from application code and that39

are concise, declarative and mostly readable.40

However, the work in [11] presents some limitations that we wish to address.41

Lack of Examples. [11] shows three example queries (besides the project de-42

scribed in the next paragraph): A query that counts the number of typing rules43

for each constructor, a query that retrieves the elimination forms, and a query44

that computes the canonical forms of the language in input. These are too few45

examples and do not sufficiently demonstrate that the approach can be used to46

query language definitions with some generality.47

Our question: Can we use the Lang-Sql approach to interrogate language48

definitions insofar various aspects of programming languages is concerned?49

To provide some evidence of this, we have developed a number of Lang-Sql50

queries, which overall touch on diverse aspects of PL such as binders, reduction,51

state and evaluation contexts. We show the following queries:52

([11] only mentions the existence of the first two queries.)53

– A query that retrieves the state of a language,54

– a query that retrieves which operators evaluate underneath a binder,55

– a query that retrieves which syntactic categories are bound by types, and56

– a query that transforms evaluation contexts into reduction rules.57

To write these queries naturally, we have extended Lang-Sql with new op-58

erators that are natural to have available in the context of interrogating oper-59

ational semantics. For example, we have added an operation to extract all the60

variables of a term. Furthermore, we observe that many inference rules in oper-61

ational semantics are defined so that they apply to any term that can be built62

with a top-level constructor. For example, the typing rule for the if-operator63

handles (if e1 then e2 else e3), that is, a top-level operator applied to distinct64

metavariables. We here call such a term a skeleton of if, and we have added an65

operation that can be called as GET-SKELETON(if,Expression) to obtain it. Sim-66

ilarly, we observe that indexed metavariables such as e1, e2, and e3 above, and67

primed metavariables such as e′ of a typical premise e −→ e′ of contextual rules,68

are pervasive in operational semantics. We have therefore added the operations69

ADD-INDEX and ADD-PRIME to add indices and prime symbols to metavariables.70

We have tested the above-mentioned queries and confirm that we obtain71

the expected outcome. Our tests are described in Section 6. The fact that we72

have extended Lang-Sql does not invalidate the approach of [11]. The main73

contribution of [11] is to demonstrate that a “language-as-databases” approach74

is feasible and to show what it looks like. [11] does not attempt to include, in75

one go, all possible operations that are interesting when querying languages.76

It is reasonable to add operations as we put Lang-Sql into use when these77

operations are deemed natural.78

Failed Attempt at Modeling a Language Analysis Method. To demonstrate that79

Lang-Sql can be used to build practical tools, [11] makes an attempt to rewrite80

2

a language analysis tool called Lang-n-Check [12] as Lang-Sql queries. This81

tool takes a language definition as input and checks that all is in order so that82

type safety automatically holds. (Lang-n-Check only applies to a restricted83

class of functional languages.) However, [11] fails to accomplish what the paper84

is set to do. [11] reports that there are parts of Lang-n-Check that cannot be85

modeled. This makes the Lang-Sql version of Lang-n-Check of limited use:86

While Lang-n-Check has been proven to establish type safety [12], executing87

its Lang-Sql version does not establish any property.88

The related work section of [11] provides ideas on how Lang-Sql could be89

applied to other language analysis methods but still speaks about applying the90

approach incompletely. For example, [11] mentions that Lang-Sql could help91

the Veritas tool [15–17] in building the canonical form lemmas before feeding92

them to an automated prover. It also mentions that Lang-Sql could help find93

the reduction rules that apply to terms during the model checking process of94

Roberson et al. [25]. ([11] offers other ideas, which we do not mention here.)95

Overall, this cements the following doubt: Can Lang-Sql be used to model96

a full language analysis method?97

To answer this question, we focus on the de Simone’s rule format [14], which98

says that if the inference rules of the language adhere to certain syntactic re-99

strictions (which we review in Section 5), then bisimilarity is guaranteed to be100

a congruence for the language at hand. We have used Lang-Sql queries to101

formulate a (full) checker of the de Simone’s rule format. We have applied our102

Lang-Sql rule format checker to several process algebras and have validated103

them against the format. Furthermore, our implementation only amounts to 23104

lines of Lang-Sql code.105

In summary, this paper makes the following contributions.106

– We extend Lang-Sql with new operations that are natural in the context107

of interrogating operational semantics (Section 3).108

– We demonstrate Lang-Sql with a number of queries that touch diverse as-109

pects of programming languages, whereas prior work [11] does not sufficiently110

demonstrate the approach (Section 4).111

– We formulate a full checker for the de Simone’s format as Lang-Sql queries112

(Section 5). This demonstrates that Lang-Sql can be used to model a full113

language analysis, whereas prior work justified doubts about achieving that.114

The next section reviews how Lang-Sql stores languages as databases.115

2 Languages Definitions in Lang-Sql116

This section reviews the representation of language definitions of [11]. Lang-Sql117

works with languages defined with operational semantics. Fig. 1 shows two lan-118

guage definitions. The first is that of the strong λ-calculus, where reduction can119

take place under a λ-binder. (Integers only serve as base type in Fig. 1.) The120

second is the language definition of a process algebra that we call pa+, which121

is a subset of CCS [20]. In this process algebra, processes P perform labeled122

3

Strong λ-calculus
Type T ::= Int | T → T

Expression e ::= n | x | λx : T.e | e e
Value v ::= λx : T.e

EvalCtx E ::= � | E e | v E | λx : T.E

TypeEnv Γ ::= ∅ | Γ, x : T

(t-int)

Γ ` n : Int

(t-var)

Γ, x : T `x : T

(t-abs)
Γ, x : T1 ` e : T2

Γ ` λx : T1.e : T1 → T2

(t-app)
Γ ` e1 : T1 → T2 Γ ` e2 : T1

Γ ` e1 e2 : T2

(λx : T.e) v −→ e[v/x] e −→ e′

E[e] −→ E[e′]

Process Algebra with Choice (pa+)

Label l ::= a | b | . . .
Process P ::= 0 | l.P | P + P

l.P
l−→ P

P1
l−→ P ′1

P1 + P2
l−→ P ′1

P2
l−→ P ′2

P1 + P2
l−→ P ′2

Fig. 1. Language definition of the Strong λ-calculus and pa+

4

transitions of the form P
l−→ P ′. We have the terminated process 0, the prefix123

operator l.P , which performs a transition with label l and executes P , and the124

choice operator P1 +P2, which non-deterministically executes a transition of P1125

or P2 and discards the other process.126

A language has a grammar, and an inference rule system. cname denotes a127

syntactic category such as Expression, and we use X for metavariables. pname128

denotes a predicate name such as `, and rname denotes a name of an inference129

rule. Lang-Sql stores both grammars and inference rule systems as tables in130

the way that we review below. For the sake of a uniform notation, the terms that131

are used in grammars, which we range over t, are in abstract syntax, that is,132

they have a top-level constructor opname applied to a list of terms. The notation133

(X).t is also used for unary binding [9], which denotes that X is bound in t. For134

example, (e e) is stored as app e e, and λx : T.e is stored as abs T (x)e.135

Lang-Sql stores grammars with two tables: grammar-info, and grammar.136

Table grammar-info records, for each category, its metavariable and its object137

variable (like x in λx.e). Table grammar-info has three attributes: categoryinfo138

contains a cname, meta-var contains an X, and obj-var contains an X. Most139

categories do not have a corresponding object level variable, such as evaluation140

contexts in most languages. We then use an unused variable _ in those cases.141

Table grammar stores, for each category, its grammar productions. That is, for142

a grammar rule Type T ::= Int | T → T , grammar stores Int and T → T , and143

associates them to Type. Table grammar has two attributes: category contains144

a cname, and term contains a term t. Fig. 2 contains these tables for Fig. 1.145

Lang-Sql stores rules in the table rule. Each row of rule contains the name146

of the rule, a formula, and whether the formula is a premise or the conclusion.147

A formula has a predicate name, and a list of terms. Therefore, table rule148

has four attributes: rulename contains a rname, predname contains a pname,149

args contains a list of terms, and role contains either the constant PREM or the150

constant CONCL. Fig. 3 shows rule for our examples.151

Lang-Sql stores the signature of the predicates in the table declarationrel.152

A row in this table has two attributes: relation contains the name of the153

predicate (pname), and rel-args contains a list of category names (cname)154

that determines the sort of the arguments. Our examples have tables:155

relation rel-args

` [TypeEnv;Expression;Type]

−→ [Expression;Expression]

declarationrel (Strong λ-calculus)

156

relation rel-args

−→ [Process;Label;Process]

declarationrel (pa+)

157

5

categoryinfo meta-var obj-var

Type T _

Expression e x

Value v _

.

grammar-info of Strong λ-calculus
category term

Type int

Type arrow T T

Expression var x

Expression abs T (x)e

.

grammar of Strong λ-calculus

categoryinfo meta-var obj-var

Process P _

Label l _

grammar-info of pa+
category term

Process null

Process prefix l P

Process choice P P

grammar of pa+

Fig. 2. grammar and grammar-info of Strong λ-calculus (first rows) and pa+

rulename predname args role

(t-app) ` [Γ ; e1;T1 → T2] PREM

(t-app) ` [Γ ; e2;T1] PREM

(t-app) ` [Γ ; app e1 e2;T2] CONCL

(beta) −→ [app (abs T (x)e) v; e[v/x]] CONCL

.

rule of Strong λ-calculus

rulename predname args role

(prefix) −→ [prefix l P ; l;P] CONCL

(choice-left) −→ [P1; l;P
′
1] PREM

(choice-left) −→ [choice P1 P2; l;P
′
1] CONCL

rule of pa+

Fig. 3. rule of Strong λ-calculus (first rows) and pa+

6

3 The Lang-SQL Query Language158

Fig. 4 presents the syntax of Lang-Sql from [11] and highlights the parts that159

we add to it in this paper. The queries of Lang-Sql have a typical SELECT160

statement, which behaves as that of ordinary SQL. Queries return a table such as161

term

num n

var x

abs T (x)e

app e e

those that we have seen in the previous section. As162

SQL, queries can also be combined by union, inter-163

section and except (rows of the first queries that do164

not appear in the second) operations. Additionally,165

Lang-Sql can refer to the tables of Section 2. Also,166

the name of a category is treated as a table with at-167

tribute term having a row for each of its productions.168

For example, Expression is the table on the right.169

Expressions can be numbers, terms, attributes, names (of constructors, cate-170

gories, predicates, and rules), CONCL, and PREM. Lang-Sql also includes lists and171

two operations for retrieving the n-th element (NTH(l, n)) and the n-th element172

from the end of the list (LAST(l, n)). GET-OPNAME((opname t1 · · · tn)) returns op-173

name. GET-ARGS((opname t1 · · · tn)) returns the list [t1; · · · ; tn]. The expression174

GET-BOUND-TERM((X).t) returns t. GET-BOUND-VAR((X).t) returns X. COUNT(),175

as in standard SQL, is the number of rows returned by a query.176

Formulae can use syntactic equality =. The formula X IS cname VAR is true177

when X is a meta-variable of the category cname, e.g., e3 IS Expression VAR is178

true. t IS CONSTRUCTED is true when t = (opname t1 · · · tn), for some top-179

level constructor opname. t IS BOUND is true when t is of the form (X)t′.180

t IS DERIVED BY cname checks that the term t is derived by the grammar of181

the category cname. Formulae can also be combined with OR, AND and NOT.182

The operations in Fig. 4 that are highlighted are newly introduced in this183

paper. GET-VARS(e) evaluates e into a term t and returns a list with all the184

variables in t. For example, GET-VARS(arrow T1 T2) returns the list [T1;T2].185

This operation is useful to know the variables that are used in some parts of186

an inference rule. For example, we use GET-VARS in Section 5 to check that the187

source and target of reduction premises use different variables, e.g., a premise188

P
l−→ P tests that a process has a reduction that results to itself. Such a premise189

is unusual in a rule, and also breaks the de Simone rule format (see Section 5).190

GET-SKELETON(e1, e2) evaluates e1 into an opname and evaluates e2 into191

a category name cname. This operation returns what we here call the skele-192

ton of opname according to the grammar of cname. Intuitively, the skeleton193

of opname is the term that unifies with any (valid) term built with opname194

as top-level constructor. It is (opname X1 · · · Xn), where X1, . . ., Xn are195

metavariables of the correct category at each position. These metavariables196

are also indexed by their position within opname so that they are distinct197

one another. For example, GET-SKELETON(arrow,Type) = (arrow T1 T2), and198

GET-SKELETON(abs,Expression) = (abs T1 (x2)e2). Skeletons are widespread in199

operational semantics because inference rules are often defined by induction on200

the form of expressions. For example, (t-app) of Fig. 1 applies to (e1 e2), that201

is, the skeleton of app, and (t-abs) applies to λx : T1.e, which is essentially the202

7

attr denotes an attribute name.
attr can be one of the attribute names of Section 2 or a new one introduced with AS.

Table tbl ::= grammar | grammar-info | rule | declarationrel | declarationop
| cname

Expression e ::= n | t | attr | opname | cname | pname | rname | CONCL | PREM
| [e; e · · · ; e] | NTH(e, e) | LAST(e, e)
| GET-OPNAME(e) | GET-ARGS(e)
| GET-BOUND-TERM(e) | GET-BOUND-VAR(e) | COUNT()
| GET-VARS(e) | GET-SKELETON(e, e)
| ADD-PRIME(e) | ADD-PRIME-AT(e, e)
| ADD-INDEXvar(e, e) | ADD-INDEXname(e, e)
| POSITION()

Formula f ::= e = e | e IS e VAR | e IS CONSTRUCTED | e IS BOUND | e IS DERIVED BY e

| e IS e SKELETON
| f AND f | f OR f | NOT f

Select Item e∗ ::= ? | e AS (ROWS) attr
Query q ::= tbl

| SELECT e∗ (DISTINCT) FROM q
(WHERE f (GROUP BY attr (HAVING (ALL) f)))

| q UNION q | q INTERSECT q | q EXCEPT q

Fig. 4. Syntax of Lang-Sql. The notation · denotes finite sequences.

skeleton of λ when indices are not needed for some variables. (Our GET-SKELETON203

is algorithmically simple and does not try to detect whether a meta-variable e204

with no index can be used.) We use GET-SKELETON in Section 4 to create new205

contextual reduction rules for operators. Indeed, these rules must unify with any206

(valid) term built with the top-level operator they are about.207

ADD-PRIME(e) evaluates e to a metavariable and adds a prime symbol ′ to208

it as in ADD-PRIME(e2) = e′2. We use this operation in Section 4 to create209

premises of the form e2 −→ e′2 for contextual reduction rules. The expres-210

sion ADD-PRIME-AT(e1, e2) evaluates e1 into a term (opname · · ·) and eval-211

uates e2 into a number n. This operation gives a prime to the n-th argu-212

ment of the term (opname · · ·). We use this operation in Section 4 to mark213

what argument had a reduction in a contextual reduction rules. For exam-214

ple, the rule that evaluates the second argument of app states that the tar-215

get of the step is ADD-PRIME-AT((app e1 e2), 1) = (app e1 e′2). The expression216

ADD-INDEXvar(e1, e2) evaluates e1 to a metavariable, evaluates e2 to a number,217

and adds the number as index to the metavariable as in ADD-INDEXvar(e, 2) = e2.218

ADD-INDEXname(e1, e2) evaluates e1 to a name (which can be an opname, cname,219

pname, or an rname), evaluates e2 to a number, and adds the number to the220

name. For example, ADD-INDEXname(app, 2) = app2. We use this operation in Sec-221

8

tion 4 to give unique names to new rules that we create. POSITION() returns222

the sequential number of the selected row in the result of a query. (Some SQL223

systems use the name ROW_NUMBER()).224

The formula e1 IS e2 SKELETON evaluates e1 into a term (opname X1 · · · Xn),225

evaluates e2 into a category name cname, and is true when (opname X1 · · · Xn)226

is the skeleton of opname according to the grammar of cname. We use this for-227

mula to check that existing rules do apply to any valid term build with opname.228

attr attr-number

var x 0

abs T (x)e 1
app e e 2

229 Also, when we apply the keywords230

“AS ROWS” to an attribute that contains231

a list, say attr , then the resulting table232

expands with a row for each of the el-233

ements of the list, and tracks the posi-234

tion of each element with an additional235

column called attr-number . For example,236

SELECT attr AS ROWS produces the table above on the right when attr is the list237

[var x; abs T (x)e; app e e].238

4 Applying Lang-SQL to Querying Languages239

We provide a series of Lang-Sql queries in the following paragraphs. Our queries240

interrogate language definitions on several aspects of programming languages241

such as binders, reduction, state and evaluation contexts. Also, we have designed242

our queries with the aim of interrogating functional languages in our mind.243

What State Does the Language Have? Intuitively, given the λ-calculus with ref-244

erences with reduction relation e | µ −→ e | µ we would like to inform the user245

that Heap is the state, which is the category name of µ. We assume that the user246

gives the main syntactic category that the evaluator evaluates, which we fix to247

be Expression here. The following query retrieves the categories of the signature248

of −→ that are not Expression.249

1 SELECT DISTINCT relation, arg250

2 FROM (SELECT relation, rel-args AS ROWS arg251

3 FROM declarationp)252

4 WHERE relation = −→ AND NOT (arg = Expression)253

The nested SELECT statement at Line 2 produces a table in which each com-254

ponent of the reduction relation has its own row, thanks to AS ROWS. For the255

untyped λ-calculus with references we have the following declarationrel table,256

followed by the table produced by SELECT at Line 2.257

relation rel-args

−→ [Expression;Heap;Expression;Heap]

declarationrel of untyped λ-calculus with refs

258

9

relation arg arg-number

−→ Expression 0

−→ Heap 1

−→ Expression 2

−→ Heap 3

Table produced by SELECT at Line 2

259

Line 4, then, selects the categories that are not Expression, and DISTINCT260

avoids duplicates in the result. Therefore, the SELECT statement of Line 1 returns261

a table with the second row only of the table above, where only the columns262

relation and arg are selected.263

What Operators Evaluate underneath a Binder? Strong calculi can reduce un-264

derneath a binder [7]. Strong calculi are harder to implement, and their meta-265

theoretic proofs go differently than weak calculi. Given a language, it is inter-266

esting then to check whether some operators reduce underneath a binder.267

The following query addresses this aspect.268

1 SELECT *269

2 FROM (SELECT GET-OPNAME(term) AS opname,270

3 GET-ARGS(term) AS ROWS arg271

4 FROM EvalCtx)272

5 WHERE arg IS BOUND AND GET-BOUND-TERM(arg) = E273

Recall that EvalCtx refers to a table with column term, as described at the274

beginning of Section 3. SELECT at Line 2-4 creates a table where, for each gram-275

mar item of EvalCtx , the top-level constructor of the grammar item (obtained276

with GET-OPNAME(term)) has a row with each of its arguments and their argu-277

ment position. This query produces the following table on our Strong λ-calculus.278

opname arg arg-number

abs T 0

abs (x)E 1

app E 0

app e 1

.

Table produced by SELECT at Line 2

279

SELECT at Line 1 selects those rows where the argument in arg has a bound280

term and where the metavariable E of evaluation contexts is under a binder (Line281

5). In our example, SELECT at Line 1 produces a table with only the second row282

of the table above.283

10

Which Syntactic Categories are Bound in Types? The design of the types of a284

language has an overall impact on the language. For example, dependent and285

refinement types can bind expressions, they have a notoriously complicated meta-286

theory, and are hard to implement. Given a language, it is interesting then to287

compute what syntactic categories can be bound in types. To explain how our288

query works, suppose that we have a language with dependent types through289

the typical type Π(x : T).T that binds expressions. Our query operates on the290

grammar of types and finds that Π has an argument that has a bound term,291

whose bound variable is x. Then, it interrogates the table grammar-info to see292

what category has x as its object variable (which is obj-var in grammar-info),293

which we assume is Expression. Our query is the following.294

1 SELECT opname, categoryinfo295

2 FROM (SELECT GET-OPNAME(term) AS opname,296

3 GET-ARGS(term) AS ROWS arg297

4 FROM Type),298

5 grammar-info299

6 WHERE arg IS BOUND AND GET-BOUND-VAR(arg) = obj-var300

SELECT at Lines 2-4 is similar to that of the previous example but it retrieves301

from Type. In the example with Π(x : T).T we produce the table on the left.302

opname arg arg-number

Π T 0

Π (x)T 1

.

Table produced by SELECT at Line 2

categoryinfo meta-var obj-var

Type T _

Expression e x

.

grammar-info

303

SELECT at Line 1 works on the table produced by SELECT at Lines 2-4 and the304

grammar-info table. Line 6 finds those arg that use a binder, extracts the bound305

variable, and searches this variable among the obj-var values in grammar-info.306

If we fairly assume that our example with Π(x : T).T has the grammar-info307

above on the right, the result of our query would be a table with one row with308

two attributes: opname = Π, and categoryinfo = Expression.309

Create Reduction Rules from Evaluation Contexts Evaluation contexts are useful310

for declaring the evaluation order of the arguments of operators. However, they311

have some drawbacks. They require their own data type, and a plug-in function312

when implementing them. Mechanized proofs often need extra lemmas to handle313

them. Implementors and proof assistant users often resolve evaluation contexts314

as reduction rules: (app v E) as315

value e0 e1 −→ e′1
(app e0 e1) −→ (app e0 e′1)

(ctx-app-1)

where the predicate value holds for values. Language designers may want to316

enjoy evaluation contexts in their specifications, and have automated tools to317

11

compute their corresponding reduction rules. The following Lang-Sql queries318

do just that. Notice that we only handle a relation e −→ e, i.e., only pure319

functional languages.320

ctxArgs , SELECT POSITION() AS id,321

GET-OPNAME(term) AS opname,322

GET-ARGS(term) AS ROWS arg323

FROM EvalCtx324

ctxArgs contains rows that record, for each grammar production in EvalCtx,325

its constructor and one of its arguments. We use POSITION(), that is, the row326

position of such production in EvalCtx, to give a unique id to each evaluation327

context. For the λ-calculus (not its strong version, for simplicity), ctxArgs pro-328

duces the following table.329

id opname arg arg-number

0 app E 0

0 app e 1

1 app v 0

1 app E 1

Table produced by ctxArgs

330

The two lines with id = 1 refer to the evaluation context (v E). We use this331

id later to give a unique name for the rule we create. In this case, the name of332

the reduction rule that corresponds to (v E) will be app1 .333

1 valuePremises , rule UNION334

2 SELECT ADD-INDEXname(opname,id) AS rulename,335

3 value AS predname,336

4 [ADD-INDEXvar(e,arg-number)] AS args,337

5 PREM AS role338

6 FROM ctxArgs WHERE arg IS Value VAR339

valuePremises adds premises such as value e0 of rule (ctx-app-1) to the340

table rule. The name of the rule is formed at Line 2 with the constructor name341

and the id, such as app1 for (v E). Other premises of the same rule, as well342

as the conclusion of the rule, will form the same rule name. Line 6 selects only343

arguments that are values (as in the third row of ctxArgs above). Their position344

within their operator is in the attribute arg-number . The attribute predname is345

set to value, which has only one argument, hence a list with just one argument is346

given at Line 4. This argument is formed with the metavariable e of Expression347

to which we append the position of the argument. In our example, valuePremises348

produces the table rule extended with only one row (with UNION at Line 1).349

12

rulename predname args role

app1 value e0 PREM
350

1 stepPremise , valuePremises UNION351

2 SELECT ADD-INDEXname(opname,id) AS rulename,352

3 −→ AS predname,353

4 [ADD-INDEXvar(e,arg-number) ;354

5 ADD-PRIME(ADD-INDEXvar(e,arg-number))] AS args,355

6 PREM AS role356

7 FROM ctxArgs WHERE arg IS EvalCtx VAR357

stepPremises adds premises such as e1 −→ e′1 of (ctx-app-1). It follows the358

same lines of valuePremises. Line 7 selects arguments in ctxArgs that use the359

metavariable of EvalCtx , that is, arguments that are the subject of an evaluation360

context. (These are first and last row in ctxArgs above.) The attribute predname361

is set to −→. There are two arguments for it, the source and the target, hence a362

list with two elements at Line 4 and 5. The source is formed with the metavariable363

e to which we append the position of the argument. The target is the source to364

which we add a prime symbol. stepPremises adds the following rows to the table365

produced by valuePremises.366

rulename predname args role

app0 −→ [e0; e
′
0] PREM

app1 −→ [e1; e
′
1] PREM

367

1 conclusion , stepPremises UNION368

2 SELECT ADD-INDEXname(opname,id) AS rulename,369

3 −→ AS predname,370

4 [GET-SKELETON(opname,Expression) ;371

5 ADD-PRIME-AT(GET-SKELETON(opname,Expression),arg-number)]372

6 AS args,373

7 CONCL AS role374

8 FROM ctxArgs WHERE arg IS EvalCtx VAR375

conclusion adds conclusions such as (app e0 e1) −→ (app e0 e′1) of (ctx-376

app-1). The attribute role is set to CONCL. Line 8 selects the arguments that377

are the subject of an evaluation context. Line 4 sets the source of the step as378

a skeleton of opname (this is app e0 e1 for app). Line 5 sets the target as this379

skeleton in which we add a prime to the variable that is the subject of the380

evaluation context. conclusion adds the following rows to the table produced by381

stepPremises, which forms the expected rules completely.382

13

rulename predname args role

app0 −→ [app e0 e1; app e′0 e1] CONCL

app1 −→ [app e0 e1; app e0 e′1] CONCL
383

All together, the new rows define the expected contextual reduction rules.384

5 A Rule Format Checker in Lang-SQL385

We now use Lang-Sql to write a full language analysis method. We show queries386

that check the adherence of process algebras such as pa+ to the de Simone’s rule387

format [14]. The shape of de Simone rules is given in the rule template (De-388

Simone-Template). (We refer to the other two rules shortly.)389

(De-Simone-Template)
{xi −→li yi | i ∈ I}
(op x1 . . . xn) −→l t

(interleaving-left)

P1
a−→ P ′1

P1 | P2
a−→ P ′1 | P2

(replication)

(P | !P) a−→ P ′

!P
a−→ P ′

Notice that xs and ys are metavariables for metavariables, so that some390

relation can be stated among different metavariables. In other words, xs and ys391

all denote metavariables such as P , P1, P2, and so on. We have that xi and yi are392

all distinct. I is a subset of {1, . . . , n}, that is, xs in the premises come from the393

conclusion. The metavariables that occur in t can only come from ys, or those394

xs that were not the source of a step in a premise. Also, if a metavariable occurs395

in t then it occurs only once. Finally, labels ls are constants, i.e., a top-level396

constructor with no arguments.397

For example, (interleaving-left), which is one of the rules of the parallel398

operator is a de Simone rules, and so are all the rules of pa+. Rule (replication)399

for the replication operator, instead, does not adhere to the format because the400

source of the premise is (P | !P) rather than a variable.401

The following is a classic result: If all the rules of the language are de Simone402

rules then bisimilarity is a congruence for the language [14].403

Let us recall from Section 2 that a transition P1
l−→ P2 is stored with args =404

[P1; l;P2] in the table rule. Then, NTH(args, 0) is the source (P1), NTH(args, 1)405

is the label (l), and NTH(args, 2) is the target (P2).406

We divide our checks into seven parts. Given a language definition, we aim at407

automating the checking of its adherence to the format. Therefore, the queries408

below are designed to produce the empty table, which can be easily checked, if409

their corresponding test is succesful.410

Part 1: Reduction Relation Is of the Form P
l−→ P The following query411

SELECT * FROM declarationp WHERE412

(relation = −→ AND (NOT (args = [Process ; Label ; Process])))413

OR (NOT (relation = −→))414

14

returns a record only when the shape of the reduction relation is not valid,415

and/or when the language uses relations other than −→, which is disallowed.416

Part 2: Conclusions Are of the Form (op · · ·) l−→ t We check Part 2 with the417

following query.418

1 SELECT rulename FROM rule419

2 EXCEPT420

3 SELECT rulename FROM rule WHERE predname = −→421

4 AND role = CONCL422

5 AND NTH(args,0) IS Process SKELETON423

6 AND NTH(args,1) IS CONSTRUCTED424

7 AND GET-ARGS(NTH(args,1)) = []425

SELECT at Line 3 produces a table with the names of all the rules whose426

conclusion has the following characteristics. The source of the step (NTH(args, 0))427

is a skeleton (Line 5), which means that it is (opname · · ·) with distinct variables428

as arguments. The label of the step (NTH(args, 1)) has a constructor (Line 5)429

and no arguments (Line 6). EXCEPT removes all these rules from the table of430

all the rules. Therefore, this query returns the empty table when the language431

passes this check. Otherwise, it returns the name of the rules that are not valid.432

Part 3: Premises Are of the Form x
l−→ y We check Part 3 with the following.433

SELECT rulename FROM rule434

EXCEPT435

SELECT rulename FROM rule WHERE predname = −→436

AND role = PREM437

AND NTH(args,0) IS Process VAR438

AND NTH(args,1) IS CONSTRUCTED439

AND GET-ARGS(NTH(args,1)) = []440

AND NTH(args,2) IS Process VAR441

This query follows similar lines as the previous query. The difference is that442

we retrieve premises rather than conclusions, and we check that the source443

(NTH(args, 0)) and the target (NTH(args, 2)) are metavariables of Process. As444

before, we remove these rules from all the rules. This query returns the empty445

table when the language passes this check.446

Part 4: xs in Premises Come from the Conclusion We check Part 4 with the447

following queries.448

xs ,449

SELECT rulename, var450

FROM (SELECT rulename, GET-VARS(NTH(args,0)) AS ROWS var451

FROM rule WHERE role = CONCL)452

15

xs produces a table where each row contains a rule name and a variable from453

the source of the conclusion (NTH(args, 0)). (The first SELECT simply discards454

the attribute var -number .)455

xsInPremises , SELECT rulename, NTH(args,0) AS var456

FROM rule WHERE role = PREM457

xsInPremises EXCEPT xs458

xsInPremises produces a table where each row contains a rule name and the459

source of a step premise. (When Part 3 is successful, this source is a variable.)460

We check that xsInPremises are all from xs with EXCEPT. This query returns the461

empty table for valid languages. Otherwise, it returns names of rules and their462

variables in premises that are not coming from the conclusion.463

Part 5: xs and ys Are All Distinct We check Part 5 with the following queries.464

1 ys , SELECT rulename, NTH(args,2) AS var465

2 FROM rule WHERE role = PREM466

3 SELECT rulename, var FROM (xs UNION ys)467

4 GROUP BY rulename, var HAVING COUNT() > 1468

ys follows the same lines as xs above, though it selects the targets of the steps469

(NTH(args, 2)) in premises. Line 3 and 4 check that xs and ys are all distinct.470

To do that, we first make groups by the same name of rule. Working on those471

groups, we make groups based on the same variable, also. When a x or y variable472

occurs only once in a rule then its group has only one row. COUNTS() is 1 in this473

case. Otherwise, COUNTS() is greater than 1. This query returns the empty table474

for languages that pass the check. Otherwise, it returns some rows with the name475

of a rule and a variable of its conclusion that makes the count greater than 1,476

that is, a variable that is used more than once.477

Part 6: Variables of t Are xs Not in Premises, and ys We check Part 6 with the478

following queries.479

xsNotInPremises , xs EXCEPT xsInPremises480

varsInTarget =481

SELECT rulename, var482

FROM (SELECT rulename, GET-VARS(NTH(args,2)) AS ROWS var483

FROM rule WHERE role = CONCL)484

(varsInTarget EXCEPT xsNotInPremises) EXCEPT ys485

xsNotInPremises removes xsInPremises from xs. varsInTarget contains the486

pairs (rulename, variable) for those variables that are in the target (NTH(args, 2))487

of the conclusion of the rule. (The first SELECT discards the attribute var -number .)488

The last line removes xsNotInPremises and ys from varsInTarget. This query re-489

turns the empty table for languages that pass the check. Otherwise, it returns490

some rows with the name of a rule and a variable of its conclusion that does not491

come from xsNotInPremises nor ys.492

16

Part 7: t Contains No Duplicate Variables We check Part 7 with the following.493

SELECT rulename, var FROM varsInTarget494

GROUP BY rulename, var HAVING COUNT() > 1495

This query works on varsInTarget. It checks that varsInTarget does not con-496

tain duplicates in the same way that the query of Part 5 (Line 3 and 4) checks497

that xs and ys are all distinct.498

6 Evaluation499

We have extended the implementation of Lang-Sql with the new operations500

described in Section 3. Our tool and all the tests described below are at [10].501

Evaluation of our Example Queries We have tested our query for detecting502

reductions under binders with the strong λ-calculus and its strong variants with503

let-declarations, let rec, and a type annotated let rec. We confirm that our504

query detects that abs, let and letrec reduce under their binders.505

We have tested our query on what categories can be bound by types with506

the following. Universal types and recursive types, for which our query correctly507

outputs that ∀ and µ bind Type. Dependent types, for which our query correctly508

outputs that Π binds Expression.509

We have tested our query on retrieving the state of a language with the λ-510

calculus with references, the CK machine, and the CEK machine. We confirm511

that our query correctly outputs the state Heap for references, Continuation for512

CK, and Environment and Continuation for CEK.513

We have tested our query that generates contextual reduction rules on the514

λ-calculus and with a dozen of its variants: with integers, booleans, pairs, lists,515

sums, tuples, fix, let, letrec, universal types, recursive types, option types, ex-516

ceptions, list operations such as append, map, mapi, filter, filteri, range, list517

length, and reverse. We confirm that our queries return the excepted output.518

Our website carefully reports on these tests [10].519

We have also formulated two queries which, due to lack of space, we omit520

showing. The first query retrieves the inductive types of a language. (Examples521

are the list type, the function type, the option type, and so on, but not, for522

example, integers, booleans and other base types). The second query checks523

that the typing rule for errors (such as raise) has a fresh variable as its output524

type, so that errors can be typed at any type, as it is often the case. Our website525

documents these queries and their tests [10], also.526

Evaluation of the de Simone’s Format Case Study We have applied the queries527

of Section 5 to a series of process algebras. We have defined an initial process528

algebra: a subset of the Basic Process Algebra (BPA) [8] with only the prefix op-529

erator l.P . Then, we have created several languages by adding common process530

algebra operators: the interleaving parallel operator, the parallel operator with531

communication of CCS [20], the synchronous parallel composition from CSP [18],532

17

the external choice of CCS (which forms pa+), the internal choice of CSP, pro-533

jection of ACP, hiding of CSP, left merge parallel operator, the rename operator534

of CCS, the restriction operator of CCS, the “hourglass” operator from [1], sig-535

naling [5], and the disrupt operator [6]. Our repo contains 14 process algebras536

that adhere to the de Simone’s rule format.537

We confirm that our queries check that these languages satisfy the rule for-538

mat. We have also created languages that do not adhere to the format, by dupli-539

cating variables, and including the replication operator, for example. We confirm540

that our queries fail in these cases. Our website carefully reports on them [10].541

Overall, we could write a checker for the de Simone’s rule format in 23 lines.542

7 Related Work543

[11] is the main related work for this paper, and we have carefully addressed544

the relation between this and that work in Section 1 (Introduction).545

We are not aware of domain-specific languages that have been designed to546

interrogate language definitions. However, Statix [3, 26] and scope graphs [23]547

provide a specification language for name resolution rules that applies to lan-548

guages. The checking of these rules is performed with queries on the language in549

input. However, these queries are confined to the domain of name resolution and550

reachability of definitions, and do not express the type of queries that we have551

shown in this paper. On the other hand, Lang-Sql cannot express the queries552

that these works can formulate, and cannot solve name resolution problems.553

There are several rule formats in the literature [22] and there are only a554

couple of tools that address their implementation. Meta SOS [2] and the tool of555

Mousavi and Reniers [21] do implement rule formats, but they implement rule556

formats other than the de Simone’s format, and therefore a direct comparison557

with our work is not possible.558

8 Conclusion559

Prior work [11] has proposed an approach based on storing languages as databases,560

and has developed a domain-specific query language called Lang-Sql to inter-561

rogate language definitions. However, that work does not provide enough exam-562

ples, and has failed in capturing a language analysis method. In this paper, we563

address these two drawbacks. We have shown a number of queries on diverse564

aspects of programming languages, and we have written a full checker for the565

de Simone rule format, which establishes that bisimilarity is a congruence for566

process algebras. This shows that the approach can be used to build a full lan-567

guage analysis method. Our queries are declarative and concise. In particular,568

our rule format checker is only 23 lines of Lang-Sql code, which makes for a569

very concise implementation.570

In the future, we would like to extend Lang-Sql with high-level operations.571

Indeed, although we have added some operations in this paper, we certainly do572

not claim that Lang-Sql now contains everything we need. For example, we573

18

would like to add an operation for testing that variables are distinct in lieu of574

using COUNT(). We also would like to access the components of a relation with575

operations such as getOutput(predname) and setOutput(predname) because, as576

of now, Lang-Sql can access the components of a relation by their index, which577

means that the shape of relations must be known beforehand.578

We also would like to continue formulating queries about different aspects of579

programming languages, and we would like to implement other language analysis580

tools, including implementing other rule formats [22].581

The Lang-Sql tool, our example queries, our rule format checker, and all582

our tests are publicly available at [10]1.583

References584

1. Aceto, L., Bloom, B., Vaandrager, F.: Turning sos rules into equations. Information585

and Computation 111(1), 1–52 (May 1994)586

2. Aceto, L., Goriac, E., Ingólfsdóttir, A.: Meta SOS - A maude based SOS meta-587

theory framework. In: Proceedings Combined 20th International Workshop on Ex-588

pressiveness in Concurrency and 10th Workshop on Structural Operational Se-589

mantics, EXPRESS/SOS 2013, Buenos Aires, Argentina, 26th August, 2013. pp.590

93–107 (2013)591

3. van Antwerpen, H., Bach Poulsen, C., Rouvoet, A., Visser, E.: Scopes as types592

2(OOPSLA) (2018)593

4. Bach Poulsen, C., Rouvoet, A., Tolmach, A., Krebbers, R., Visser, E.: Intrinsically-594

typed definitional interpreters for imperative languages 2(POPL) (2017)595

5. Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In:596

Broy, M. (ed.) Programming and Mathematical Method. pp. 273–323. Springer597

Berlin Heidelberg, Berlin, Heidelberg (1992)598

6. Baeten, J.C.M., Bergstra, J.A.: Mode transfer in process algebra, Computing Sci-599

ence Reports, vol. 00-01. Technische Universiteit Eindhoven (2000)600

7. Barendregt, H.P.: Lambda Calculus: its Syntax and Semantics. North Holland601

(1984)602

8. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. In-603

formation and Control 60(1-3), 109–137 (1984)604

9. Cheney, J.: Toward a general theory of names: Binding and scope. Association for605

Computing Machinery, New York, NY, USA (2005)606

10. Cimini, M.: Lang-sql. https://github.com/mcimini/lang-sql (2022)607

11. Cimini, M.: A query language for language analysis. In: Schlingloff, B., Chai, M.608

(eds.) Software Engineering and Formal Methods - 20th International Conference,609

SEFM 2022, Berlin, Germany, September 26-30, 2022, Proceedings. Lecture Notes610

in Computer Science, vol. 13550, pp. 57–73. Springer, Cham, Switzerland (2022)611

12. Cimini, M., Miller, D., Siek, J.G.: Extrinsically typed operational semantics for612

functional languages. In: Lämmel, R., Tratt, L., de Lara, J. (eds.) Proceedings of613

the 13th ACM SIGPLAN International Conference on Software Language Engi-614

neering, SLE 2020, Virtual Event, USA, November 16-17, 2020. pp. 108–125. ACM,615

New York, NY, USA (2020)616

1 To reviewers: Although Lang-Sql is not a functional language, we believe that this
paper is a good fit for TFP’23. Most of our queries are about interrogating functional
languages, and Lang-Sql is a declarative language.

19

https://github.com/mcimini/lang-sql

13. Cimini, M., Siek, J.G.: The gradualizer: A methodology and algorithm for gener-617

ating gradual type systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-618

SIGACT Symposium on Principles of Programming Languages. pp. 443–455.619

POPL ’16, Association for Computing Machinery, New York, NY, USA (2016)620

14. de Simone, R.: Higher-level synchronising devices in MEIJE-SCCS. Theoretical621

Computer Science 37(3), 245–267 (1985)622

15. Grewe, S., Erdweg, S., Mezini, M.: Using vampire in soundness proofs of type sys-623

tems. In: Kovács, L., Voronkov, A. (eds.) Proceedings of the 1st and 2nd Vampire624

Workshops. EPiC Series in Computing, vol. 38, pp. 33–51 (2016)625

16. Grewe, S., Erdweg, S., Mezini, M.: Automating proof steps of progress proofs:626

Comparing vampire and dafny. In: Kovács, L., Voronkov, A. (eds.) Vampire 2016.627

Proceedings of the 3rd Vampire Workshop. EPiC Series in Computing, vol. 44, pp.628

33–45. EasyChair (2017)629

17. Grewe, S., Erdweg, S., Wittmann, P., Mezini, M.: Type systems for the masses:630

Deriving soundness proofs and efficient checkers. In: 2015 ACM International Sym-631

posium on New Ideas, New Paradigms, and Reflections on Programming and Soft-632

ware (Onward!). pp. 137–150. Onward! 2015 (2015)633

18. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International Series634

in Computer Science, Prentice Hall635

19. Mensing, A.D., van Antwerpen, H., Poulsen, C.B., Visser, E.: From definitional636

interpreter to symbolic executor. In: Scholliers, C., Chari, G. (eds.) Proceedings637

of the 4th ACM SIGPLAN International Workshop on Meta-Programming Tech-638

niques and Reflection, META@SPLASH 2019, Athens, Greece, October 20, 2019.639

pp. 11–20. ACM (2019)640

20. Milner, R.: A Calculus of Communicating Systems, vol. 92. Springer-Verlag (1980)641

21. Mousavi, M.R., Reniers, M.A.: Prototyping SOS meta-theory in maude. Electronic642

Notes in Theoretical Computer Science 156(1), 135–150 (2006)643

22. Mousavi, M.R., Reniers, M.A., Groote, J.F.: Sos formats and meta-theory: 20 years644

after (2007)645

23. Néron, P., Tolmach, A.P., Visser, E., Wachsmuth, G.: A theory of name resolution646

(2015)647

24. Pelsmaeker, D.A.A., van Antwerpen, H., Visser, E.: Towards language-parametric648

semantic editor services based on declarative type system specifications (brave649

new idea paper). In: 33rd European Conference on Object-Oriented Programming,650

ECOOP 2019, July 15-19, 2019, London, United Kingdom. pp. 26:1–26:18 (2019)651

25. Roberson, M., Harries, M., Darga, P.T., Boyapati, C.: Efficient software model652

checking of soundness of type systems. Association for Computing Machinery, New653

York, NY, USA (2008)654

26. Rouvoet, A., van Antwerpen, H., Bach Poulsen, C., Krebbers, R., Visser, E.: Know-655

ing when to ask: Sound scheduling of name resolution in type checkers derived from656

declarative specifications 4(OOPSLA) (2020)657

27. Stefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program658

verifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN Interna-659

tional Conference on Object-Oriented Programming, Systems, Languages, and Ap-660

plications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,661

October 30 - November 4, 2016. pp. 74–91 (2016)662

20

	Applying a Query Language to Querying Languages

