
This is a research article submitted as a draft paper.

Versatile and Flexible Modelling of the RISC-V

ISA⋆

Sören Tempel1[0000−0002−3076−893X], Tobias Brandt3[0000−0002−7041−4319], and
Christoph Lüth1,2[0000−0002−1121−398X]

1 University of Bremen, 28359 Bremen, Germany tempel@uni-bremen.de
2 Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), 28359 Bremen,

Germany christoph.lueth@dfki.de
3 tobbra91@gmail.com

Abstract. Formal languages are commonly used to model the seman-
tics of instruction set architectures (e.g. ARM). Most prior work on these
formal languages focuses on concrete instruction execution and valida-
tion tasks. We present a novel Haskell-based modelling approach which
allows the creation of �exible and versatile architecture models based
on free monads and a custom expression language. Contrary to existing
work, our approach does not make any assumptions regarding the rep-
resentation of memory and register values. This way, we can implement
non-concrete software analysis techniques (e.g. symbolic execution where
values are SMT expressions) on top of our model as interpreters for this
model. We employ our outlined approach to create an abstract model
and a concrete interpreter for the RISC-V base instruction set. Based
on this model, we demonstrate that custom interpreters can be imple-
mented with minimal e�ort using dynamic information-�ow tracking as
a case study.

1 Introduction and Motivation

An instruction set architecture (ISA) describes the instructions of a processor,
its state (number and types of registers), its memory, and more. It is the central
interface between hard- and software, and as such of crucial importance; once
�xed, it cannot be easily changed anymore. Traditionally, ISAs were speci�ed in
natural language, but that has been found lacking in exactness and completeness,
so these days modelling an ISA, in particular a novel one, with formal languages
has become de rigeur. Functional languages can be put to good use here: because
of the declarative nature, we can formulate the behaviour at an abstract level
which at the same time is executable.

Recently, the RISC-V ISA [11] has emerged has an attractive alternative to
the prevailing industry standards, such as the Intel x86 or ARM architecture. It
is open source, patent-free, and designed to be scalable from embedded devices

⋆ Research supported by the German Federal Ministry of Education and Research
(BMBF) under grant no. 01IW22002 (ECXL) and grant no. 16ME0127 (Scale4Edge).

2 Sören Tempel, Tobias Brandt, and Christoph Lüth

to servers. Its open nature has sparked a lot of research activity, in particular
many formal models of the ISA, including some in Haskell [12,2,8], or in custom
functional DSLs such as SAIL [1]. An executable model of the ISA is a simula-
tor, i.e. software which simulates the behaviour of programs as faithful to the
hardware as possible.

Our contribution as presented here is a highly �exible and versatile model of
the RISC-V ISA in Haskell. As opposed to existing models, the execution model
of the ISA can be varied. To this end, we de�ne an embedded domain-speci�c
language (EDSL) via a free monad construction. The idea is that the free monad
models the computation given by a sequence of operations from the ISA, where
the model of computation can be varied, from simple state transitions which
simulate the ISA faithfully, to sophisticated analyses such as symbolic execution
or dynamic information-�ow tracking. To the best of our knowledge, our ap-
proach is the �rst which focuses explicitly on creating software analysis tools as
interpreters for the formal ISA model. Our approach is motivated by our experi-
ence with a RISC-V hardware platform simulator written in SystemC TLM [15];
after having to modify it repeatedly to allow such analyses, we were looking for
a more systematic and structured way to achieve this �exibility.

2 Modelling an ISA

We explain our approach and its advantages with a simple ISA. It implements
a 32-bit load/store architecture with �ve instructions:

1. LOADI imm reg : Load immediate into register reg.
2. ADD dst src1 src2 : Add two registers into dst.
3. LW dest mem: Load word from memory into register dest.
4. SW mem src: Store word from register src into memory.
5. BEQ reg1 reg2 : Branch if registers reg1 and reg2 are equal.

The ISA supports 16 general-purpose registers, word-addressable memory, and
a program counter which points to the current instruction in memory. All reg-
isters and memory values are 32-bit wide and treated as signed values by all
instructions. Instruction fetching and decoding is not discussed. The instruction
set is modelled straightforward as a Haskell data type (where Word and Addr are
type synonyms for 32-bit integers):

newtype Reg = Reg { reg :: Int } deriving (Ord, Eq)
data INSTR

= LOADI Word Reg
| ADD Reg Reg Reg
| LW Reg Addr
| SW Addr Reg
| BEQ Reg Reg Word

2.1 A First Model

The execution model formally describes how instructions are executed. It spec-
i�es the system state, and how instructions change the system state (including
the control �ow).

Versatile and Flexible Modelling of the RISC-V ISA 3

Fig. 1a provides a simple Haskell execution model for our basic ISA. The
architectural state System, upon which instructions are executed, is a tuple con-
sisting of two �nite maps for the memory and register �le as well as a concrete
program counter. Instruction execution itself is implemented as a pure func-
tion which performs a pattern match on the instruction type and returns a new
system state, embedded into a state monad (State System α).

type System = (Registers
, Mem
, ProgramCounter)

execute :: INSTR → State System ()
execute i = modify $
λ(regs, mem, pc)→ case i of

LOADI imm r → (insert r imm regs,
mem, nextInstr pc)

ADD rd rs1 rs2 →
let v1 = regs ! rs1

v2 = regs ! rs2
in (insert rd (v1+v2) regs,

mem, nextInstr pc)
LW r addr → let

w = mem ! addr
in (insert r w regs, mem,

nextInstr pc)
SW addr r → let

v = regs ! r
in (regs, insert addr v mem,

nextInstr pc)
BEQ r1 r2 imm → let

v1 = regs ! r1
v2 = regs ! r2
br = if v1 == v2

then pc+imm
else nextInstr pc

in (regs, mem, br)

(a) Concrete Haskell model

type System' = (Registers
, Mem
, ProgramCounter
, Int)

execute' :: INSTR → State System'' ()
execute' i = modify $
λ(regs, mem, pc, counter) → case i of

LOADI imm r → (insert r imm regs, mem,
nextInstr pc, counter)

ADD rd rs1 rs2 → let
v1 = regs ! rs1
v2 = regs ! rs2

in (insert rd (v1+v2) regs,
mem, nextInstr pc, counter)

LW r addr → let
w = mem ! addr

in (insert r w regs, mem,
nextInstr pc, succ counter)

SW addr r → let
v = regs ! r

in (regs, insert addr v mem,
nextInstr pc, succ counter)

BEQ r1 r2 imm → let
v1 = regs ! r1
v2 = regs ! r2
br = if v1 == v2

then pc+imm
else nextInstr pc

in (regs, mem, br, counter)

(b) Counting memory accesses

Fig. 1: Model of the ISA and sample extension implemented on top of it

Unfortunately, this simple ISA model has several shortcomings. Consider a
scenario in which we want to extend our model to track the number of memory
accesses during program execution. For this, we merely need to extend the sys-
tem state with an access counter, and increment the counter whenever memory
access takes place (operations LW and SW). A possible implementation of this
modi�cation is shown in Fig. 1b. Note, how even though our extension to the
previous solution did not modify the control �ow of the program in any way,
we still had to restate the control �ow for all supported instructions of our ISA.
For our small ISA this inconvenience seem feasible, but considering that a real
ISA has often more than 80 instructions, the task of modifying the execution
becomes cumbersome and error-prone.

Hence, our aim is to give a modular, abstract representation of this semantics,
based upon which we can then implement software analysis techniques which

4 Sören Tempel, Tobias Brandt, and Christoph Lüth

require a di�erent kind of interpretation with minimal e�ort. Such techniques
include symbolic execution [4] or dynamic information-�ow tracking [9].

2.2 Our Approach

The problem with the approach from above is that the model of the semantics
(a state transition given by a state monad) is given in a very concrete and
monolithic form: there is no separation between the di�erent aspects of the
semantics. However, the semantics of an ISA has several aspects: memory access,
register access, arithmetic, and control �ow, and most analyses only concern one
or two of them (e.g. memory access, or arithmetic). Yet, if we want to change
the representation of the state, this a�ects all operations; similarly if we want
to reason about e.g. integer arithmetic to show absence of integer over�ow, we
need to re-implement all operations.

Thus, we want to give the semantics of our ISA by combining several consti-
tuting parts, which we can change individually. To this end, we de�ne an EDSL
which represents the operations of an abstract machine implementing the ISA,
e.g. loading and storing words into registers, using a free monad. A free monad
for a type constructor f is essentially the closure of f under application (so it
contains arbitrary many applications of f); the appeal here is that the free monad
generated by di�erent constructors is the combination of the free monads gen-
erated by the single constructors, so we can change the constructors separately.
The category-theoretic construction of free monads was given by Kelly [5], and
�rst described in the context of functional programming by Swierstra [14], to be
later extended by Kiselyov et al. [7,6].

data Operations r
= LoadRegister Reg (Word → r)
| StoreRegister Reg Word r
| IncrementPC Word r
| LoadMem Addr (Word → r)
| StoreMem Addr Word r
deriving Functor

loadRegister :: Reg → Free Operations Word
loadRegister r = Free (LoadRegister r Pure)

storeRegister :: Reg → Word → Free Operations ()
storeRegister r w = Free (StoreRegister r w (Pure ()))

incrementPC :: Word → Free Operations ()
incrementPC v = Free (IncrementPC v (Pure ()))

loadMem :: Addr → Free Operations Word
loadMem addr = Free (LoadMem addr Pure)

storeMem :: Addr → Word → Free Operations ()
storeMem addr w = Free (StoreMem addr w (Pure ()))

Listing 1.1: EDSL of the machine executing the ISA

The operations comprising the EDSL are given by a parameterized datatype
Operations, see Listing 1.14. The Operations datatype models the ISA in abstract

4 For convenience, we add a factory function for each constructor of the datatype
embedding it into the free monad.

Versatile and Flexible Modelling of the RISC-V ISA 5

terms; the free monad Free Operations describes combinations of these, which are
an abstract representation of the control �ow of a (sequence of) ISA operations.
This representation is given by a function controlFlow :: INSTR → Free Operations (),
which de�nes the control �ow for a given instruction; by composing these we get
the control �ow for a program (sequence of operations).

controlFlow :: INSTR → Free Operations ()
controlFlow = λcase

LOADI imm r → storeRegister r imm≫ incrementPC 4
ADD rd r1 r2 → do

v1 ← loadRegister r1
v2 ← loadRegister r2
storeRegister rd (v1+v2)
incrementPC 4

LW r addr → do
v ← loadMem addr
storeRegister r v
incrementPC 4

SW addr r → do
v ← loadRegister r
storeMem addr v
incrementPC 4

BEQ r1 r2 imm → do
v1 ← loadRegister r1
v2 ← loadRegister r2
if v1 == v2 then incrementPC imm else incrementPC 4

Listing 1.2: Interpreting an in ISA instruction in the free monad.

To reconstruct the concrete execution of the ISA instructions from the previous
section (Fig. 1a), we need to map the operations in the free monad to concrete
monadic e�ects, in our case in Haskell's pure State monad.

execute :: State → Free Operations () → State
execute st = flip execState st ◦ iterM go where

go = λcase
LoadRegister reg f → gets (λ(rs,_,_) → rs ! reg)≫=f
StoreRegister reg w c → modify (λ(rs, mem, pc) → (insert reg w rs, mem, pc))≫ c
IncrementPC w c → modify (λ(rs,mem,pc) → (rs,mem,pc+w))≫ c
LoadMem addr f → gets (λ(_,mem,_) → mem ! addr)≫=f
StoreMem addr w c → modify (λ(rs,mem,pc) → (rs, insert addr w mem, pc))≫ c

Listing 1.3: Evaluating the control �ow using the State monad

Since we have now separated control �ow and semantics of e�ects, we could also
use any other (monadic) e�ects for the evaluation without changing the control
�ow; e.g. reconstructing the example from Fig. 1b just requires adjustments in
the semantics as in Listing 1.4.

execute' :: State'' → Free Operations () → State''
execute' st = flip execState st ◦ iterM go where

go = λcase
LoadRegister reg f → gets (λ(rs,_,_,_) → rs ! reg)≫=f
StoreRegister reg w c → modify

(λ(rs, mem, pc, counter) → (insert reg w rs, mem, pc, counter))≫ c
IncrementPC w c → modify

(λ(rs,mem,pc,counter) → (rs,mem,pc+w, counter))≫ c
LoadMem addr f → do

v ← gets (λ(_,mem,_, counter) → mem ! addr)
modify (λ(rs,mem,pc,counter) → (rs, mem, pc, succ counter))

Listing 1.4: Executing and counting memory accesses

6 Sören Tempel, Tobias Brandt, and Christoph Lüth

While this is a major advantage in terms of reusability, there is still room
for improvement. In particular, we are not able to change the semantics of the
expression-level calculations an operation performs, since the data type of our
EDSL assumes concrete types, which entails they are already evaluated. Hence,
we generalize our Operations to allow a representation of the evaluation of ex-
pressions, much like we did for the instructions (except that the evaluation of
expressions is not monadic, hence we do not need a free monad here). For that,
we need to introduce a simple expression language, which will replace all of
the constant values, e.g. the constructor StoreRegister :: Reg → Word → r becomes
StoreRegister' :: Reg → Expr w → r, as well as adjust the Operations type such that it
becomes polymorphic in the word type.

Listing 1.5 shows the changes necessary, e.g. the execute''' function is now
provided with an expression-interpreter evalE, which is used to evaluate expres-
sions generated by the control �ow. The Operations are now polymorphic in the
word-type and the semantics of the internal computations can be changed by
adjusting evalE; this allows our approach to be used to implement various soft-
ware analysis techniques on the ISA level. In the next section, we will present an
application of our approach to the RISC-V ISA, and utilize the resulting RISC-V
model to implement one exemplary software analysis technique.

data Expr a = Val a | Add (Expr a) (Expr a) | Eq (Expr a) (Expr a)

data Operations' w r
= LoadRegister' Reg (Expr w → r)
| StoreRegister' Reg (Expr w) r
| IncrementPC' (Expr w) r
| LoadMem' Addr (Expr w → r)
| StoreMem' Addr (Expr w) r

storeMem' addr w = Free (StoreMem' addr w (Pure ()))

evalE :: Expr Word → Word
evalE = λcase

Val a → a
Add e e' → evalE e + evalE e'
Eq e e' → if evalE e' == evalE e then 1 else 0

execute''' :: (Expr Word → Word) → State'' → Free (Operations' Word) () → State''
execute''' evalE st = flip execState st ◦ iterM go where

go = λcase
LoadRegister' reg f → gets (λ(rs,_,_,_) → Val $ rs ! reg)≫=f
StoreRegister' reg w c → modify

(λ(rs, mem, pc, counter) → (insert reg (evalE w) rs, mem, pc, counter))≫ c
IncrementPC' w c → modify

(λ(rs,mem,pc,counter) → (rs,mem,pc+ evalE w, counter))≫ c
LoadMem' addr f → do

Listing 1.5: Operations type with simple expression language

3 Modelling the RISC-V ISA

As an application of our approach, we created an abstract model of the RISC-V
ISA. RISC-V is an emerging reduced instruction set computer (RISC) architec-
ture which has recently gained traction in both academia and industry. Contrary

Versatile and Flexible Modelling of the RISC-V ISA 7

to existing ISAs, RISC-V is developed as an open standard free from patents
and royalties. It is designed in a modular way: the architecture consists of a base
instructions set and optional extensions (e.g. for atomic instructions) which can
be combined as needed [11].

Our abstract model of the RISC-V architecture implements the 32-bit vari-
ant of the base instruction set (40 instructions). Based on this abstract model,
we have implemented a concrete interpreter for RISC-V instructions. Both the
model and the concrete interpreter are written in roughly 1000 LOC in Haskell
and can be obtained from GitHub5. As opposed to our example above, the im-
plementation also includes a decoder for RISC-V instructions and a loader for
ELF executables. Using the full interpreter we were able to successfully execute
and pass the o�cial RISC-V ISA tests for the 32-bit base instruction set6. This
indicates that our model correctly captures the semantics of the base instruc-
tion set. In the following, we illustrate how custom interpreters � beyond the
standard concrete interpretation � can be implemented on top of our abstract
model, making use of its �exibility.

3.1 Implementing Custom Interpreters

Our abstract model of the RISC-V ISA is designed for maximum �exibility and
versatility, along the lines sketched in Sect. 2. We provide a polymorphic opera-
tion and expression language built on top of the freer-simple library7, which
provides an extended implementation of the free monad approach discussed in
the previous section. This allows implementing di�erent interpretations of the
ISA on top of our abstract model with minimal e�ort. In order to implement
a custom RISC-V interpreter, an evaluator for the expression language and an
interpreter for the free instruction monad need to be provided. As an exam-
ple, dynamic information �ow tracking (where data-�ow from input to output is
analysed) can be implemented using the following polymorphic data type:

data Tainted a = MkTainted Bool a

instance Conversion (Tainted a) a where
convert (MkTainted _ v) = v

The product type Tainted tracks whether a value of type a is subject to
data-�ow analysis. A conversion to Word32 needs to be implemented to satisfy
the only class constraint imposed by our abstract model.8 An evaluator of the
expression language for Tainted Word32 can be implemented as follows:

evalE :: Expr (Tainted Word32) → Tainted Word32
evalE (FromImm t) = t
evalE (FromInt i) = MkTainted False $ fromIntegral i
evalE (AddU e1 e2) = MkTainted (t1 | | t2) $ v1 + v2

where (MkTainted t1 v1) = evalE e1; (MkTainted t2 v2) = evalE e2

5 Available for review via http://unihb.eu/libriscv
6 https://github.com/riscv/riscv-tests
7 https://hackage.haskell.org/package/freer-simple
8 This constraint is necessary as the instruction decoder operates on Word32 values.

http://unihb.eu/libriscv
https://github.com/riscv/riscv-tests
https://hackage.haskell.org/package/freer-simple

8 Sören Tempel, Tobias Brandt, and Christoph Lüth

The evaluator performs standard arithmetic on the Word32 encapsulated
within the Tainted type. However, if one of the operands of the arithmetic
operations is a tainted value then the resulting value is also tainted. This en-
ables a simple data-�ow analysis for initially tainted values. Based on the eval-
uation function, an interpretation of the control �ow is shown in the following,
where f ⇝ g denotes a natural transformation from f to g (as provided by the
freer-simple library).

type ArchState = (REG.RegisterFile IOArray (Tainted Word32)
, MEM.Memory IOArray (Tainted Word8))

type IftEnv = (Expr (Tainted Word32) → Tainted Word32, ArchState)

iftBehaviour :: IftEnv → Instruction (Tainted Word32) ⇝ IO
iftBehaviour (evalE , (regFile, mem)) = λcase

(ReadRegister idx) → REG.readRegister regFile idx
(WriteRegister idx reg) → REG.writeRegister regFile idx (evalE reg)
(LoadWord addr) → MEM.loadWord mem (convert $ evalE addr)
(StoreWord addr w) → MEM.storeWord mem (convert $ evalE addr) (evalE w)

This function operates on a polymorphic register and memory implementa-
tion. Expressions are evaluated using evalE, and then written to the register �le
or memory. When execution terminates, we can inspect each register and mem-
ory value to check whether it depends on an initially tainted input value. As
shown, the interpreter only implements a subset of the instruction monad and
the expression language; a complete implementation is provided in the example/
subdirectory on GitHub. Nonetheless, the example serves to demonstrate that
software analysis techniques can be implemented easily on top of an abstract
ISA model as custom interpreters for this model.

3.2 Related Work

Formal semantics for ISAs is an active research area with a vast body of existing
research. Speci�cally regarding RISC-V, a public review of existing formal speci-
�cations has been conducted by the RISC-V foundation itself in 2019 [10]. From
this review, SAIL [1] emerged as the o�cial formal speci�cation for the RISC-V
architecture. SAIL is a custom functional language for describing di�erent ISAs
and comes with tooling for automatically generating emulators from this de-
scription. Similar to our own work, existing work on GRIFT [12], Forvis [2], and
riscv-semantics [8] models the RISC-V ISA using a Haskell EDSL. Forvis and
riscv-semantics are explicitly designed for readability and thus only use a subset
of Haskell. As opposed to our own work, instructions are executed directly and
this prior work does not separate the description of instruction semantics from
their execution. In this regard, GRIFT is closer to our own work as it uses a
bitvector expression language to provide a separate description of instruction
semantics. However, GRIFT's expression language is designed around natural
numbers as it focuses on concrete execution. For this reason, it is not possible to
represent register/memory values abstractly using GRIFT (i.e. not as natural
numbers, but for example as SMT expressions). To the best of our knowledge,
our formal RISC-V model is the �rst functional model which focuses speci�cally

Versatile and Flexible Modelling of the RISC-V ISA 9

on �exibility and thereby enables non-concrete execution of RISC-V instructions
on top of the abstract ISA model.

As such, we believe our RISC-V ISA model to be a versatile tool for build-
ing dynamic software analysis techniques that operate directly on the machine
code level. Prior work has already demonstrated that it is possible to implement
techniques such as symbolic execution [16] or dynamic information �ow track-
ing [9] for RISC-V machine code. However, this prior work does not leverage
functional ISA speci�cations and thus relies on manual modi�cations of exist-
ing interpreters and is not easily applicable to additional RISC-V extensions or
other ISAs (ARM, MIPS, . . .). For this reason, the majority of existing work
on binary software analysis does not operate on the machine code level and in-
stead leverages intermediate languages and lifts machine code to these languages
[13,3,4]. This prior work therefore operates on a higher abstraction level and can
thus not reason about architecture-speci�c details (e.g. instruction clock cycles)
during the analysis. By building dynamic software analysis tools on an abstract
ISA model we can bridge the gap between the two approaches; we can oper-
ate directly on the machine code level while still making it easy to extend the
analysis to additional instructions or architectures.

4 Conclusion

We have presented a �exible approach for creating functional formal models of
instruction set architectures. The functional paradigm gives a natural and con-
cise way to model the instruction format on di�erent levels of abstraction, and
the structuring mechanisms allow us to relate these levels. This way, by leverag-
ing free monads our approach separates instruction semantics from instruction
execution. Contrary to prior work, our approach does not make any assumption
about the representation of memory/register values. This way, it can be used
to implement software analysis techniques such as dynamic information �ow
tracking or symbolic execution.

We have demonstrated our approach by creating an abstract formal model of
the RISC-V architecture. Based on this formal RISC-V model, we have created a
concrete interpreter�which passes the o�cial RISC-V ISA tests�for the 32-bit
base instruction set and a custom interpreter for information �ow tracking.

In future work, we would like to model additional extensions of the RISC-V
architecture and perform further experiments with interpreters for our model,
most importantly symbolic execution. It would also be interesting to investigate
the issue of correctness of the custom interpreters further, e.g. by embedding the
interpreters into a theorem prover.

References

1. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-a, RISC-V, and CHERI-MIPS. Proc.
ACM Program. Lang. 3(POPL) (Jan 2019). https://doi.org/10.1145/3290384

https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384

10 Sören Tempel, Tobias Brandt, and Christoph Lüth

2. Bluespec, Inc.: Forvis: A formal RISC-V ISA speci�cation. GitHub, https://

github.com/rsnikhil/Forvis_RISCV-ISA-Spec, accessed 2022-12-06
3. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis plat-

form. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Veri�cation. pp.
463�469. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

4. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: A platform for in-vivo multi-
path analysis of software systems. In: Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems. p. 265�278. ASPLOS XVI, Association for Computing Machinery, New
York, NY, USA (2011). https://doi.org/10.1145/1950365.1950396

5. Kelly, G.M.: A uni�ed treatment of trans�nite constructions for free algebras,
free monoids, colimits, associated sheaves, and so on. Bulletin of the Aus-
tralian Mathematical Society 22(1), 1�83 (Aug 1980). https://doi.org/10.1017/
S0004972700006353, publisher: Cambridge University Press

6. Kiselyov, O., Ishii, H.: Freer monads, more extensible e�ects. SIGPLAN Not.
50(12), 94�105 (Aug 2015). https://doi.org/10.1145/2887747.2804319

7. Kiselyov, O., Sabry, A., Swords, C.: Extensible e�ects an alternative to monad
transformers. vol. 48, pp. 59�70 (Jan 2014). https://doi.org/10.1145/2578854.
2503791

8. Massachusetts Institute of Technology: riscv-semantics. GitHub, https://github.
com/mit-plv/riscv-semantics, accessed 2022-12-06

9. Pieper, P., Herdt, V., Groÿe, D., Drechsler, R.: Dynamic information �ow track-
ing for embedded binaries using SystemC-based virtual prototypes. In: 2020
57th ACM/IEEE Design Automation Conference (DAC). pp. 1�6 (2020). https:
//doi.org/10.1109/DAC18072.2020.9218494

10. RISC-V Foundation: ISA Formal Spec Public Review. GitHub (2019), https://
github.com/riscvarchive/ISA_Formal_Spec_Public_Review, accessed 2022-12-
06

11. RISC-V Foundation: The RISC-V Instruction Set Manual, Volume I: User-Level
ISA (Dec 2019), https://github.com/riscv/riscv-isa-manual/releases/

download/Ratified-IMAFDQC/riscv-spec-20191213.pdf, Document Version
20191213

12. Selfridge, B.: GRIFT: A richly-typed, deeply-embedded RISC-V semantics written
in Haskell. In: SpISA 2019: Workshop on Instruction Set Architecture Speci�cation
(Sep 2019), https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf

13. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., Vigna, G.: SOK: (state of) the art of
war: O�ensive techniques in binary analysis. In: 2016 IEEE Symposium on Security
and Privacy (SP). pp. 138�157 (2016). https://doi.org/10.1109/SP.2016.17

14. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423�436 (Jul 2008).
https://doi.org/10.1017/S0956796808006758

15. System C Standardization Working Group: IEEE Standard for Standard SystemC
Language Reference Manual. Tech. rep., IEEE (2012). https://doi.org/10.1109/
IEEESTD.2012.6134619

16. Tempel, S., Herdt, V., Drechsler, R.: SymEx-VP: an open source virtual prototype
for OS-agnostic concolic testing of IoT �rmware. Journal of Systems Architecture
p. 12 (2022). https://doi.org/10.1016/j.sysarc.2022.102456

https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2887747.2804319
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/2578854.2503791
https://github.com/mit-plv/riscv-semantics
https://github.com/mit-plv/riscv-semantics
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494
https://doi.org/10.1109/DAC18072.2020.9218494
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscvarchive/ISA_Formal_Spec_Public_Review
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1016/j.sysarc.2022.102456

	Versatile and Flexible Modelling of the RISC-V ISA

