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Abstract. We present an operational semantics for a subset of a programming 

language that serves as the foundation for a reactive computing environment 

(ZenSheet) that generalizes spreadsheets with functional abstraction and com-

posable containers, while supporting static typing alongside the dynamic typing 

(unitype) approach found in commercial spreadsheets. 
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1 Introduction 

As recognized by computer science researchers, though not yet by most people, 

spreadsheets are computing environments and spreadsheet modeling is a form of 

computer programming [SPJ 2003] [Hermans 20??]. VisiCalc, introduced in 1979, is 

credited as the killer app that ignited the personal computing revolution. Over 40 

years later, spreadsheets are still going strong. 

 

Spreadsheets combine an equation based functional-reactive computing paradigm 

with an intuitive visual interface. Unfortunately, the elegance of that equational para-

digm was stained by the addition of various programming adjuncts, like macros and 

scripting languages, not designed as generalizations of the language of formulae. That 

was a partial, and inadequate, response to spreadsheet shortcomings that still persist: 

• Lack of functional abstraction in worksheet formulae, with some recent exceptions 

• The implied type-system is very poor and lacks support for static type checking 

• Computation models are entangled with the view (presentation) of the same. 

The ZenSheet project [LIVE 2017] started as an expedition exploring the possibility 

of turning spreadsheets into IDEs for a suitable class of general-purpose programming 

languages, eliminating the need for extraneous programming adjuncts. 

 

The project focused on three questions: 

• What are spreadsheets like from a programming language perspective? 

• Is it possible to extend spreadsheets with modern programming language concepts? 

• Will the result be amenable to spreadsheet practitioners and software engineers? 
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2 Analysis of the Traditional Spreadsheet Core 

We often use the word “core” as short for “spreadsheet core”, which can be loosely 

described as the part of a spreadsheet environment consisting of the worksheets and 

formulae (including values) contained in them. All the questions above are predicated 

on the core because it is the elegance of the core we want to extend. Taking a look at 

formulae in traditional spreadsheets, we can infer the following abstract grammar: 

 
 

XLS.1) E → ? | <error> | true | false | <number> | <string> 

XLS.2) E → <symbol>(E, ..., E) 

XLS.3) E → <A1> | <symbol> ! <A1> 

XLS.4) E → <A1>:<A1> | <symbol> ! <A1>:<A1> 

Listing 1: abstract syntax of spreadsheet core formulae 

The productions above correspond to literal constants (including null values), function 

application, single cell reference, and cell range reference. Note that all forms of cell 

reference use A1 notation, optionally prefixed with a worksheet label, considered a 

symbol for practical purposes, followed by an exclamation point. Deliberately, we 

don’t include aliases for worksheet regions among valid cell references because they 

are a poor substitute for properly defined named variables. 

 

We consider operations on worksheets, which we call actions, an integral part of the 

spreadsheet computing paradigm. Limiting ourselves to the core, these operations can 

only be performed interactively by users, since (fortunately) formulae are essentially 

devoid of side effects other than, for instance, changing the internal state of random 

number generators. Here we show the abstract grammar of actions: 

 
 

XLS.5) A → add <symbol>; | remove  <symbol>; 

XLS.6) A → <symbol>!<A1> := ‘E’; 

XLS.7) A → <range> := values(<range>); 

XLS.8) A → <range> := formulae(<range>); 

XLS.9) A → <alter>(<symbol>, dim, start, n); 

where <range> → <symbol> ! <A1>:<A1> 

and <alter> → insert | delete 

Listing 2: abstract syntax of actions in the spreadsheet core 
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The actions correspond to adding and removing worksheets, editing a cell, performing 

copy and paste operations (of formulae or values), and insert/delete operations on 

worksheet rows and columns. 

 

{ conclude section with the following points … } 

 

The need to automate actions performed by users was the trigger for the addition of 

the imperative programming adjuncts that did not honor the language of formulae in 

the core. 

 

{ Explain the advantages of our language-centric approach } 

 

{ Introduce the following section } 
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3 Lilly Design Considerations 

{ This section needs a LOT of work } 

… In [ICICT 2021] we describe our proposed generalization of the spreadsheet core:  

 

Types 
 

ZT.1) T → null | error | bool | number | string 

ZT.2) T → fun(T, …, T) => T 

ZT.3) T → array[, …,] => T 

ZT.4) T → struct(T, …, T) 

ZT.5) T → lazy T 

ZT.6) T → var 

ZT.7) T → <symbol> 

Expressions 
 

XLS.1) E → ? | <error> | true | false | <number> | <string> 

XLS.3) E → < A1 > | <symbol> ! < A1 > 

ZSE.1) E → <symbol> 

ZSE.2) E → λ(T <symbol>, …, T <symbol>) -> E 

ZSE.3) E → E(E, …, E) 

ZSE.4) E → (E, …, E) 

ZSE.5) E → [E, …, E] 

ZSE.6) E → E[E, …, E] 

ZSE.7) E → E:E 

ZSE.8) E → E..E 

ZSE.9) E → ‘E’ 

Actions 
 

ZSA.1) A → type <symbol> = T; 

ZSA.2) A → T <symbol> := E; 

ZSA.3) A → E := E; 

Listing 3: abstract syntax of Lilly 
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Explain how this paper is a continuation  of 

[ICICT 2021] https://ieeexplore.ieee.org/document/9476942 

 

[ICICT 2021] informally describes how Lilly covers the functionality of the spread-

sheet core. Given ZenSheet’s language-centric approach, it is only fair to demand a 

more precise semantic definition of Lilly. This paper is a step in that direction. 

 

{ clean, consolidate and remove as much as possible for brevity } 

 

Lilly easier to understand design choices => language 

 

major inspiration: spreadsheets 

A1 notation is to be considered harmful 

The only symbols defined by the user are the worksheets names (actually labels) 

Worksheets effectively are 2D regions of memory and users are the allocators 

 

unification of spreadsheets and general-purpose computing environments 

adopting widely accepted principles of programming language design 

– [LIVE 2017] [ICICT 2021] 

 

{ explain this: ZenSheet has been radical in following a language-centric approach } 

 

Two implementations: from interpreter to transpiler - from codename Peano to Lilly 

 

{ mention how spreadsheets have evolved since LIVE 2017 } 

 

Relatively recently Microsoft added ... 

- Dynamic arrays (2019) 

- Lambda expressions (2020) 

 

Mention other work: 

 

- Conal and Hudak FRP 

- Haxcell 

- Peter Sestoft – Corecalc and Funcalc 

- Lustre 

- Clean? Others? 

 

The state of a spreadsheet is described by its worksheets and the formulae contained 

in them. 

 

Worksheets are the only data structures supported. 

 

[SPJ 2003] 
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Interaction is of the essence. Imperative programming adjuncts evolved from the need 

to automate said interactions. 

 

Our view of consider user interaction of the essence 

cells formulae -> values 

Define RV, CV and the =RV=> transform 

Changing a cell ➔assignment 

 

Separating expressions from actions  

 

How Lilly extends Christopher Strachey [Strachey 1967] 

l-value, c-value, r-value 

modified eval rules 

 

compute cycle semantics - consistent view 

model evolution - mutation 

discretized synchronous reactive computing 

 

A1 notation had to be honored 

worksheets: array[,] => lazy var  

support for A1 notation, including copy & paste values and formulae  

 

static typing 

 

ZenSheet 

 

compute cycle semantics - consistent view 

definition blocks 

model healing 

circularity 

 

MS-Excel dynamic circular definition  
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4 Zilly 

We assume a fictitious (idealized) system that can handle arbitrarily large integer 

numbers and has capacity for an unlimited, but finite, number of variables. The type 

𝑖𝑛𝑡 (integer) is the only basic type available. The syntax shown here is to be taken as 

a representation of an abstract syntax: it is not the concrete syntax of Zilly - which in 

turn is a small subset of Lilly’s syntax - but has a direct correspondence to it. 

 

4.1 Syntax 

Types: 

 𝑇 ⇒ 𝑖𝑛𝑡 (1) 

 𝑇 ⇒ (𝑇 => 𝑇) (2) 

 𝑇 ⇒ 𝑙𝑎𝑧𝑦 𝑇 (3) 

Expressions: 

 𝐸 ⇒ < 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 > (4) 

 𝐸 ⇒ < 𝑠𝑦𝑚𝑏𝑜𝑙 > (5) 

 𝐸 ⇒   𝑇 < 𝑠𝑦𝑚𝑏𝑜𝑙 > => 𝑇 → 𝐸 (6) 

 𝐸 ⇒  𝐸 𝐸 (7) 

 𝐸 ⇒  𝑖𝑓(𝐸, 𝐸, 𝐸) (8) 

 𝐸 ⇒  ′𝐸′ (9) 

Actions: 

 𝐴 ⇒  𝑇 < 𝑠𝑦𝑚𝑏𝑜𝑙 > ∶= 𝐸; (10) 

 𝐴 ⇒ < 𝑠𝑦𝑚𝑏𝑜𝑙 > ∶= 𝐸; (11) 

4.2 Zilly Subsets 

Though Zilly appears fairly small, there are three subsets worth mentioning: 

• Eliminating (11) we ditch imperative programming. 

• Eliminating (3) and (9) we let go of lazy evaluation. – Bye to reactive behavior. 

• Eliminating (3), (9), and (11) … we still have a Turing-complete language! 
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{ Mention (reiterate?) why (11) follows from our design goal of modeling user in-

teraction and the evolution of the computing model. } 

 

The conditional expression 𝑖𝑓 in rule (8), which has exactly the same syntax as the 

IF function in MS-Excel, is a special form: the first expression, which must have 

r-type int, is evaluated first and, depending on the resulting value, either the second or 

the third expression, which must have the same r-type, is evaluated to yield the final 

result of the entire conditional expression. 

 

The derivation rules (6) and (7) correspond to functional abstraction and functional 

application respectively. Given a functional abstraction of the form 

 𝜃 𝜐 −>  𝜑 (12) 

and the following typing judgment implication  

 𝛤, 𝜐: 𝜃 ⇨  𝛤, 𝜐: 𝜃, 𝜑: 𝜏  (13) 

the r-type of the functional abstraction is 𝜃 =>  𝜏 

 𝛤, 𝜃 𝜐 −>  𝜑: 𝜃 =>  𝜏  (14) 

Moreover, given these two typing judgments 

 𝛤, 𝜆: 𝜃 =>  𝜏 ∧  𝛤, 𝜇: 𝜃 (15) 

we can conclude that the r-type of the functional application 𝜆 𝜇 is 𝜏 

 𝛤, 𝜆 𝜇: 𝜏 (16) 

A complete list of typing judgments for expressions is provided in Appendix T. 

4.3 Expression Evaluation 

 𝜂 = 𝑅𝑉 =>  𝜂 (17) 

 𝜐 = 𝑅𝑉 =>  𝑅𝑉(𝐶𝑉(𝜐)) (18) 

 𝜃 𝜐 −>  𝜑 = 𝑅𝑉 =>  𝜃 𝜐 −>  𝜑 (19) 

 𝜆 𝜇 = 𝑅𝑉 =>  𝑅𝑉(𝑅𝑉(𝜆) 𝑅𝑉(𝜇)) (20) 

 (𝜃 𝜐 −>  𝜑)(𝛼)  = 𝑅𝑉 =>  𝑅𝑉(𝜑[[𝜐/𝛼]]) (21) 

 𝑖𝑓(𝛿, 𝜑, 𝜓)  = 𝑅𝑉 =>  𝑅𝑉(𝑖𝑓(𝑅𝑉(𝛿), 𝜑, 𝜓)) (22) 

 𝑖𝑓(0, 𝜑, 𝜓)  = 𝑅𝑉 =>  𝑅𝑉(𝜓) (23) 

 𝑖𝑓(𝜂, 𝜑, 𝜓)  = 𝑅𝑉 =>  𝑅𝑉(𝜑)    { where 𝜂 ≠ 0 } (24) 

 ′𝜑′ = 𝑅𝑉 =>  𝜑 (25) 
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4.4 Predefined Zilly Functions 

We stipulate that the Zilly VM offers the following functions. 

 :: 𝑙𝑡 ∶=  𝑖𝑛𝑡 𝑥 −>  𝑖𝑛𝑡 𝑦 −>  𝑥 <  𝑦; (26) 

 : : 𝑚𝑖𝑛𝑢𝑠 ∶=  𝑖𝑛𝑡 𝑥 −>  𝑖𝑛𝑡 𝑦 −>  𝑥 −  𝑦; (27) 

 : : 𝑟𝑎𝑛𝑑𝑜𝑚 ∶=  𝑖𝑛𝑡 𝑘 −>  𝒓𝒂𝒏𝒅𝒐𝒎(𝑘); (28) 

 : : 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 ∶=  𝜽′ 𝜐 −>  𝑪𝑽(𝜐); (29) 

All the “magic” essence is in orange. The operators ‘-’ and ‘<’ are the infix binary 

arithmetic operators for subtraction and precedence. Given a positive, non-zero, 

𝑖𝑛𝑡 value 𝑘, the 𝒓𝒂𝒏𝒅𝒐𝒎 function returns a random int number 𝑟, 0 ≤ r < 𝑘. We also 

stipulate that 𝒓𝒂𝒏𝒅𝒐𝒎(0) always returns 0 and 𝒓𝒂𝒏𝒅𝒐𝒎(n) = -𝒓𝒂𝒏𝒅𝒐𝒎(-n) for 

negative n. 

4.5 Compute Cycle Semantic 

Actions change the state of the system. If correctly typed, action (10) defines a new 

variable and action (11) changes the value of a variable.  

 

{ define compute cycle } 

 

{ show compute cycle eval algorithm in Appendix } 

 

Property: memoized values are consistent with formulae in the computation model. 

Mutually recursive definitions 

 

What about mutually recursive definitions? They are also handled. 

 

{ briefly explain the two approaches we implemented to do so } 
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5 Generalization to Lilly 

{ give an informal overview of the generalization of the above to: } 

 

- multidimensional and dynamic arrays 

- product types: tuples and structs 

- more basic types and the addition (gradual typing) of the unlabeled variant type var 

 

{ provide insight into the implications of having containers and lazy evaluation } 

{ give a semi-formal proof of this: } given our definition of lazy T and var, we have: 

 𝑣𝑎𝑟 = 𝑙𝑎𝑧𝑦 𝑣𝑎𝑟 (30) 

6 “Outro” 

{ future directions – probably omit for brevity or move details to appendix } 

6.1 mixed eager-lazy evaluation 

The quoting of expressions mechanism makes it possible to defer evaluation The 

eager evaluation mechanism makes it possible to override the deferral. The evaluation 

process allows arbitrary use of these mechanisms on different parts of an expression 

and even nesting them without restrictions, making it possible to switch between ea-

ger and lazy evaluation at will. To specify with precision the method herein described, 

consider the following syntax of expressions: 

E -> <int> 

E -> <symbol> 

E -> E(E, …, E) 

E -> 'E' 

E -> $(E) 

 

We extend the evaluation process according to the rules below: 

 

Eager evaluation (RV) 

RV(<int>) = <int> 

RV(<symbol>) = RV(CV(<symbol>)) 

RV(E[f](E[1], …, E[k])) = RV(E[f])(RV(E[1]), …, RV(E[k])) 

RV('E') = XV(E) 

RV($(E)) = RV(E) 

 

Deferred evaluation (XV) 

XV(<int>) = <int> 

XV(<symbol>) = <symbol> 

XV(E[f](E[1], …, E[k])) = XV(E[f])(XV(E[1]), …, XV(E[k])) 
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XV('E') = ‘XV(E)’ 

XV($(E)) = RV(E) 

 

Also ➔ full evaluation and lazy* T 

6.2 lazy propagation 

DX. Laziness propagation 

Lazy propagation is a transform that “cures” function calls that would otherwise fail 

type checking. To illustrate laziness propagation with an example, let’s consider the 

following definitions: 

:: f := fn(int x, int y) => int -> … ; 

:: a := 3; 

:: b := 4; 

:: c := 6; 

:: d := 7; 

Function f’s body is not material to the example. Let’s pretend we try to call f as fol-

lows: 

f(a + b, ‘c + d’) 

In principle, the call above is not allowed because function f expects an integer value 

as the second argument, not an unreduced expression. The following calls, however, 

would be fine: 

‘f(7, c + d)’ 

‘f(a + b, c + d)’ 

Instead of deferring the evaluation of c + d, which implies the evaluation of c and d as 

well, we can defer the call expression in its entirety. In the first case we evaluate the 

argument passed as the x parameter before quoting the call expression (i.e., propagat-

ing laziness), in the second we don’t.  

When enabled by the user’s preferences, laziness propagation will perform one of the 

transformations above automatically. As is always the case, the result of evaluating 

the quoted expression is the enclosed expression, still unreduced: 

 ‘f(7, c + d)’ =RV=> f(7, c + d) 

 ‘f(a + b, c + d)’ =RV=> f(a + b, c + d) 

Note how both transformations above result in an expression of type lazy int, which 

may in turn cause further propagation of laziness. 

Analogous transformations apply when using operators. This should be unsurprising 

given that operators are nothing but “syntactic sugar” for calling functions. For in-

stance, function f in the example above may in fact be a function that calculates the 

product of its arguments. If so, the Lilly VM could implement the “star” (*) operator 

by converting each use into the corresponding function call, i.e.: 

x * y is de-sugared (converted) to f(x, y) 

Looking at the case at hand from the perspective of using operators, and assuming 

there is no support for laziness propagation, we have: 

(a + b) * ‘c + d’ =RV=> ERROR (fails type checking for the same reason stated 

above) 
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There are two possible transformations. If post eval propagation is enabled, the argu-

ments are evaluated before laziness is propagated: 

(a + b) * ‘c + d’ =RV=> 7 * (c + d) 

Note that there is no need to enclose the expression ‘c + d’ in parenthesis on the left 

of the transformation rule above: the quotes themselves serve as parenthesis. Howev-

er, to preserve proper parsing after removing the quotes, the expression c + d must be 

enclosed in parenthesis on the right. 

If pre eval propagation is enabled, laziness is propagated before the arguments are 

evaluated: 

(a + b) * ‘c + d’ =RV=> (a + b) * (c + d) 

Looking at the function call alone in the examples above, it is not clear what added 

value laziness propagation provides. But when we look at the use of an expression in 

the context of a variable definition, the benefits become clear. For instance, in the 

following definition: 

lazy int z := (a + b) * ‘c + d’; 

the Lilly VM  will perform laziness propagation while evaluating the initializer. The 

result then becomes the CVALUE of variable z, according to the assignment rules. 

Depending on the propagation flavor enabled, we end up with one of the following 

states for z: 

 

formula(z) ==> 7 * (c + d) 

formula(z) ==> (a + b) * (c + d) 

In the first case (post eval propagation) z is a lazy variable that only depends on c and 

d. In the second case, z depends on all the other variables. The first case is the default 

setting: it has the obvious advantage of freezing the result of evaluating part of the 

expression, a + b in this case, at the time of initialization. What we have here is a “toy 

example”, but there are situations where we need to perform a costly computation to 

determine part of an expression (e.g., a model coefficient) which we know won’t need 

to be changed after it is determined. In this case, freezing that result and embedding it 

in a formula can have a very significant impact on performance. The second case can 

have some advantages in the fields of symbolic processing and generative program-

ming. 
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7 Appendix A, B, … TBA 

7.1 Lilly Code Examples 

Shows the consequence of the double evaluation mentioned above. 

:: txx := fn(lazy lazy int x) => lazy int 

  -> x * x - 4 * x + 3; 

:: a := 6; 

:: b := 7 

 

txx(a + b) ==> 120 

txx('a + b') ==> 120 

txx(''a + b'') ==> (a + b) * (a + b) - 4 * (a + b) + 3 

{ … add a few good ones later … }



14 

  

7.2 Compute Cycle 

{ convert to more legible pseudo-code } 

bool LazyVar::reduce(evn_t cycle) const 

{ 

  // Realization of the two-count ev-cycle algorithm ... 

  if (evn_comp_ == cycle) { 

    if (evn_last_ == cycle) { 

      ++statistics.hits_; 

      return false; 

    } else { 

      evn_comp_ = cycle; 

      reduced_ = ABT::Invalid("#REF!", "circular ref"); 

      ++statistics.invalid_; 

      return true; 

    } 

  } else { 

    evn_comp_ = cycle; 

    ++statistics.folds_; 

    ABT previous = reduced_; 

    reduced_ = optimized_.reval(cycle); 

    evn_last_ = cycle; 

    if (reduced_.is_invalid()) { 

      ++statistics.invalid_; 

    } 

    previous_ = previous; 

    if (previous == reduced_) { 

      return false; 

    } 

  } 

  return true; 

} 
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7.3 Some actual model screenshots, just in case (?) 
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