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Abstract. For more than two decades, functional programmers have
studied and refined the persistent red-black tree—a data structure of
unrivaled elegance. This paper presents another step in its evolution by
optimizing insertion and simplifying deletion.
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1 A Quick Recap

A red-black tree is a self-balancing binary search tree [5,1]. Operations rebalance
the tree so it never becomes too lopsided. To do so, every node carries an extra
bit that “colors” it either red or black:

data Color = Red | Black
data Tree a = E | N Color (Tree a) a (Tree a)

Insertion and deletion use chromatic information to maintain two invariants:

1. Red-red invariant. A red node may not have a red child.
2. Black-height invariant. The number of black nodes along all paths through

the tree (the black height) is the same.

These two properties imply that the tree is roughly balanced. The longest
possible path through the tree, alternating red and black nodes, is at most twice
as long as the shortest path, containing just black nodes. Naively inserting or
deleting nodes from the tree may violate these invariants. Hence, the challenge
of implementing red-black trees is repairing the invariants after a modification.

2 Insertion à la Okasaki

Let’s review the insertion algorithm of Okasaki [7]. In an ordinary binary search
tree, insertion works by traversing the tree and replacing a leaf with the desired
value. For a red-black tree, insertion’s first step is the same, with the new node
colored red:
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Fig. 1. Balance

Doing so may introduce a red-red violation if the leaf’s parent happens to be
red. A balance function resolves such red-red violations. A violation can come
in one of four shapes that balance eliminates in the same way; see Figure 1.

To simplify the definition of balance, nodes of each color can be constructed
and matched using pattern synonyms:

pattern R a x b = N Red a x b
pattern B a x b = N Black a x b

Realizing Figure 1 as code is now a straightforward, if tedious, exercise:

balance (B (R (R a x b) y c) z d) = R (B a x b) y (B c z d)
balance (B (R a x (R b y c)) z d) = R (B a x b) y (B c z d)
balance (B a x (R (R b y c) z d)) = R (B a x b) y (B c z d)
balance (B a x (R b y (R c z d))) = R (B a x b) y (B c z d)
balance s = s

Since balance can turn the top-most black node red, this may induce a red-
red violation one level up the tree. Thus, insert must balance at every level.
This “bubbles” the violation all the way up the tree. At the end, insert blackens
the root to resolve the last potential violation:

insert x s = (blacken . ins) s
where ins E = R E x E

ins (N k a y b)
| x < y = balance (N k (ins a) y b)
| x == y = N k a y b
| x > y = balance (N k a y (ins b))

blacken (N _ a y b) = B a y b

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html
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3 Insertion, Faster

When balance produces a black node, it can’t possibly induce a red-red violation
further up the tree. Since the rest of the tree satisfies the red-red invariant, there’s
no more work to be done; every subsequent balance is unnecessary.

If there were a way to short circuit those balances, insert could avoid much
unneeded pattern matching. A new data type1 makes this possible:

data Result a b = D a | T b

A Result contains a tree where either the work is done, constructed with D, or
there is more work to do, constructed with T. Trees marked with D don’t violate
a red-black tree invariant, while trees marked with T may. Trees marked with D
can be passed forward unaffected, while trees marked with T must be fixed by
calling functions like balance.

A Monad instance for Result supports this use case. A tree where more work
needs to be done will be given to the function f, while a tree that’s done will
propagate:

instance Monad (Result a) where
return x = T x
(D x) >>= f = D x
(T x) >>= f = f x

Two functions on Result values will also prove useful. The fromResult func-
tion extracts trees from a Result

fromResult (D x) = x
fromResult (T x) = x

and <$$> applies a function to both sides of a Result2

f <$$> (D x) = D (f x)
f <$$> (T x) = T (f x)

Equipped with Result, suspended calls to balance further up the tree can
be bypassed by wrapping a subtree in D. As mentioned before, it’s safe to do so
whenever balance produces a black node. After this point, no red-red violations
are possible; see the highlighted case below. Here is the new balance function:

balance (B (R (R a x b) y c) z d) = T (R (B a x b) y (B c z d))
balance (B (R a x (R b y c)) z d) = T (R (B a x b) y (B c z d))
balance (B a x (R (R b y c) z d)) = T (R (B a x b) y (B c z d))
balance (B a x (R b y (R c z d))) = T (R (B a x b) y (B c z d))
balance (B a x b) = D (B a x b)
balance (R a x b) = T (R a x b)

1 This type is the same as Either, but with more convenient constructors.
2 Note that <$$> is not fmap. The functor instance implied by the monad applies a

function only to T values.
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Now that balance returns a Result value, insert must handle it. The
essence of this function, however, remains the same:

insert x s = (blacken . fromResult . ins) s
where ins E = T (R E x E)

ins (N k a y b)
| x < y = balance =<< (\a -> N k a y b) <$$> ins a
| x == y = D (N k a y b)
| x > y = balance =<< (\b -> N k a y b) <$$> ins b

What’s to be gained for all this trouble? Without much effort, insertion can be
up to 1.5× faster using this approach. See Section 5 for details.

4 Deletion, Simpler

Let’s turn our attention to delete. As with insert, the function starts off like
any old binary search tree algorithm. If possible, it replaces the target node with
its in-order successor. Otherwise, it’s at a base case where no right child exists.
The following diagram shows all three base cases:

y
y

x
x y

Deleting a red node doesn’t introduce a black-height violation, but deleting a
black node might if its left child can’t be blackened. Recall that insert always
adds a red node, possibly causing a red-red violation. Subtrees are wrapped in
T if there might be a violation and D if there isn’t. For delete, the right-most
base case always causes a black-height deficit. Thus, subtrees are wrapped in T
if there definitely is a deficit and D if there isn’t.

Just like insert needs balance, delete needs a function that can repair the
black-height invariant at every level of the tree. That’s the job of raiseL and
raiseR. These functions attempt to increase the black height of the left and
right child, respectively. If it can’t, it equalizes the black heights and bubbles
the violation up.

Consider raiseL, where the left child, labeled a, is black-height deficient.
There are two cases to consider: when its sibling is black and when its sibling is
red. Here’s the first case, where the sibling is black and the root is any color:
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To equalize the black heights, raiseL reduces the black height of the right
child by reddening it. Now the whole tree is deficient. Not only that, but this
can introduce a red-red or even the dreaded red-red-red violation. A variant of
balance, called balance', is responsible for handling both of these issues:

raiseL (N k a y (B c z d)) = balance' (N k a y (R c z d))
raiseR (N k (B a x b) y c) = balance' (N k (R a x b) y c)

The purpose of balance' is threefold: resolve red-red violations, resolve red-
red-red violations, and increase the black height by one if possible. To accomplish
this, it acts like balance except the root color is preserved in the case of a viola-
tion and blackened otherwise. Differences compared to balance are highlighted:

balance' (N k (R (R a x b) y c) z d) = D (N k (B a x b) y (B c z d))
balance' (N k (R a x (R b y c)) z d) = D (N k (B a x b) y (B c z d))
balance' (N k a x (R (R b y c) z d)) = D (N k (B a x b) y (B c z d))
balance' (N k a x (R b y (R c z d))) = D (N k (B a x b) y (B c z d))
balance' s = blacken' s

Unlike balance, balance' never introduces a red-red violation further up
the tree since it never turns a black node red. Additionally, if the top-most node
is red, then balance' always returns a D result. It only returns T when blacken'
encounters a black node:

blacken' (R a y b) = D (B a y b)
blacken' s = T s

Next, let’s look at the case where the sibling is red. Here, raiseL applies
a rotation that doesn’t affect any black heights and then raises the left child
recursively:
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After the rotation, a is still deficient and the other subtrees are unchanged. How-
ever, as noted before, balance' resolves a black-height violation when called on a
red node. Thus, it’s guaranteed that the recursive call to raiseL will successfully
increase the black height of a, yielding a valid red-black tree:

raiseL (N k a y (R c z d)) = (\a -> B a z d) <$$> raiseL (R a y c)
raiseR (N k (R a x b) y c) = (\b -> B a x b) <$$> raiseR (R b y c)

That’s it. Figure 2 contains the rest of the code, which composes the presented
functions into a complete algorithm.
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delete x s = (fromResult . del) s
where del E = D E

del (N k a y b)
| x < y = raiseL =<< (\a -> N k a y b) <$$> del a
| x == y = delCur (N k a y b)
| x > y = raiseR =<< (\b -> N k a y b) <$$> del b

delCur (R a y E) = D a
delCur (B a y E) = blacken' a
delCur (N k a y b) = raiseR =<< (\b -> N k a min b) <$$> b'

where (b', min) = delMin b

delMin (R E y b) = (D b, y)
delMin (B E y b) = (blacken' b, y)
delMin (N k a y b) = (raiseL =<< (\a -> N k a y b) <$$> a', min)

where (a', min) = delMin a

Fig. 2. Delete

5 Performance Evaluation

Using monads to communicate balancing information yields a unified and ele-
gant presentation of both insertion and deletion; critically though, these variants
also perform as well or better than existing algorithms. Figure 3 and Figure 4
summarize the results of a performance evaluation for several red-black tree
implementations.

These measurements were collected on a Linux machine running an Intel
Xeon E3 processor at 3.10 GHz with 32 GB of RAM. Since different implemen-
tations were originally written in different languages, they were all ported to
Racket [3] and run with Racket 8.3 CS. Every sample ran the entire sequence of
operations 5 times and 100 such samples were collected for each configuration.

Each implementation was tested with inputs in ascending order and in a
random order. The line plots show the execution time across several tree sizes,
while the box plots show the execution time for 220 elements. Lower is better.

Monadic insertion is about 1.16× faster than Okasaki’s [7]’s original when in-
serting 220 elements in a random order. When the input sequence is in ascending
order, this improvement increases to about 1.57× faster.

Monadic deletion performs the same, or a tad better, than the best exist-
ing algorithm of Filliâtre and Letouzey [2]. On a randomly distributed deletion
sequence, their performance exactly coincides. The monadic algorithm is signif-
icantly faster than the approaches of Kahrs [6] and Germane and Might [4].

6 Related Work

Okasaki [7] gave a beautiful account of insertion, but omitted any discussion of
deletion. Deletion is more difficult because black-height invariance is a global
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Fig. 3. Performance of red-black tree insertion (lower is better).
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Fig. 4. Performance of red-black tree deletion (lower is better).
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property; whether a subtree violates the black-height invariant can be deter-
mined only through inspection of the entire tree. To avoid this, a subtree must
somehow indicate that its black height is too small—that it’s black-height defi-
cient. Every paper on red-black trees does this differently.

Filliâtre and Letouzey [2] develop an implementation where black-height de-
ficiency is handled in an ad-hoc way using a threaded Boolean. Germane and
Might [4] use a “double-black” color to serve the same function. Kahrs [6] de-
scribes a significantly different approach that maintains an additional invariant
during the deletion process: black nodes are always deficient and red nodes are
never deficient. Thus, the information is communicated implicitly instead of ex-
plicitly.

Germane and Might report that their double-black algorithm has poor per-
formance—substantially worse than the one given by Kahrs. However, their eval-
uation was fatally flawed; it measured a version of the double-black algorithm
with a suboptimal order of conditional branches. Reordering these branches
greatly improves performance. Figure 4 uses a variant of Germane and Might’s
code without this pathology.

7 Conclusion

Given the beauty of red-black tree insertion, the absence of a deletion algo-
rithm that is simultaneously efficient and simple has been unfortunate. Using
the Result monad to indicate black-height deficiency yields an implementation
that is fast, and remains easy to understand. The same monadic style can be ap-
plied to insertion as well. This yields a faster algorithm, without compromising
on elegance.
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