
The FSM Interface with Graphviz

Joshua M. Schappel and Marco T. Morazán

Seton Hall University, South Orange, NJ, USA
jmschappel12@gmail.com|morazanm@shu.edu

Student Research Article

Abstract. Rendering graphs in an appealing manner is hard to do. For
this reason, many programming languages interface with a library to
render such graphics. There is very little in the literature, however, on
how such an interface is implemented and on how the interface is inte-
grated into the software architecture of a language. This article presents
the interface to a graph-rendering library, Graphviz, developed for a
domain-specific language, FSM, to program state-based machines. Design
and implementation choices are discussed in the context of the FSM soft-
ware architecture. The goal is to share the design and implementation
choices made so that others may learn from them and implement such
an interface for the programming language of their choice.

1 Introduction

FSM1 (Functional State Machines) is a domain-specific language (DSL) imple-
mented in Racket for the automata theory and formal languages classroom [14].
In addition to easily defining state-based machines, grammars, and regular ex-
pressions, programmers may implement algorithms stemming from constructive
proofs. Furthermore, FSM provides automated facilities to render a machine’s
transition diagram and to visualize machine execution. Both of these facilities
require drawing graphs. Drawing graphs, however, is a complex and costly task
that requires automation [11]. Without automation, FSM programmers are dis-
tracted from their primary task which is to implement a machine or a construc-
tion algorithm.

Given that drawing graphs is complex, the main impetus for current research
on computer-aided graph drawing is to facilitate the visual analysis of various
kinds of complex networked or connected systems [12]. Several graph drawing
libraries have been built and successfully deployed. Among the most successful
is Graphviz. Graphviz is an open-source software project used to help visualize
information as abstract graphs and networks [9]. An attractive Graphviz feature
is that it arranges nodes in an appealing manner. This liberates users from the
burden of choosing an appealing graph layout. Another attractive characteristic
is that it is programming-language independent. This achieved by providing a

1 The reader may explore documentation and download from: https://

morazanm.github.io/fsm/ .

https://morazanm.github.io/fsm/
https://morazanm.github.io/fsm/


DSL, called the DOT language, to create graph images. For a programmer using,
for example, a functional language this is a mixed blessing. On the one side, the
graph layout and rendering problem is solved for them. On the other, they must
learn and use the DOT syntax.

Many higher-level programming languages hide the details of the DOT syntax
by implementing an interface library to automatically generate DOT code and
graphics. Programmers only need to specify the desired graph characteristics.
This liberates programmers from using DOT syntax. Very little has been pub-
lished on how a language implementation achieves this. A language implementor
may, of course, dive into open source code to mine nuggets of implementation
wisdom. Such a process, however, is time-consuming and error-prone, because
documentation is lacking or incomplete leaving design ideas implemented and
design choices made unclear.

FSM uses Graphviz to render the transition diagrams of state-based machines
and to implement the visualization tool. An important lesson readers can walk
away with is that the implementation of such a library does not need to be a
difficult-to-understand complex system. In fact, thanks to the abstractions pro-
vided by functional programming, the individual functions required are straight-
forward to implement. This article presents FSM’s implementation of its Graphviz
library interface (for short, Graphviz library). How the Graphviz library is inte-
grated into the FSM software architecture is presented. The design choices made
are discussed and the concrete implementation of core Graphviz library functions
is presented. In this manner, any reader wishing to build a Graphviz interface
for their favorite functional programming language may build on our experience.
The article is organized as follows. Section 2 discusses related work. Section 3 de-
scribes the DOT syntax targeted. Section 4 presents the FSM software architecture.
Section 5 discusses the machine representations used in FSM’s implementation.
Section 6 presents the design and implementation of the Graphviz library. Sec-
tion 7 presents the generation of DOT code. Section 8 illustrates how it is all put
together to provide functionality to FSM programmers. Finally, Section 9 presents
concluding remarks and directions for future work.

2 Related Work

The Racket Generic Graph Library includes a feature to render a graph as a
DOT program. The primary goal of this library is not graph rendering, but users
may specify features to render a graph. It takes an imperative approach with
programmers adding nodes and edges piecemeal. In contrast, the work described
in this article liberates FSM programmers from having to specify features about
how to render a state machine’s transition diagram. Instead, FSM programmers
are presented with a standard interface for rendering transition diagrams and
for visualizing machine execution. FSM programmers do not need to know nor be
aware of the DOT syntax. Equally important, FSM developers are presented with
a versatile interface to define new transition diagrams as FSM is expanded and
are not required to be familiar with the DOT language.



Racket provides an implementation for Markov chains [10] that allows pro-
grammers to visualize them as transition diagrams. This library produces DOT

programs for directed graphs in black and white with circle nodes and single-
label edges for a given chain. Likewise, hidden from programmers, FSM produces
DOT programs for directed graphs. In contrast, the transition diagrams produced
by FSM utilize different colors and shapes to distinguish the role of a node and
have edges with multiple labels representing multiple transition rules between a
pair of states. In addition, FSM developers may customize a graph for new types
of transition diagrams. That is, they are not restricted to circle nodes in black
and white.

OCaml provides an interface for Graphviz as part of their ocamlgrpah library
[5]. Types that allow programmers to define nodes and edges to specify graph
attributes, such as colors and arrow styles, are provided. Nodes and edges are
added piecemeal. Programmers can render their created graphs as graphics by
invoking the DOT compiler. As in OCaml, FSM uses a system call to invoke the DOT
compiler. In contrast, FSM programmers do not have to invoke the DOT compiler
nor do they have to explicitly open a graphic file to visualize their state machines.
This convenience removes the burden of explicitly building graphs and graph
attributes.

Outside the functional programming world Graphviz is widely used. In Python,
for example, Graphviz is used as part of the graph-tool [2] and the graphviz

[3,15] libraries. Programmers may add nodes and edges piecemeal in an imper-
ative fashion. PlantUML uses Graphviz to render UML diagrams [6]. The UML

diagrams are generated from textual descriptions. There are many other soft-
ware projects that use Graphviz (too many to list here). In contrast to all, FSM
programmers are not required to specify graph attributes and FSM developers do
not need to be aware of the DOT syntax.

Outside the programming world, for example, DrugMap uses Graphviz to
visualize drug repositioning studies [7]. Its visualization tool converts related
database items into a DOT program to create a directed tree rendering. Users
are not required to provide graph characteristics for the tree. Similarly, FSM
programmers are not required to provide graph characteristics. These are au-
tomatically derived from the machines they define. In contrast, the transition
diagrams produced by FSM are not tree-based graphs.

3 The Dot Language Targeted

The DOT grammar allows programmers to specify detailed graph attributes such
as graph type, node characteristics, edge characteristics, and subgraph charac-
teristics [1]. The core subset of the DOT language grammar used by FSM is:

graph ::= (graph | digraph) [ID] stmt-list

stmt-list ::= [stmt [;] stmt-list]

stmt ::= node-stmt | edge-stmt | attr-stmt

node_stmt ::= node_id [attr_list]

edge_stmt ::= node_id edgeop node_id [attr_list]



1. digraph G {rankdir="LR";
2. F [color="black",shape="doublecircle",label="F"];

3. S [color="forestgreen",shape="circle",label="S"];

4. F -> F [fontsize=15, label="b,a"];

5. S -> F [fontsize=15, label="a"];}

(a) DOT program (b) Graph produced

Fig. 1: Dot code and graph produced

Keywords are in bold and square brackets indicate optional items. A graph
defines its type (undirected or directed), an optional identifier, and a statement
list defining characteristics. Each statement in a statement list describes a node,
an edge, or a set of attributes. A node statement contains a node identifier and
a list of attributes. An edge statement contains a left node identifier, an edge
operator, a right node identifier, and a list of attributes. Figure 1a displays a
sample DOT program. Line 1 indicates the construction of a directed graph named
G with an attribute indicating that the graph be laid out with edges pointing
from left to right. Lines 2–3 are node statements with attributes. Lines 4–5 are
edge statements with attributes. Evaluating the program results in the graph
displayed in Figure 1b

FSM always produces a digraph because transition diagrams indicate an au-
tomaton’s movement between states. Nodes represent states and their attributes
include color, shape, and label. For example, in Figure 1b, S is the starting state
(in a green outlined circle) and F is the only final state (in a doubled circle).
Edges represent transitions between nodes and their attributes include color,
label, and font size. For example, in Figure 1b, there is a single transition from
S to F that consumes an a and there are two transitions from F to F consuming,
respectively, b and a.

4 FSM Architecture

FSM’s implementation has four major components: FSM Core, FSM GUI, Graphviz
library, and the User Interface. FSM Core implements constructors, observers,
and random testing for state machines, grammars, and regular expressions. It
provides the bulk of the interface available to write FSM programs.

The FSM GUI implements the Visualization Tool for machine execution.
Given that the Visualization Toolmust track the state of the machine through-
out a computation, it stores more information about the machine than what is
provided to a machine’s constructor. The extra information allows users to step,
forward and backwards, through a computation’s transitions. In addition, the
Visualization Tool allows programmers to provide for each state, S, an invari-
ant predicate that ought hold when the machine enters S. During visualization,
users can see if their invariant predicates hold. This allows machines to be vali-



Fig. 2: FSM software architecture

dated before writing formal proofs. A single function, sm-visualize, is provided
to the FSM User Interface.

The Graphviz library provides the functionality to render a state machine’s
transition diagram. This is done by generating and compiling a DOT program for
a given machine instance. Finally, the User Interface is a set of functions provided
from FSM Core and FSM GUI that form the interface offered to programmers.

Figure 2 displays the FSM architecture. FSM Core provides its functionality
(constructors, observers, testers) to the FSM GUI, Graphviz library, and the
User Interface. The Graphviz library provides graphic-rendering functions to
FSM Core and FSM GUI. FSM GUI provides sm-visualize to the User Interface.
FSM Core and FSM GUI provide their internal machine representation to the
Graphviz library that uses it to generate the proper graphic-rendering function.

To bring the whole process together, consider the FSM definition for a de-
terministic finite-state automaton displayed in Figure 3. Applying sm-graph to
a-aUb* results in the graph displayed in Figure 4a. The image is obtained using
fsa->bitmap provided by the Graphviz Library and only displays states and
edges. Running the visualization tool with invariants is done as follows:

(sm-visualize a-aUb*

(list 'S S-INV) (list 'F F-INV) (list 'D D-INV))

A snapshot of machine execution is displayed in Figure 4b. The machine has
moved from S to F (edge highlighted in blue). In addition, F-INV holds (state
highlighted in green). As the reader can see machine visualization includes more
information than simply rendering the transition diagram using sm-graph. This
is why a different rendering function is required.



#lang fsm

(define a-aUb*

(make-dfa '(S F D) '(a b) ;; the states & input alphabet

'S '(F) ;; the starting and final states

'((S a F) (F a F) (F b F)) ;; the transition function

'nodead)) ;; do not add a dead state

(define (S-INV ci) (empty? ci))

(define (F-INV ci)

(and (not (empty? ci)) (eq? (first ci) 'a)
(andmap (λ (s) (or (eq? s 'a) (eq? s 'b))) (rest ci))))

(define (D-INV ci) (and (not (empty? ci)) (eq? (first ci) 'b)))

Fig. 3: A deterministic finite automaton in FSM for L = a(a ∪ b)*.

(a) Transition diagram (b) Visualization transition diagram

Fig. 4: The renderings of a-aUb*.

5 Machine Representations

5.1 FSM Core

In FSM Core, machines are represented as functions. Applying a machine, for
example, to a word returns whether or not the word is accepted or rejected.
Observers return the components (e.g., the states or the transition rules) of the
machine. In this manner, the machine may be manipulated or used to construct
new machines with which it shares components.

The components common to all machine types are defined as follows:

K = (listof state) Σ = (listof symbol) s = start state ∈ K

F = (listof state) R = (listof rules)

K is the set of states, Σ is the input alphabet, s is the starting state, F is the set
of final states, and R is the transition relation. The constructor signatures for
the different machine types are:

dfa: (make-dfa K Σ s F R) ndfa: (make-ndfa K Σ s F R)



pda: (make-ndpda K Σ Γ s F R), where Γ = stack alphabet
tm: (make-tm K Σ R s F), (make-tm K Σ R s F Y), where Y∈K

The constructors are, respectively, for deterministic finite-state automata, non-
deterministic finite-state automata, pushdown automata, Turing machine, and
Turing machine language recognizer. A Turing machine language recognizer de-
cides a language and requires, Y, a single final accepting state. A Turing machine
performs a computation instead of deciding a language.

5.2 FSM GUI

All machine types have a state list, a start state, a list of final states, a rule
list, an input alphabet, and type tag in common. This is akin to the elements
provided to a constructor in FSM Core. The Visualization Tool, however, does
not represent machines as functions. Instead, it stores all this information in a
machine structure:

(struct machine (state-list start-state final-state-list

rule-list sigma-list alpha-list type))

Deterministic and nondeterministic automatons do not require any more infor-
mation. That is, they are represented with an instance of the above structure.

In addition to the fields in a machine structure, a pushdown automata has
a stack alphabet. Its structure representation is defined as follows:

(struct pda-machine machine (stack-alpha-list))

It inherits the fields in machine and adds a field for the stack alphabet.
Similarly, Turing machines have additional fields. A Turing machine, regard-

less of subtype, requires a tape position. This is needed to highlight the position
of the head on the tape. In addition to a tape position, a language recognizer
requires an accepting final state Their structures are defined as follows:

(struct tm-machine machine (tape-posn))

(struct lang-rec-machine tm-machine (accept-state))

5.3 Adapter

Function-based and structure-based machine representations are incompatible
on the surface. Nonetheless, the Graphviz library must work with both repre-
sentations. To reduce the burden of two different machine representations on
FSM developers, an adapter pattern strategy is used [8,13]. The purpose of an
adapter is to provide the interface that an FSM component expects while using
the services of a component with a different interface. In this case, it converts
the interface of each machine representation into a single interface. In essence,
we may think of an adapter as a wrapper that hides the details of different
representations.



The adapter converts a given instance of a machine representation to a struc-
ture that contains all the data provided by either the FSM Core or the FSM GUI
representation. The structure contains a field for each component common to
both representations (e.g., the set of states) as well as additional fields con-
tained in the FSM GUI representation (e.g., the current state). In addition, the
structure contains the color-palette for color-blind options. When the adapter
constructor is called with an FSM Core machine representation the default value
for FSM GUI fields is false.

Functions may now be defined to generate a bitmap file from a given machine
representation. A given machine representation is adapted, transformed into a
graphic using Graphviz, and converted to a bitmap. In this manner, for example,
any FSM developer working on the Graphviz library needs to only reason about a
single representation. The conversion functions are displayed in Figure 5. Observe
that a single auxiliary function, graph->bitmap, is called to produce the graphic.

Given that the main functions above are provided to other modules as dis-
played in Figure 2, a contract is used for safety. The contract is:

(provide

(contract-out

[fsa->bitmap (-> any/c colorblind-opt? image?)]

[machine->bitmap (-> machine?

colorblind-opt?

(or/c dfa/ndfa-rule? pda/tm-rule? boolean?)

(or/c symbol? boolean?)

inv-state?

image?)]))

The contract above allows FSM Core and FSM GUI developers to trust that the
functions provided by the Graphviz library meet the expected specification.

6 Graphviz Core Library

Nodes, edges, and graphs are represented as structures. Nodes contain a name
and attributes. Edges contain two nodes and attributes. Graphs contain a name,
nodes, edges, formatters to convert an attribute to a string (for a DOT program),
and a set of attributes. Attributes are stored in a hash table using attribute
symbols as keys. For instance, a black double circled node named F is represented
as follows:

(hash 'color "black" 'shape "doublecircle" 'label "F")

This hash table is used to produce the following DOT code for a node:

F [color="black", shape="doublecircle", label="F"];

A formatter is a structure containing three hash tables: one for the graph,
one for graph’s node, and one for the graph’s edge. The hash tables associate an



;; core-machine symbol → bitmap

(define (fsa->bitmap fsa color-blind-mode)

(graph->bitmap (fsa->graph fsa color-blind-mode)

(current-directory)

"vizTool"))

;; core-machine symbol → image

;; Purpose: Generate graphic for given Core machine

(define (fsa->graph fsa color-blind-mode)

(define adapter

(fsa-adapter

(sm-states fsa) (sm-start fsa) (sm-finals fsa)

(sm-rules fsa) (sm-type fsa)

(if (is-tm-lang-rec? (sm-type fsa)) (sm-accept fsa) #f)

#f #f 'none (make-color-palette color-blind-mode)))

(fsa-adapter->graph adapter))

;; gui-machine symbol rule state state → bitmap

;; Purpose: Generate image for given fsm GUI machine

(define (machine->bitmap machine color-blind-mode

cur-rule cur-state inv-state)

(graph->bitmap (machine->graph machine color-blind-mode

cur-rule cur-state inv-state)

(current-directory)

"vizTool"))

;; gui-machine symbol rule state state → image

(define (machine->graph machine color-blind-mode

cur-rule cur-state inv-state)

(define adapter

(fsa-adapter

(map (lambda (s) (fsm-state-name s))

(machine-state-list machine))

(machine-start-state machine)

(machine-final-state-list machine)

(machine-rule-list machine)

(machine-type machine)

(if (is-tm-lang-rec? (machine-type machine))

(lang-rec-machine-accept-state machine)

#f)

cur-state

cur-rule

inv-state

(make-color-palette color-blind-mode)))

(fsa-adapter->graph adapter))

Fig. 5: Bitmap-generating functions for the transition diagram of an automaton.

attribute with a formatting function used to generate DOT code. If a formatter is
provided for an attribute then it is used anytime DOT code is generated for that



Fig. 6: FSM’s Graphviz Control Flow

attribute. For instance, if the value for a node label is a Boolean then a formatting
function converts a Boolean to a string. If this were the only formatting needed
then the required structure is:

(formatters

(hash) (hash 'label (lambda (b) (if b "true" "false"))) (hash)

When an attribute formatter is not provided then the attribute must be a string.

6.1 Control Flow

There are three operations that FSM’s Graphviz library performs: convert an
fsa-adapter to a DOT language program, generate a portable network graphic
(i.e., a .png file), and convert a portable network graphic to a Racket bitmap.
The generation of the portable network graphic is done using the Graphviz

compiler. The generation of a bitmap is done to display the graphic in either the
REPL or in FSM’s visualization tool. Figure 6 displays the software architecture
of the Graphviz library. The function graph->bitmap generates a bitmap from
a given adapter. It does so in three steps (denoted by dashed arrows). In the
first step, it generates a string representing a DOT program using an auxiliary
function, graph->str, to generate the DOT program for a graph. This function
uses two auxiliary functions to generate the DOT code for nodes and for edges.
In the second step, it generates the graphic by calling the DOT compiler. In the
third step, a bitmap is generated from the graphic.

The generation of a bitmap file from a graph structure is done using function
composition as follows:

(define (graph->bitmap grph dir fname)

((compose png->bitmap dot->png graph->dot) grph dir fname))



The second and third parameters, respectively, specify the directory and the
name for the bitmap file.

The generation of the DOT program from a graph saves a .dot file in the
given directory with the given name and returns the path to the generated file.
The auxiliary function, graph->str, is used to generate the DOT code. If the
filename already exists in the specified directory it is overwritten. The function
is implemented as follows:

;; graph path string → path

(define (graph->dot graph save-dir filename)

(define dot-path (build-path save-dir

(format "~a.dot" filename)))

(call-with-output-file dot-path #:exists 'replace
(lambda (out) (displayln (graph->str graph) out)))

dot-path)

To generate the portable network graphic, the extension of the .dot file is
changed to .png and a system call is made to invoke the Graphviz compiler.
If the operation is successful the path to the newly generated file is returned.
Otherwise, an error is thrown (e.g., when the Graphviz compiler is not found).
The function is implemented as follows:

;; path → path

(define (dot->png dot-path)

(define png-path (path-replace-extension dot-path ".png"))

(if (system (format "dot -Tpng ~s -o ~s"

(path->string dot-path)

(path->string png-path)))

png-path

(error "Error when creating png file")))

Finally, png->bitmap is simply an alias for Racket’s image library function
bitmap/file [4]. It is defined as follows:

;; png->bitmap: path → string

(define png->bitmap bitmap/file)

6.2 From graph to Dot Program

The function graph->dot converts a graph, its nodes, its edges, and their at-
tributes to a DOT program string. Following the DOT grammar, the first com-
ponent is the program header. It includes the type digraph, the name of the
graph, and the graph’s attributes. For example, the result of this step is line 1
in Figure 1a. This is generated using the graph formatters, if any, in the given
graph. An auxiliary function, hash->str, is used to generate the needed string
using the formatting functions. The second component of the returned program
is for the nodes and their attributes. This is generated by folding a function over
the graph’s list of nodes. This function creates a DOT line of code for each node



;; graph → string

(define (graph->str g)

(define header (format "digraph ~s \n" (graph-name g)))

(define fmtrs (graph-fmtrs g))

(string-append

header

(format "~a;\n" (hash->str

(graph-atb g)

(formatters-graph fmtrs)

";\n"))
(foldl (lambda (n a)

(string-append

a

(node->str n (formatters-node fmtrs))))

""

(graph-node-list g))

(foldl (lambda (e a)

(string-append

a

(edge->str e (formatters-edge fmtrs))))

""

(graph-edge-list g))

""))

Fig. 7: The function to generate a DOT program for a graph.

containing the node’s name and its attributes. The string for the attributes is
generated using an auxiliary function, node->str, and using the node formatting
functions. The result of this step, for instance, are lines 2–3 in Figure 1a. The
final component of the returned program is for the edges and their attributes.
It is computed in a similar fashion as the nodes and their attributes except
that graph’s edges and the edge formatting functions are used. Lines 4–5 in Fig-
ure 1a illustrate the result of this step. The function to convert a graph to a DOT

program is implemented as displayed in Figure 7.
The function hash->str traverses the entries in a hash table. Each attribute

is formatted using its formatting function if it exists and, otherwise, its value is
used. The results for the attributes are collected into a single string. The function
is implemented as follows:

;; hashtable hashtable [string] → string

(define (hash->str hash fmtr (spacer ", "))

(define (key-val->string key value)

(define fmtr-fun (hash-ref fmtr key #f))

(if fmtr-fun

(format "~s=~s" key (fmtr-fun value))

(format "~s=~s" key value)))

(string-join (hash-map hash key-val->string) spacer))



The optional argument represents the element separator. It is customizable be-
cause for graph attributes it must be a semicolon but for nodes and edge at-
tributes a comma is used.

The node->str and edge->str functions use hash->str to format the at-
tributes for nodes and edges. They are implemented as follows:

;; node hashtable → string

(define (node->str node fmtr)

(format "~s [~a];\"
(node-name node)

(hash->str (node-atb node) fmtr)))

;; edge hashtable → string

;; Purpose: Generate dot code for the given edge

(define (edge->str edge fmtr)

(format "~s -> ~s [~a];\"
(edge-start-node edge)

(edge-end-node edge)

(hash->str (edge-atb edge) fmtr)))

7 From an fsa-adapter to a DOT Program

Section 5.3 presents the adapter structure to unite the different machine repre-
sentations. The function fsa-adapter->graph generates a DOT program from a
fsa-adapter instance. The function creates an initial graph with a formatter
for the transition rules, converts states to nodes, and converts transition rules
to edges. The function is implemented as follows:

;; fsa-adapter → string

(define (fsa-adapter->graph adapter)

(fsa-rules->edges

adapter

(fsa-states->nodes

adapter

(create-graph

'G
#:fmtrs (formatters

(hash)

(hash)

(hash 'label rule-label->str))))))

The initial graph only has a formatter, rule-label->str, for an edge label. This
formatter, of course, must be able to process the rules for any machine type that
is represented by the given fsa-adapter. The function fsa-states->nodes adds
the nodes to the initial graph. Finally, fsa-rules->edges adds the edges to the
graph that contains the nodes.



7.1 Generating Labels

The rule-label->str function converts a transition rule to a Graphviz edge
label. Given that there may be multiple transitions that take a machine from
a state A to a state B, this function may produce an edge with multiple labels.
Given that the length of all the transitions from one state to another is arbitrary,
this function limits the length of any one label. If this length is surpassed then
labels are stacked. Based on this design idea, the function is implemented as
follows:

;; (listof rules) → string

;; Purpose: Generate dot code for labels

(define (rule-label->str rules)

;; (listof string) → (listof string)

;; Purpose: Generate a list of strings to stack

(define (format-lines rule-strs)

;; (listof string) → (cons (listof string) (listof string))

;; Purpose: Generate a pair: new label and unprocessed rules

(define (format-line l acc count)

(match l

['() (cons acc '())]
[`(,x ,xs ...)

(if (and (not (empty? acc))

(> (+ 2 count (string-length x)) RULE-LIMIT))

(cons acc l)

(format-line

xs

(append acc (list x))

(+ count (string-length x))))]))

(match-define (cons line xs) (format-line rule-strs '() 0))

(if (empty? lines)

'()
(cons (string-join line ", ") (format-lines xs))))

(string-join

(format-lines (map fsa-rule->label rules)) ",\n"))

The local function format-lines consumes a list of strings and returns a new list
of strings in which each string is of a length that does not exceed RULE-LIMIT.
The returned list of strings are stacked as the label for an edge by adding a
return string to each. In this manner, the transition strings are stacked as the
label for an edge. The auxiliary function format-line is used to generate the
strings to stack. It takes as input the transition strings and returns a pair. The
first element of the returned pair is the next label string to stack and the second
element is the remaining unprocessed transition strings. In essence, this function
collects all the transition strings, from the front of the given list, that fit in one
line of a label string, adds a comma at the end, and recursively processes the
remaining strings.



The function fsa-rule->label generates DOT code for a label based on the
given transition rule. It dispatches on the rule type. For finite-state automaton
the generated label contains the element read from the tape. For a pushdown
automata, the generated label contains the read element, the values popped from
the stack, and the value pushed onto the stack. For both varieties of Turing
machines, the generated label contains the element read and the action taken by
the machine. The auxiliary function stringify->value converts numbers and
symbols to their string equivalent. The function is implemented as follows:

;; rule → string

(define (fsa-rule->label aList)

(define (list->str los accum)

(match los

['() (string-append (string-trim accum) ")")]

[`(,x ,xs ...)

(list->str xs (string-append accum

(stringify-value x)

" "))]))

(match aList

;; dfa/ndfa

[(list _ input _) (stringify-value input)]

;; pda

[(list (list _ read pop) (list _ push))

(format "[~a ~a ~a]"

(stringify-value read)

(if (list? pop)

(list->str pop "(")

(stringify-value pop))

(if (list? push)

(list->str push "(")

(stringify-value push)))]

;; tm and tm lang rec

[(list (list _ b) (list _ d))

(format

"[~a ~a]" (stringify-value b) (stringify-value d))]))

7.2 Adding Nodes

The function fsa-states->nodes adds an fsa-adapter’s states to the given
graph as follows:

;; fsa-adapter graph → graph

(define (fsa-states->nodes fsa graph)

(define (fsa-state->node state graph)

(add-node graph state #:atb (build-node-hash state fsa)))

(foldl fsa-state->node graph (FSA-adapter-states fsa)))



;; symbol fsa-adapter → hashtable

(define (build-node-hash state fsa)

(define inv-state (fsa-adapter-inv-state fsa))

(define is-cur-state? (equal? state (fsa-adapter-cur-state fsa)))

(define palette (fsa-adapter-palette fsa))

(define state-type

(cond

[(and (is-tm-lang-rec? (fsa-adapter-type fsa))

(equal? state (fsa-adapter-accept fsa)))

'accept]
[(and (equal? state (fsa-adapter-start fsa))

(member state (fsa-adapter-finals fsa)))

'startfinal]
[(equal? state (fsa-adapter-start fsa)) 'start]
[(member state (fsa-adapter-finals fsa)) 'final]
[else 'default]))

(define color

(match state-type

[(or 'start 'startfinal 'startaccept)
(color-palette-start palette)]

[_ "black"]))

(define shape

(match state-type

[(or 'startaccept 'accept) "doubleoctagon"]

[(or 'final 'startfinal) "doublecircle"]

[_ "circle"]))

(define attributes `((color . ,color) (shape . ,shape)))

(make-immutable-hash

(if (and is-cur-state? (not (equal? 'none inv-state)))

(append

attributes

`((style . "filled")

(fillcolor

.

,(match inv-state

['pass (color-palette-inv-true palette)]

['fail (color-palette-inv-false palette)]))))

attributes)))

Fig. 8: Function to create a node’s attribute hash table.

The function build-node-hash builds the attribute hash table for the node.
A node’s attribute hash table is constructed from a fsa-adapter instance. There
are two attributes that must be defined for all states: color and shape. If the state
is a starting/final/accept state then its color is obtained from the color palette.
Otherwise, it is black. If the state is a Turing machine language recognizer accept
state then its shape is a double octagon. If it is a final state then its shape is a



(a) Invariant holds. (b) Invariant does not hold.

Fig. 9: Machine with invariants rendering.

double circle. Otherwise, its shape is a circle. Finally, it must be determined if
the state is the current state and if there is an invariant predicate for the state.
If so, the fill color is added to the attributes, which is obtained from the color
palette based on whether the invariant holds. Otherwise, no more attributes are
added. The implementation is displayed in Figure 8.

Figure 9 illustrates the goals achieved when invariants are provided. Observe
that the start state, S, is a green outline circle. The final state, F, is a double
circle. In Figure 9a, the machine is in S and the invariant holds (denoted by the
green filling). In Figure 9b, the machine is in F and the invariant does not hold
(denoted by the red filling).

7.3 Adding Edges

The creation of an edge’s attribute hash table is created in a similar manner
from the values in the given fsa-adapter. In the interest of brevity, its imple-
mentation is not displayed. We note that if an edge between two nodes already
exists then the transition rule is appended to the edge (i.e., a new edge is not
created). The goals achieved are also displayed in Figure 9. In Figure 9a, no
arrow is highlighted because the machine has not yet made a transition. Once a
transition is made, the arrow representing the transition is highlighted in blue
as displayed in Figure 9b.

8 Putting it all Together

The final step of the implementation is to employ the two functions provided by
the Graphviz library. As depicted in Figure 2, fsa->bitmap is provided to FSM

Core and machine->bitmap is provided to FSM GUI. FSM Core uses fsa->bitmap
to implement the primitive sm-graph provided to programmers. This primitive
consumes an FSM Core machine and returns the machine’s transition diagram as
a bitmap image. It is implemented as follows:



;; fsa [number] → image

(define (sm-graph fsa #:color [color-blind-mode 0])

(fsa->bitmap fsa color-blind-mode))

The function uses fsa->bitmap from Figure 5 to produce the graphic to display.
FSM GUI internally uses machine->bitmap to produce a graphic for the ma-

chine’s current state in the visualization tool. The image-producing function is
implemented as follows:

;; machine bool symbol symbol number → image

(define (create-dot-png machine hasRun? cur-state

cur-rule cd-opt)

(define inv-type

(if hasRun?

(determin-inv machine cur-state #:graphViz true)

'none))
(scaled-graph (machine->bitmap

machine

(get-cb-opt)

cur-rule

cur-state

inv-type)

MACHINE-TYPE))

In essence, it scales the bitmap image to fit in the visualization tool’s GUI. It
provides machine->bitmap all the necessary arguments to correctly display the
current state of the machine and the value of the invariant for the current state. A
final illustrative graphic produced is displayed in Figure 10. The graphic displays
the state of a Turing machine language recognizer for anbncn. Such a visualization
unequivocally drives home the point that the generation of such images needs to
be automated as done in FSM. It is unlikely to be insightful or productive to have
programmers (e.g., students in formal languages and automata theory course)
drawing such transition diagrams by hand.

9 Concluding Remarks and Future Work

This article presents FSM’s interface with the Graphviz library. The interface
liberates FSM programmers from having to explicitly build transition diagrams
for their state-based machines. In addition, the interface liberates FSM developers
from having to reason about each machine representation used in FSM’s software
architecture. This latter benefit is achieved by using an adapter to present a
uniform view for machines. The library described uses Graphviz’s DOT compiler
to graphically render a machine. It converts an adapter to a DOT program, invokes
the DOT compiler to create a portable network graphic, and converts the portable
network graphic to a bitmap that may be displayed in the REPL or in FSM’s
visualization tool. The generation of DOT code is done using data in an adapter



Fig. 10: Turing machine language recognizer for anbncn visualization.

and associating it with formatting functions that render attributes as strings.
This done for states and transition rules in a machine to create a transition
diagram. The bulk of the implementation of the interface is presented to assist
others to build such an interface for their desired domain. As the reader can
now appreciate, the abstractions provided by functional programming facilitate
managing the complexity of designing and of implementing such a system.

FSM is in constant growth and being expanded with new features and ma-
chines. Currently, we are working on implementing multitape Turing machines.
This will require an extension to the visualization tool to display multiple tapes.
Longer term, we wish to implement a generic visualization system for word
derivation using a regular, context-free, or context-sensitive grammar.
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