
MatchMaker: A DSL for Game-Theoretic1

Matching2

Prashant Kumar and Martin Erwig3

Oregon State University, Corvallis OR 97330, USA4

{kumarpra,erwig}@oregonstate.edu5

Abstract. Existing tools for solving game-theoretic matching problems6

are limited in their expressiveness and are difficult to use. In this paper,7

we introduce MatchMaker, a Haskell-based domain-specific embedded8

language (DSEL), which supports the direct, high-level representation of9

matching problems. Haskell’s type system, especially the use of multi-10

parameter type classes, facilitates the definition of a very general inter-11

face to matching problems, which can be quickly instantiated to a wide12

variety of different matching applications. As another novel contribution,13

MatchMaker provides combinators for dynamically updating and mod-14

ifying problem representations and for analyzing matching results.15

1 Introduction16

A large class of problems are instances of matching problems. Examples include17

the assignment of children to different schools, students to universities and cam-18

pus housing, or doctors to hospitals, kidney transplant patients to donors, and19

many others. In each of these problems, the participants in the matching process20

typically have a preferences over the entities they are matched to, and the task is21

to find a matching that is in some sense optimal with respect to these preferences.22

In addition to the traditional applications of these problems, the proliferation of23

the internet has made the collection of preferences easier, thereby opening new24

application domains for matching problems. The importance of matching is also25

highlighted by the fact that the 2012 Nobel Prize in Economics was awarded to26

Lloyd S. Shapley and Alvin E. Roth for their work on stable matching problems.27

Despite its apparent usefulness, the actual software support for expressing28

and solving matching problems is surprisingly limited in a number of ways. For29

example, the currently available software tools for solving matching problems30

are limited in expressiveness and often difficult to use. Almost all the available31

matching libraries use strings to encode the matching problem, which affects32

readability and maintainability of the encoded problems. Employing untyped33

representations limits the options for checking the validity of the encoding and34

producing meaningful error messages. As we will demonstrate, MatchMaker35

leverages Haskell’s rich type system and its type class system to facilitate high-36

level representations of matching problems that are readable, easily modifiable,37

and provide good error checking.38

Arthur Sunny Joseph Latha Darrius

City City City Mercy City

Mercy General City Mercy
Mercy General General

(a) Applicants’ hospital preferences

Mercy City General

Darrius Darrius Darrius

Joseph Arthur Arthur

Sunny Joseph

Latha Latha

Joseph

(b) Hospitals’ ranking of applicants

Fig. 1: Matching hospitals with applicants: a two-sided stable matching example.

MatchMaker already implements algorithms for a large class of matching39

problems. More specifically we implement bipartite stable matching with two-40

sided preferences, bipartite stable matching with one-sided preferences, and same-41

set matching problems with one-sided preferences. Together these represent the42

most important and widely applicable matching problems [16, 11, 7]. However,43

due to space constraints we only present the encoding of the bipartite stable44

matching problem in the paper.45

Our DSL makes the following main contributions. It:46

– offers high-level, type-safe, extensible representation for matching problems.47

– defines a scalable mechanism for describing preferences based on function48

definitions and abstract criteria.49

– provides functions to analyze and compare the results of various matchings.50

– is easily extensible to represent new matching problems.51

The remainder of this paper is structured as follows. In Section 2 we introduce52

stable bipartite matching problems with two-sided preferences and encode them53

in MatchMaker with explicit preferences. In Section 3 we illustrate how to54

represent preferences implicitly using Haskell’s abstract data types and func-55

tions. In Section 4 we introduce combinators to update the existing matching56

representations plus functions for comparing the results of two matchings. In57

Section 6, we compare MatchMaker to other tools for matching. Finally, in58

Section 7 we provide conclusions.59

2 Bipartite Stable Matching With Two-Sided Preferences60

Consider the problem of assigning applicants to hospitals, taken from NRMP’s61

website [12] for illustration. Figure 1 shows that each of the three hospitals have a62

quota of 2. There are fives applicants wishing to get a residency. Hospitals provide63

preference for applicants and vice versa. The stable matching algorithm (also64

called delayed acceptance algorithm [14, 4]) comes up with a match of residents65

to hospitals having the following two characteristics:66

2

(1) Each applicant is assigned to only one hospital and no hospital is assigned67

more applicants than its quota.68

(2) The resulting match is stable. This condition is described in the delayed69

acceptance algorithm as the match not having a blocking pair, which is a70

pair of hospital and applicant currently assigned to different partners but71

who prefer each other more than their current assignment. The presence72

of such pairs undermines the effectiveness of the matching process as these73

pairs can make private arrangements leaving behind their partners assigned74

by the matching algorithm. [16, Chapter 5] shows an example of an unsta-75

ble matching mechanism for matching doctors to hospitals in Birmingham76

and Newcastle used in 1960s and 1970s. The instability of the outcome lead77

to doctors and hospitals entering private negotiations outside the match-78

ing process which left many doctors without a position and many hospitals79

without a resident. This culminated into abandonment of the mechanism.80

Gale and Shapley [4] showed that a special property of bipartite matching81

markets is that stable matchings always exist.82

Let us try to match hospitals with applicants taking into account their prefer-83

ences and quotas. Consider the preference list of Darrius. He prefers City the84

most, and City also ranks him the highest amongst the candidates. It is easy85

to deduce that Darrius will end up at City. Now, if we look at the preference86

list of Sunny, we see that she considers just City and Mercy for her residency,87

but Mercy doesn’t rank her meaning that she can’t be assigned there. Her first88

option, City, does rank her third. However, notice that the two people ranked89

above her, Darrius and Arthur, have listed City as their first choice. If they90

are assigned the two positions, then Sunny is left without an offer as Mercy is91

the only hospital in her preference set that also ranks her. Could we have ac-92

commodated Darrius at Mercy leaving room for Sunny at City? Although this93

does lead to Sunny getting accommodated at City, it leads to an instability in94

the matching process due to formation of a blocking pair of Darrius and City:95

Darrius still prefers City over Mercy and City still prefers Darrius over Sunny,96

that is, they profit from forming their own match leaving behind their assigned97

matches.98

In this section, we demonstrate how to represent this example in Match-99

Maker and generate stable matching. To motivate the different design choices,100

it is instructive to look at the formal model of stable matching.101

2.1 Modeling Stable Matching102

A two-sided stable matching problem between applicants and hospitals is a 6 tu-
ple (A,H,PA, PH , QA, QH) where A = {a1, a2, . . . am} and H = {h1, h2, . . . hn}
represents the finite disjoint sets of applicants and hospitals, respectively [16].
The preference of each applicant a ∈ A is represented by an ordered list of
preferences P (a) on set H. Similarly, the preference of each hospital h ∈ H
is represented by an ordered list of preferences P (h) on set A. The set of all

3

preference list for applicants and hospitals is defined as PA and PH as shown
below.

PA = {P (a1), P (a2), . . . P (am)} and PH = {P (h1), P (h2), . . . , P (hn)}

Each hospital h is also assigned a positive integer Q(h), also called its quota,
that represents the maximum number of applicants it could admit. Similarly,
each applicants is also assigned a quota.

QA = {Q(a1), Q(a2), . . . Q(am)} and QH = {Q(h1), Q(h2), . . . , Q(hn)}

For the applicant-hospital matching problem, it is obvious that applicants have a103

quota of 1, since they can work at only one hospital. However, in other examples104

of matching problems with two-sided preferences, both the sets can have quotas105

greater than 1.106

Amatching is a relation µ ⊆ A×H that satisfies the following two conditions:107

(1) ∀a ∈ A : |µ(a)| ≤ QA(a) and ∀h ∈ H : |µ(h)| ≤ QH(h) and (2) µ(a) = h ⇔108

a ∈ µ(h). The first condition ensures the matching satisfies the quota restrictions,109

and the second condition ensures consistency. In our current example that means110

that a hospital is in an applicant’s match if and only if that applicant is also in111

the hospital’s match.112

The formal model guides the design of our DSL, which we demonstrate with113

the help of our example next.114

2.2 DSL Representation of Matching Problems115

The first step in encoding our example is to represent the two sets to be matched116

as Haskell data types.117

data Applicant = Arthur | Sunny | Joseph | Latha | Darrius
data Hospital = City | Mercy | General

The definitions and type signatures of various data types, type classes, and118

functions used in this section are summarized in Figure 2a. We need a way119

to store the preferences of the applicants and hospitals for which we use two120

mappings Rec (abbreviated for record) and Info, which is a collection of Recs,121

represented as a mapping.122

Specifically, Info Applicant Hospital Rank maps every applicant to a record123

Rec Hospital Rank, which maps hospitals to their ranks as specified by the124

applicant. Similarly, the ranking of applicants by hospitals is represented in125

Info Hospital Applicant Rank where the individual preferences of each hospital126

are recorded in the mapping Rec Hospital Rank.127

The multi-parameter type class Preference a b c provides an interface to128

specify the preferences. An interesting aspect of the class definition is the func-129

tional dependency specification, which signifies that types a and b uniquely de-130

termine type c. The gather function of the type class captures the preference of131

elements of set a for elements of set b using a type c and stores it in the mapping132

4

(a) Definitions for encoding and storing
preferences.

(b) Support for Representational Rank-
ings.

Fig. 2: Major Definitions of MatchMaker.

Info a b c. The smart constructors info and choices are used to construct the133

preference mappings from list of tuples.1134

Our current example requires two-sided specification of preferences. This en-135

tails two instance definitions of the Preference class, one for specifying hospitals’136

preferences and one for applicants’. However, before presenting those definitions,137

we discuss a particular design choice for the type class. One question is whether138

we should have simplified the definitions of the Info mappings and consequently139

the Preference class by removing their last type argument and hard-coding the140

Rank in the definitions instead. This would mean that the rank of an item is spec-141

ified by the position of that item in a list. While this does simplify the design,142

the constraint to relate the items being matched in just one way also limits the143

expressivity of the domain. The advantages of our design choice becomes appar-144

ent in Section 3 where we instantiate the third argument of Info and Preference145

with richer types than Rank that allow agents to implicitly rank other agents,146

which eases the cognitive burden and effort in coming up with a preference list.147

The ranked preference lists of applicants for hospitals can be specified with148

an appropriate instance of Preference type class using the choices function as149

1 We mostly show only the type signatures and present implementations only
when they contribute to a better understanding. For the complete code, see
https://github.com/AnonymousForConfReview/MatchMaker.

5

shown below. The infix operation --> is simply syntactic sugar for building pairs.150

In this representation, rankings are based on positions. For example, the fact that151

City precedes Mercy in the preference list of Sunny means that she prefers City152

to Mercy.153

instance Preference Applicant Hospital Rank where
gather = choices [Arthur --> [City],

Sunny --> [City,Mercy],
Joseph --> [City,General,Mercy],
Latha --> [Mercy,City,General],
Darrius --> [City,Mercy,General]]

The ranked preference lists of applicants for hospitals can be similarly encoded.154

instance Preference Hospital Applicant Rank where
gather = choices [Mercy --> [Darrius,Joseph],

City --> [Darrius,Arthur,Sunny,Latha,Joseph],
General --> [Darrius,Arthur,Joseph,Latha]]

Finally, to encode the quota information we define a type class called Set with155

quota as a member function as shown in Figure 2a. We also define a function156

members that can list all the elements of a set. The function forall is used to157

assign the same quota to every member of the set to be matched.158

The instances of Set for the Applicant and the Hospital type are shown below159

where each hospital is assigned a quota of 2 and each applicant is assigned a160

default quota of 1.161

instance Set Applicant
instance Set Hospital where quota = forall 2

2.3 Generating Stable Matchings162

In general, a matching problem can have multiple stable matchings. However,163

two are especially significant. For our problem, these are the hospital-optimal164

stable match and the applicant-optimal stable match. (Sometimes the adjective165

“stable” is omitted for brevity.) In a hospital-optimal match, hospitals do as166

good as they possibly can. While not intended, the structure of the matching167

problem entails that a stable match where hospitals perform their best is also168

a stable match where applicants perform their worst [16, Chapter 2, Corollary169

2.14]. Similarly, in an applicant-optimal match applicants perform their best170

and hospitals their worst. Interestingly, the NRMP program was shown to be171

hospital optimal [21] before it was changed to be applicant optimal in 1997 [15].172

A stable match can be computed with the function twoWayWithPref, which173

takes two preference encodings of type Info type and yields a value of type174

Match a b that stores all the elements of set b matched to an element of set a. The175

overloaded value twoWay triggers the computation by inferring the Info arguments176

from its type annotation. For example, the annotation Match Applicant Hospital177

generates the applicant-optimal matching.178

> twoWay :: Match Applicant Hospital
{Sunny --> [],
Darrius --> [City],
Latha --> [General],
Joseph --> [General], Arthur --> [City]}

6

Similarly, Match Hospital Applicant generates a hospital-optimal matching.179

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius],
Mercy --> [],
General --> [Latha,Joseph]}

Comparing the two matchings shows that they are the same. However, this need180

not always be the case.181

The DSL also provides a function twoWayWithCapacity to find the remaining182

quotas in a matching. The next example shows that General and City have183

exhausted their quotas of applicants, whereas Mercy’s quota of 2 is untouched,184

since no residents have been assigned to it.185

> twoWayWithCapacity :: Match Hospital Applicant
{City --> [Arthur,Darrius] : 0, Mercy --> [] : 2, General --> [Latha,Joseph] : 0}

3 Representational Ranking186

There is something unsatisfactory about the encoding of the NRMP example187

in the last section. Specifically, the fact that every hospital needs to provide a188

rank for every applicant and vice versa is problematic. For example, consider a189

hospital with 100 applications for its residency positions. How does the admission190

committee determine the specific rank for each applicant? Similar problems arise191

for applicants applying to a large number of hospitals.192

Instead of ranking through an ordered list, one can often describe a ranking193

through a function that computes a rank based on attributes of the elements194

to be ranked. For example, a hospital might specify that it would like to rank195

the candidates based on their MCAT scores, their performance in the interview196

with the hospital, their previous experiences in the field, and whether or not197

their previous degree is from their hospital assigning weights of say 40%, 30%,198

20%, and 10%, respectively. A score can be generated for each candidate using199

such a formula, and the reciprocal of this score is then used to obtain rank200

for a particular candidate. Every hospital may assign different weights for the201

different criteria. Some may even decide to not use a particular criterion at all202

(which is the same as assigning it a weight of 0). MatchMaker facilitates this203

form of ranking. To this end, we define a data type AInfo for storing the relevant204

applicant data.205

data AInfo = Appl {examScore :: Double,
experience :: Double,
interviewScore :: Double,
sameSchool :: Bool}

Similarly, a candidate might prefer to specify the ranking of hospitals implicitly206

based on the livability of the city the hospital is in, reputation of the programs207

and their personal desire to attend a particular program. Again, these criteria208

are assigned appropriate weights. The applicants’ model of hospital preferences209

is captured by the data type HInfo, defined as follows.210

data HInfo = Hptl {hospitalRank :: Rank,
cityLivability :: Int,
desirabilityScore :: Double}

7

Next we need to express the information in a form that supports the computation211

of preference lists.212

3.1 Normalization and Weighting of Criteria213

To generate rankings we normalize values of a representation type to numbers214

with the help of a type class Norm. Some examples of normalizations are shown215

in Figure 2b. When a type a is an instance of this class, the member function216

norm computes a number between 0 and 1 for any of its values. In addition to217

the value to be normalized, norm takes an optional normalization constant which218

acts as a bound on the range of values.219

For example, a score of 80 in an exam out of 100 can be normalized as 80
100 =220

0.8. We would represent this normalization as 80 `outOf` 100 (which is syntactic221

sugar for norm (80,Just 100)). As a different example, the type Rank was used222

earlier for representing relative preferences. Its Norm instance simply conveys that223

a numerically lower rank corresponds a higher preference and vice versa. Thus,224

we can simply use reciprocal values without the needing a normalizing constant.225

The type class also provides a components function, which provides a list of226

normalized values corresponding to the various arguments of a constructor of an227

abstract data type. As can be seen in the class definition, once we have defined228

components for a data type, the normalized values can easily be inferred from229

it. The function outOf and only are instances of the norm function specialized230

for the cases when normalizing constants are required and when they are not,231

respectively.232

With the help of Norm we can define the normalization for the applicant and233

hospital preference representations as follows.234

instance Norm AInfo where
components (Appl e x i c) = [e `outOf` 800, x `outOf` 10, i `outOf` 10, only c]

instance Norm HInfo where
components (Hptl h c d) = [only h, c `outOf` 10, d `outOf` 5]

However, before we compute the preferences using the normalization of repre-235

sentation types, we need to address the situation that applicants or hospitals236

may weight criteria differently.237

To that end MatchMaker provides a class Weights shown in Figure 2b,238

which can be used to assign different weight profiles for various criteria corre-239

sponding to different constructors of a type a. Then we amend the definition240

of the Preference type class (shown in Figure 2b) by adding a class constraint241

which specifies that its first type argument should also be a member of the Weight242

class, which allows us to generate rankings for various hospitals and applicants243

using different distributions of the criteria weights.244

The weight distributions of the criteria for various hospitals and applicants245

are specified as instances of the Weight class. We see that Mercy assigns greater246

importance to exam and interview scores than to previous work experiences247

compared to the other hospitals. Moreover, in contrast to other hospitals, Mercy248

gives some weight to whether or not applicants have studied there previously.249

8

instance Weights Hospital where
weights Mercy = [0.3,0.3,0.3,0.1]
weights _ = [0.2,0.2,0.6,0.0]

For applicants we assume that they all use the same weights for the various250

criteria.251

instance Weights Applicant where
weights = forall [0.2,0.2,0.6]

3.2 Representational Rankings in Action252

Now we can derive rank from preference representations. Specifically, we can253

replace the third argument of the Preference type class, Rank, with AInfo and254

HInfo, allowing us to record the preferences for hospitals and applicants, re-255

spectively. Before we look at the actual preference encodings of applicants, we256

observe that values of some criteria remain unchanged for the different appli-257

cants. For example, rankings of the hospitals and the livability of the cities they258

are located in are not applicant dependent but intrinsic to the hospitals and259

cities themselves. We can exploit this fact to factor out this shared information,260

which can then be used by all applicants. The function hProfile constructs a261

hospital/city profile for each hospital as a partial HInfo value with fixed ranking262

and livability score information but still unassigned desirability scores DScore263

(which is a type synonym for Double).264

hProfile :: Hospital -> DScore -> HInfo
hProfile Mercy = Hptl (Rank 2) 9
hProfile City = Hptl (Rank 1) 10
hProfile General = Hptl (Rank 3) 8

Next we represent the desirability scores of hospitals for the different applicants265

in the form of an Info value. Of course, it may be the case that applicants may266

use different sources for getting the ranking and livability information resulting267

in non-uniform rankings of hospitals and livability scores of cities. In such a case,268

we could have two additional Info values, one each for rank and livability, similar269

to what we have for the desirability scores. However, for our current example,270

we consider them to be uniform.271

desirability :: Info Applicant Hospital DScore
desirability =

info [Arthur --> [City --> 3],
Sunny --> [Mercy --> 4,City --> 3],
Joseph --> [Mercy --> 1,City --> 5,General --> 4],
Latha --> [Mercy --> 5,City --> 1,General --> 1],
Darrius--> [Mercy --> 5,City --> 5,General --> 4]]

We can combine the fixed and variable criteria values to generate the overall272

representation of applicants’ preferences using the completedWith combinator.273

As the type of completedWith (shown in Figure 3) indicates, it takes a function274

with output type d and an Info value with type c as its third type argument275

representing the value type of the variable criterion. It returns as output a com-276

pleted Info value for matching set a with respect to b using the type d.277

instance Preference Applicant Hospital HInfo where
gather = hProfile `completedWith` desirability

9

zipInfo :: (Ord2 a b) => Info a b c -> Info a b d -> Info a b (c,d)
zipInfo2 :: (Ord2 a b) => Info a b c -> Info a b d -> Info a b e -> Info a b (c,d,e)

completedWith :: Ord a => (b -> c -> d) -> Info a b c -> Info a b d
completedWith2 :: Ord a => (b -> c -> d -> e) -> Info a b (c,d) -> Info a b e

Fig. 3: Combinators for combining Info values and generating them from profiles.

We can represent the preferences for hospitals in a similar way. Again, we begin278

by defining the profile of applicants aProfile for the fixed information, which279

includes the applicants’ exam scores and their work experience.280

aProfile :: Applicant -> IScore -> SStatus -> AInfo
aProfile a = case a of

Arthur -> Appl 700 2
Sunny -> Appl 720 2
Joseph -> Appl 750 1
Latha -> Appl 650 5
Darrius-> Appl 790 2

This leaves applicants’ hospital-dependent attributes, such as interview scores281

IScore and prior student status SStatus at a hospital, to be filled in by the282

individual hospitals. The interview scores of applicants at various hospitals are283

recorded again in a corresponding Info value.284

interview :: Info Hospital Applicant IScore
interview = info

[Mercy --> [Joseph --> 8,Darrius --> 9],
City --> [Arthur -->10,Sunny --> 9,Joseph --> 4,Latha --> 6,Darrius--> 10],
General --> [Arthur --> 9,Joseph --> 8,Latha --> 5,Darrius --> 10]]

Similarly, the student status of applicants at a given hospital is also represented285

by an Info value.286

school :: Info Hospital Applicant SStatus
school = info
[Mercy -->[Joseph --> False,Darrius --> True],
City -->[Arthur --> True,Sunny --> False,Joseph --> False,Latha --> False,Darrius --> False],
General-->[Arthur --> False,Joseph --> True,Latha --> False,Darrius --> False]]

Finally, we can combine the applicants’ profiles with their interview scores and287

student status information to generate an Info value with complete information288

about students. We do this by first “zipping” together interview and school289

using the zipInfo function, which results in an Info value where the interview290

score and school status information for every candidate is paired up. The function291

zipInfo is analogous to Haskell’s zip function in that it has the effect of pairing292

Info values. We also provide functions zipInfo2, zipInfo3 and so on, for combin-293

ing multiple Info values, corresponding to Haskell’s zip2 and zip3. The function294

completedWith2 is a function which takes as input a profile with two unassigned295

fields and an Info value that contains these variable values and produces a com-296

pleted Info value. We provide different variants of the compeletedWith function297

to join multiple Info values.298

instance Preference Hospital Applicant AInfo where
gather = aProfile `completedWith2` (interview `zipInfo` school)

10

This completes the specification of applicant and hospital preferences. It is in-299

structive to see that we can get concrete rankings from our preference represen-300

tations. We can do so using the ranks function (defined in Figure 2a) as shown301

below. Note that the preference lists of hospitals are unchanged from Figure 1.302

Similarly, we can verify that the preference lists for applicants have not changed303

either.304

> ranks (gather :: Info Hospital Applicant AInfo)
{City --> [Darrius,Arthur,Sunny,Latha,Joseph] : 2,
Mercy --> [Darrius,Joseph] : 2,
General --> [Darrius,Arthur,Joseph,Latha] : 2}

The stable matchings can be generated in the same way as we did with explicit305

rankings.306

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius],
Mercy --> [],
General --> [Latha,Joseph]}

Since the inferred preference lists for applicants and hospitals didn’t change, the307

stable matchings don’t change either.308

4 Evolution and Analysis of Matches309

So far we have seen matching problems with a fixed initial set of agents. Lets310

assume that, in the context of our example, some hospitals or applicants de-311

cide to amend their preferences or that maybe some hospitals or applicants are312

added late in the NRMP cycle and need to be accommodated in the match. The313

straightforward thing to do would be to manually modify the preference lists and314

rerun the matching algorithm on this amended list. Not only is this approach315

prone to errors during the update, we would also lose track of the history of the316

different stages of the process, which might be of interest to see how changes317

in the data lead to changes in matches. An alternative is to keep the original318

and amend it using functions provided by the DSL. This approach makes the319

changes explicit, allowing users to track the evolution of data and corresponding320

matchings. The type signatures for some of the relevant functions for these tasks321

are shown in Figure 4.322

4.1 Updating Ranks and Adding Agents323

Assume that a new applicant Bob is added to the matching process. Like other324

applicants, Bob will have his preference list of hospitals. Hospitals will also need325

to accommodate him in their preference lists. Let’s further assume that City326

decides not to rank him. Situations like this are of special interests to game327

theorists who are interested in finding out how the addition of a new applicant328

or a hospital might change the resulting match. For example, is it more favorable329

to the applicants or the hospitals? In this section we look at how MatchMaker330

can be used to support such investigations.331

We begin by updating the Applicant data type to include the Bob constructor.332

333

11

modWithRanks :: Ord2 a b => Info a b Rank -> (a,[b]) -> Info a b Rank
modWithInfo :: Ord2 a b => Info a b c -> Info a b c -> Info a b c
modWithRow :: Ord2 a b => Info a b c -> (a,[(b,c)]) -> Info a b c

updateWithRow :: Ord2 a b => Info a b c -> (a,[(b,c)]) -> Info a b c
updateWithInfo :: Ord2 a b => Info a b c -> Info a b c -> Info a b c
updateWithInfos :: Ord2 a b => Info a b c -> [Info a b c] -> Info a b c

modWithRanksDef :: (Ord2 a b,Preference a b Rank) => (a,[b]) -> Info a b Rank
...

data CompMatch a b = CompMatch {unCompMatch :: [(a,[b],[b])]}

diffMatch :: Eq2 a b => Match a b -> Match a b -> CompMatch a b
twoWayDiff :: Info a b c -> Info a b c -> CompMatch a b

Fig. 4: Combinators to modify encodings and compare results.

data Applicant = Arthur | Sunny | Joseph | Latha | Darrius| Bob

We can update the preference list of applicants by adding Bob’s preferences334

using the modWithRanks function. It takes as input the original preference list of335

applicants as well the new applicant to be added with his preference list. The336

function gather provides the original encoding of the preferences for applicants.337

updatedAppl = gather `modWithRanks` (Bob --> [Mercy,City,General])

We also update the preference lists for hospitals. Note how we can chain to-338

gether multiple updates. A difference between the two values updatedAppl and339

updatedHosp is that while the former creates a new record for Bob, the latter340

simply updates the already existing preference lists for Mercy and General.341

updatedHosp = gather `modWithRanks` (Mercy --> [Darrius,Bob,Joseph])
`modWithRanks` (General --> [Bob,Darrius,Arthur,Joseph,Latha])

When we need to modify the preference lists of multiple agents, rather than342

making one change at a time by chaining together multiple modWithRanks calls,343

it is more convenient to collect all the changes in an Info value and update344

the original encoding with it in one go. This can be done with the modWithInfo345

function, as shown below. The updated preferences of Mercy and General are346

stored in an Info value called deltaInfo, which can then be used to update347

the original preference encoding of the applicants. Note that since City doesn’t348

appear in deltaInfo, its preferences are not changed in updatedHosp.349

deltaInfo = choices [Mercy --> [Darrius,Bob,Joseph],
General --> [Bob,Darrius,Arthur,Joseph,Latha]]

updatedHosp = gather `modWithInfo` deltaInfo

The function modWithInfo is useful for various reasons. When the number of350

elements being matched is large, we can keep the original data and the intended351

changes separate. If we need to make iterative changes, this approach keeps track352

of the changes performed in each iteration. We can also contemplate alternative353

changes to the data. We also have a modWithInfos combinator, which can be354

used to modify the original data with a list of iterative changes stored as Info355

values themselves. For example, the following expression modifies the data by356

four updates i1, . . ., i4.357

12

updated = gather `modWithInfos` [i1,i2,i3,i4]

If at any point we need to undo some of the changes, we can simply remove the358

corresponding Info value from the list.359

Now that we have the amended preference lists for hospitals and applicants,360

we can use them to get new matchings using the twoWayWithPref function, which361

was introduced in Section 2.2.362

> twoWayWithPref updatedHosp updatedAppl
{City --> [Arthur,Darrius],
General --> [Latha,Joseph],
Mercy --> [Bob]}

Notice how the matching is different from the original matchings, repeated here363

for convenience.364

> twoWay :: Match Hospital Applicant
{City --> [Arthur,Darrius],
General --> [Latha,Joseph],
Mercy --> []}

Clearly, Mercy has benefited by gaining a resident. While figuring out the differ-365

ence was trivial in our current example, spotting changes in even a moderately366

large example is more difficult. To do so systematically, we provide a function367

called diffMatch, which compares two Match values and reports the difference368

between the two matching. In our current example we obtain the following.369

> diffMatch twoWay (twoWayWithPref updatedHosp updatedAppl)
{Mercy --> [] => [Bob]}

The result Mercy --> [] => [Bob] shows that that Mercy went from not having370

any resident in the original match to having Bob in the updated match. An371

interesting thing to note here is that even though we didn’t annotate the type372

of the first argument twoWay, it can be inferred from the type of the second373

argument of diffMatch.374

What can we say about the performance of various hospitals and applicants375

in the updated match, compared to the original match? Intuitively, it seems that376

most hospitals, namely City and General, have performed as well as they did377

before, while Mercy has improved its performance. Similarly, it seems that no378

applicants have performed worse than the original match. Do these observations379

always hold? Game theory tells us that no hospital will be worse off and some380

hospitals are better off compared the original match [16, Theorem 2.26]). At the381

same time, none of the original applicants are better off, while some can be worse382

off than in the original match. In any case, MatchMaker can be employed as383

tool for gaining a deeper understanding of a wide range of matching scenarios.384

4.2 Updating Representational Ranks385

Assume that we wanted to update the representational ranks of our example386

from Section 3.2. More concretely, suppose Mercy wanted to add Sunny and387

Arthur and City wanted to add Sunny to its preference list. They only need to388

provide the interview scores and school status for the applicants as the other389

13

information can be obtained from the applicants’ profiles. The interview scores390

can be updated for the two hospitals using the updateWithRow combinator, which391

takes an Info value to be updated along with the information to update it392

with. An entry such as City --> [Sunny --> 9] indicates that City assigns a393

interview score of 9 to Sunny, which is then appended to its already existing score394

assignments for other applicants. The function updateWithRow can be chained395

together to update the records for multiple hospitals.396

interview1 = interview `updateWithRow` (City --> [Sunny --> 9])
`updateWithRow` (Mercy --> [Sunny --> 8,Arthur --> 8])

And the school status also needs to be updated.397

school1 = school `updateWithRow` (Mercy --> [Sunny -->True,Arthur -->False])
`updateWithRow` (City --> [Sunny -->False])

Again, we also have the option to collect all changes in an Info value, which is398

then used by the updateWithInfo combinator.399

deltaInterview = info [Mercy --> [Sunny --> 8, Arthur --> 8], City --> [Sunny --> 9]]

interview1 = interview `updateWithInfo` deltaInterview

Finally, we can use the modified interview scores and school status information400

to update the preferences for hospitals.401

updatedHosp = aProfile `completedWith2` (interview1 `zipInfo` school1)

The changed data leads to the following preference lists for various hospitals.402

> ranks updatedHosp
{Mercy --> [Darrius,Sunny,Arthur,Joseph] : 2,
City --> [Darrius,Arthur,Sunny,Latha,Joseph] : 2,
General --> [Darrius,Arthur,Joseph,Latha] : 2}

We can now generate the updated match using the twoWayWithPref function.403

But perhaps it will be more interesting to see how this matching differs from404

the original match. As shown, the only difference in the two matchings is that405

Mercy which was not assigned a resident initially, now has Sunny assigned to it.406

407

> twoWayDiff updatedHosp gather
{Mercy --> [] => [Sunny]}

5 Other Matching Problems408

In addition to the two-way stable matching problem, MatchMaker also allows409

for the modeling of other interesting matching problems like one-sided matchings,410

one-sided matching with exchange, and same-set matchings, which we briefly411

discuss in this section. The various types and function definitions used in this412

section are shown in figure 6.413

14

P1 P2 P3 P4

Bob Alice Alice Alice
Dan Dan Bob Bob
Dillon Dillon Dillon Dan

(a) Preference lists Donors to Patients

data Donor = Alice | Bob | Dan | Dillon
data Patient = P1 | P2 | P3 | P4

instance Preference Patient Donor Rank where
gather = choices [P1 --> [Bob,Dan,Dillon],

P2 --> [Alice,Dan,Dillon],
P3 --> [Alice,Bob,Dillon],
P4 --> [Alice,Bob,Dan]]

(b) Encoding the example in DSL.

Fig. 5: Assigning donors to patients: Bipartite matching with one-sided prefer-
ences.

5.1 Bipartite Matching With One-Sided Preferences414

The first important example of a one-sided matching problem is known as the415

house allocation problem in the economics literature. In this type of matching416

only the elements in the source set have a preferences for the elements in the417

target set. The preferences of the target sets are not taken into account. Some418

of its applications have been allocating graduates to trainee positions, students419

to projects, professors to offices, and clients to servers.420

As a concrete example, let us consider the the problem of selecting kidney421

donors for various transplant patients. Assume that the donors are altruistic and422

don’t care who the kidney goes to. Patients on the other hand have a preference423

over the kidneys: a good kidney for a patient depends on the tissue compatibility424

of the donor-recipient pair as well as the donor’s age and their overall health425

condition. Thus, the transplant team of a patient may have a ranked preference426

list of donors. Figure 5a shows patients with their preference lists.427

Formally, the donor assignment problem is a three tuple (T,D, P) where428

T = {t1, t2, . . . , tk} is a finite set of transplant patients and D = {d1, d2, . . . , dn}429

is a finite set of donors. P is a preference map such that preference of each430

patient t ∈ T is represented by a ordered list of preferences P (t) on set D. We431

assume that each patient has a quota of 1, that is, they can be assigned just432

one donor. A matching µ : T → D in this case is a partial function that assigns433

every patient to 1 donor.434

We can represent the patient-donor example with the machinery already de-435

veloped for two-sided matching. Figure 5 shows an encoding of the problem using436

explicit ranks. In a more realistic setting, the agency tasked with performing the437

match might prefer to rank the donors using meaningful representation such as438

age and the blood and tissue compatibility between the donor-patient pair.439

How do we assign donors to the patients based on their preferences? The440

strategy we use here is the so-called serial dictatorship mechanism [1]. It is a441

straightforward greedy algorithm that takes each patient in turn and assigns442

them to the most preferred available donor on their preference list. The order in443

which the patients are processed will, in general, affect the outcome. In appli-444

15

cations where elements have a quota of n, they are assigned to n objects when445

their turn comes for processing. For our example here, we expect that a match-446

ing agency will come up with an order of processing based on factors such as447

the urgency of a patient’s situation, their age, or their time on the waiting list.448

The function oneWayWithOrder performs serial dictatorship with a given order as449

shown below where patient P3 gets its first choice donor, P4 gets its first choice450

amongst the remaining donors, and so on.451

> oneWayWithOrder [P3,P4,P2,P1] :: Match Patient Donor
{P1 --> [Dillon],P2 --> [Dan],P3 --> [Alice],P4 --> [Bob]}

Oftentimes users might prefer that the matching function infer a preferred order452

based on position of the constructor in the data definition for donors, that is,453

the Donor data definition implies an order of [P1,P2,P3,P4]. The function oneWay454

generates a one-way match with this implicit order.455

> oneWay :: Match Patient Donor
{P1 --> [Bob],P2 --> [Alice],P3 --> [Dillon],P4 --> [Dan]}

Finally, there is also a third variant of the function oneWayWithPref that takes456

explicit preference encoding like its counterpart twoWayWithPref.457

As we can see, these two matches are different because they are generated458

using different orders. Is one better than the other? What is the best possi-459

ble match among the various possibilities? Manually comparing one match with460

another is cumbersome because for every patient we have to look at the two461

matchings and compare the relative ranks of the two donors in that patient’s462

preference list. This task is simplified by the function diffRanks, which com-463

pares the ranks of the two matchings using a type called CompRanks. This type464

represents for every agent the element assigned to them in those matchings465

as well the elements’ ranks for comparison. In the following expression we use466

x = oneWayWithOrder [P3,P4,P2,P1].467

> diffRanks oneWay x :: CompRanks Patient Donor
{P1 --> Bob : 1 > Dillon : 3, P2 --> Alice : 1 > Dan : 2,
P3 --> Dillon : 3 < Alice : 1, P4 --> Dan : 3 < Bob : 2}

It turns out that the first match is advantageous for patients P1 and P2, whereas468

the second match is advantageous for patients P3 and P4. Informally, a matching469

is Pareto optimal if there is no other matching in which some patient is better470

off, whilst no patient is worse off. It is used as a metric to compare the quality of471

outcomes in game theoretic matchings. It turns out that the deceptively simple-472

looking serial dictatorship algorithm results in Pareto optimal matchings, which473

implies that for any two matchings there are some patients for whom one match474

is better and for some the second match is better, that is, there doesn’t exist an475

unique best match.476

5.2 Bipartite Matching With One-Sided Preferences and Exchange477

We assumed the presence of altruistic donors in our last example. However, kid-478

neys are valuable commodities, and altruistic donors alone can’t fulfill the vast479

demand for it. A more realistic scenario is a family member or a friend donating480

16

class Preference a b c => Exchange a b where
endowment :: Match a b

type SameSetMatch a = Maybe (Match a a)

data CompRanks a b = CompRanks {
unCompRanks :: [(a,[(b,Rank)],[(b,Rank)])]}

oneWay :: (Preference a b c,Set2 a b,Norm c) => Match a b

oneWayWithOrder :: (Preference a b c,Set2 a b,Norm c) =>
[a] -> Match a b

oneWayWithPref :: (Preference a b c, Set2 a b,Norm c) =>
Info a b c -> Match a b

trade :: (Preference a b c,Set2 a b,Norm c) => Match a b
sameSet :: (Preference a a b,Set a,Norm b) => SameSetMatch a

spas :: (Preference a b c,Preference d a e,
Preference d b Rank) => Match a b

diffRanks :: (Eq2 a b,Preference a b c,Set2 a b,Norm c) =>
Match a b -> Match a b -> CompRanks a b

Fig. 6: Some type and function definitions for various matching problems

one of their kidneys to a loved one. However, sometimes this donation may not481

happen due to reasons like tissue or blood group incompatibility. An elegant so-482

lution was developed in the field of economics. Suppose (d1, r1) and (d2, r2) are483

two donor-receiver pairs such that di wants to donate to ri but can’t do so. How-484

ever, if d1 could donate to r2 and d2 to r1, then both the patients would be able485

to receive kidneys. This could be easily scaled to multiple pairs generating large486

numbers of compatibility pairs. The actual kidney exchange mechanism [17] is a487

little more complicated, but the exchange between multiple donor-receiver pairs488

is at the heart of it. This exchange characterizes our next matching algorithm,489

the so-called top trading cycle (TTC) matching mechanism for one-way match-490

ing where every element has an initial endowment and a preference list [18]. The491

resulting match takes both of these into account.492

We consider the same patient-donor example we considered in the last sec-493

tion. At the start, some donor, presumably family or friends willing to donate494

a kidney, is assigned to each patient. These initial set of donors are sometimes495

also called the initial endowment, or just endowment of a patient. Assume that496

patients P1, . . . , P4 are endowed with Bob, Dan, Alice, and Dillon, respectively,497

such that all the patients are compatible with the donors they are endowed498

with. In this case, TTC tries to find out if the patients can do better than the499

donor they are assigned to, based on their preference lists. We start by represent-500

ing endowments for which we define the multi-parameter type class Exchange,501

which has a Preference class constraint (see Figure 6). The instance definition502

of Exchange for our example is as follows.503

instance Exchange Patient Donor where
endowment = assign [P1 --> Bob,

P2 --> Dillon,
P3 --> Alice,
P4 --> Dan]

17

data Student = Charlie | Peter | Kelly | Sam

instance Preference Student Student Rank where
gather = choices [Charlie--> [Peter,Sam,Kelly],

Peter --> [Kelly,Sam,Charlie],
Kelly --> [Peter,Charlie,Sam],
Sam --> [Charlie,Kelly,Peter]]

Fig. 7: A stable roommate example in MatchMaker.

Now we can use the function trade provided by the DSL to generate the match-504

ing.505

> trade :: Match Patient Donor
{P1 --> [Bob], P2 --> [Dan], P3 --> [Alice],
P4 --> [Dillon]}

Did any patient gain as a result of the change? We can use the diffRanks function506

we saw in the previous section to find out. We discover that patients P2 and P4507

do indeed profit by exchanging their donors.508

> diffRanks endowment trade :: CompRanks Patient Donor
{P2 --> Dillon : 3 < Dan : 2, P4 --> Dan : 3 < Dillon : 2}

5.3 Same-Set Matching509

This variation of the problem is the so-called Stable roommate problem [6, 9]510

where the source and the target sets being matched are the same. For example,511

a set of students living in the dormitory can supply a ranked preference list of512

other students they want to be roommates with. An example is shown in Figure513

5b. We can obtain a stable matching of roommates using Irving’s algorithm [8].514

In order to capture the fact that source and target sets are the same, we define a515

type synonym SameSetMatch that assigns the same type a to both the source and516

the target sets in the Match type (see Figure 6). Even though same-set matchings517

are stable matching problems like the bipartite two-sided matching problems,518

they are different in that a stable match always exists for the former, whereas it519

may not always exist for the latter. This fact is reflected by the Maybe constructor520

in the type definition of SameSetMatch. Finally, we can generate the the same-521

set matching using the sameSet function, which produces for our example from522

Figure 7 the following result.523

> sameSet :: SameSetMatch Student
Just {Charlie --> [Sam], Peter --> [Kelly]}

6 Related Work524

Matching [20] is a library for Python that allows users to encode simple matching525

problems in a straightforward manner. An issue with the library is that all526

the encoding are done using strings, which makes error handling difficult and527

18

thus complicates the maintenance and debugging larger examples. In comparison528

MatchMaker avails the strongly typed feature of the host language Haskell to529

detect the various errors in encoding.530

Similarly, matchingMarkets [10] is a matching library for R. The advantage531

of the library is that it implements a wide variety of matching algorithms de-532

veloped in the matching theory. Additionally, it implements statistical tools to533

correct for the sample selection bias from observed outcomes in matching mar-534

kets, which is something that MatchMaker doesn’t do. The library encodes535

the preference relation between the sets of elements being matched in the form of536

a matrix. While an efficient way to encode the preferences, the matrix encoding537

is clunky and is thus difficult to understand, update and maintain. matchingR538

[19] is another stable matching library for R and C++, which uses matrices539

to encode the preference relations and thus suffers from the same problems as540

matchingMarkets.541

MatchMaker allows users to specify their preferences more abstractly in542

terms of attributes that they understand, while all the previous libraries only543

allow specification of preference in terms of ranks. Additionally, none of these544

libraries offers either the primitives for systematic modification of representations545

or primitives to compare and contrast different matchings.546

Matching problems can also be solved using constraint programming [13, 5] or547

SMT solving [3]. Moreover, integer linear programming can be used to solve NP-548

hard stable marriage problems, including ones with ties and incomplete lists as549

well as the many-to-one generalization [2]. While powerful, a potential downside550

is that encoding matching problems as constraints might be challenging for users.551

In contrast, MatchMaker facilitates high-level representations of matching552

problems and can thus be used without any specialized knowledge.553

7 Conclusions554

MatchMaker is an embedded DSL in Haskell for expressing, solving, and an-555

alyzing game-theoretic matching problems. Our implementation leverages ad-556

vanced type system features of Haskell to facilitate high-level representations of557

matching problems, expressed in terms of domain elements. MatchMaker also558

supports the maintenance and evolution of the problem representation and pro-559

vides some limited support for analyzing computed results, making it a useful560

tool for end users as well as game theorists.561

What can we learn from our DSL design? The most important take-away562

message for us is the impact of the strong typing approach. In particular, bas-563

ing matching on data constructors instead of strings allows the detection of564

many potential errors during compile time. Another benefit is obtained from the565

use of multi-parameter type classes. For example, a definition such as instance566

Preference Applicant Hospital Rank serves as a reminder that a user is stating567

preferences of applicants for hospitals using the Rank type, supporting a mental568

model of the problem, which has a similar guiding effect as function signatures569

have for the implementation of complex functions.570

19

References571

1. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem.572

Journal of Economic Theory 100(2), 295–328 (2001)573

2. Delorme, M., Garćıa, S., Gondzio, J., Kalcsics, J., Manlove, D., Pettersson, D.:574

Mathematical models for stable matching problems with ties and incomplete lists.575

European Journal of Operational Research 277(2), 426–441 (2019)576

3. Drummond, J., Perrault, A., Bacchus, F.: Sat is an effective and complete method577

for solving stable matching problems with couples. In: Proceedings of the 24th578

International Conference on Artificial Intelligence. p. 518–525. IJCAI’15, AAAI579

Press (2015)580

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The581

American Mathematical Monthly 69(1), 9–15 (1962)582

5. Gent, I.P., Irving, R.W., Manlove, D., Prosser, P., Smith, B.M.: A constraint pro-583

gramming approach to the stable marriage problem. In: Proc. of the 7th Inter-584

national Conference on Principles and Practice of Constraint Programming. p.585

225–239. CP ’01, Springer-Verlag (2001)586

6. Gusfield, D.: The structure of the stable roommate problem: Efficient represen-587

tation and enumeration of all stable assignments. SIAM Journal on Computing588

17(4), 742–769 (1988)589

7. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-590

rithms. MIT Press, Cambridge, MA, USA (1989)591

8. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. Journal592

of Algorithms 6(4), 577–595 (1985)593

9. Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM594

Journal on Computing 15(3), 655–667 (1986)595

10. Klein, T., Aue, R., Giegerich, S., Sauer, A.: matchingMarkets: Analysis of Stable596

Matchings in R (2020), https://matchingmarkets.org/597

11. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific598

(2013)599

12. NRMP: National Resident Matching Program (2022),600

https://www.nrmp.org/intro-to-the-match/how-matching-algorithm-works/601

13. Prosser, P.: Stable roommates and constraint programming. In: CPAIOR (2014)602

14. Roth, A.E.: Deferred acceptance algorithms: History, theory, practice, and open603

questions. Working Paper 13225, National Bureau of Economic Research (2007)604

15. Roth, A.E., Peranson, E.: The redesign of the matching market for american physi-605

cians: Some engineering aspects of economic design. American Economic Review606

89(4), 748–780 (September 1999)607

16. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-Theoretic608

Modeling and Analysis. Econometric Society Monographs, Cambridge University609

Press (1990)610

17. Roth, A.E., Sönmez, T., Ünver, M.U.: Kidney exchange. The Quarterly Journal of611

Economics 119(2), 457–488 (2004)612

18. Shapley, L., Scarf, H.: On cores and indivisibility. Journal of Mathematical Eco-613

nomics 1(1), 23–37 (1974)614

19. Tilly, J., Janetos, N.: matchingR: Matching Algorithms in R and C++ (2020),615

https://github.com/jtilly/matchingR/616

20. Wilde, H., Knight, V., Gillard, J.: Matching: A python library for solving matching617

games. Journal of Open Source Software 5(48), 2169 (2020)618

21. Williams, K.J., Werth, V.P., Wolff, J.A.: An analysis of the resident match. New619

England Journal of Medicine 304(19), 1165–1166 (1981)620

20

