Forge: Building a Pedagogic Solver Tool in Racket
(Extended Abstract)

Tim Nelson[0000—0002—9377-9943] .. 4
Shriram Krishnamurthi0000—0001-5184—1975]

Brown University, Providence, RI, USA {tim_nelson,shriram}brown.edu

1 Pedagogic Context

Brown’s Logic for Systems course teaches modeling and reasoning about systems
via constraint solving. It relentlessly focuses on tools and applications—covering
the necessary formalisms only as needed. The choice of tool used is therefore
vital. Our starting point is the Alloy Analyzer [7], which is used in several text-
books and courses [1]. Alloy works especially well with students who are not
instinctively inclined towards formal methods:

— it has an approachable syntax reminiscent of Java;

— it is completely automated, providing rapid feedback and allowing a user’s
“complexity budget” to be spent on modeling the domain and precisely ex-
pressing their goals, rather than on proof;

— it allows users to explore models without even writing properties, meaning
that there is incremental value to creating a model of a system and the pro-
cess itself can lead to eliciting properties—following the “lightweight formal
methods” philosophy of Jackson and Wing [8].

Thus, while Alloy is not inherently useful in teaching students about deductive
proof, it is very useful in getting them acquainted with specification, proper-
ties, and verification. Unfortunately, our years of experience have also revealed
problems, which are exacerbated in an accessible, first formal-methods course.

2 Language Levels for Teaching Formal Methods

While Alloy has a familiar, Java-esque syntax, its underlying semantics is based
on relations. For instance, Alloy makes clever use of the join operator, which
is written as . (dot): it looks like a field access, but is actually a form of rela-
tional join. Early on this pun works well, and gets students comfortable writing
specifications. However, at some point, every student confronts the fact that the
semantics is not what they expected:' e.g., when an attempted join yields no
tuples, the result is an empty relation rather than the error one expects from a
field-access interpretation.

1 Tt doesn’t so much matter what they were taught; students form expectations based
on syntactic recall.



2 Tim Nelson and Shriram Krishnamurthi

Alloy is full of clever syntactic choices such as this. While they may be con-
venient to the expert modeler, over the years we have found that they are prob-
lematic for students not yet versed in the art of relational specification or in
discrete mathematics. Instead, we want a series of sub-languages for students
that grow with student instruction and accomplishment.

We adopt the solution proposed by multiple teams over the years [6, 3, 5],
but most highlighted in Racket: language levels. That is, instead of presenting
just a single language, present a family of growing sub-languages that match the
learning progression.? This process has been extensively implemented for the
book How to Design Programs [4] in the DrRacket programming environment.

3 The Forge Tool

This solution is realized in our pedagogic formal-methods tool, Forge. Forge is
built atop Racket, and supports Alloy’s existing (infix) syntax and connects to
the same existing solvers: we employ the same back-end [9], used by Alloy 6. Us-
ing Forge, students can begin with a language that supports their object-oriented
intuitions before moving on to relational modeling, and finally to working with
temporal logics.

References

1. Alloytools.org: Courses on Alloy. https://alloytools.org/citations/courses.html, ac-
cessed January 24th, 2021

2. Dennis, G., Chang, F., Jackson, D.: Modular verification of code with SAT. In:
International Symposium on Software Testing and Analysis (2006)

3. du Boulay, B., O’Shea, T., Monk, J.: The black box inside the glass box. Interna-
tional Journal of Human-Computer Studies 51(2), 265277 (1999)

4. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs.
MIT Press (2001), http://www.htdp.org/

5. Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler,
P., Felleisen, M.: DrScheme: A programming environment for Scheme. Journal of
Functional Programming 12(2), 159-182 (2002)

6. Holt, R.C., Wortman, D.B.: A sequence of structured subsets of PL/I. SIGCSE
Bulletin 6(1), 129-132 (1974)

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, 2
edn. (2012). https://doi.org/10.5555/2141100

8. Jackson, D., Wing, J.: Lightweight formal methods. IEEE Computer (Apr 1996)

9. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: Foundations
of Software Engineering (2016)

It is not sufficient to focus only on the language or semantics. Critically, all feedback—
such as error messages—must also use only vocabulary and concepts that have been
introduced up to that point [5], otherwise the “epistemic closure” of the language is
destroyed.

% Not to be confused with the Alloy-based but unrelated, defunct Forge tool [2].



