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Abstract

We describe how host language variadic, “rest argument”
functions permit a safe shallow embedding of a more power-
ful but still ergonomic kernel language. Our re-implemented
disjunction and conjunction functions preserve the original
microKanren search order and avoid building superfluous
closures. Our re-implemented committed choice operator
suggests a simplified syntax. The result is a shorter and sim-
pler overall implementation that is more elegant.
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1 Introduction

microKanren [5] is a compact approach to implementing
a relational programming language. The microKanren ap-
proach has worked out well as a tool for understanding the
guts of a relational programming language through study-
ing its implementation. The microKanren reimplementation
separates surface syntax macros from function definitions.
In doing so, the authors hoped this separation would simul-
taneously aid future would-be implementers when studying
the source code, and also that the functional core would
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make the language easier to port to other functional hosts.
To support both those efforts, they also chose to program in
a deliberately small and workaday set of Scheme primitives.

More languages than ever before support variable arity
functions/methods (aka varargs aka slurpy methods), in-
cluding JavaScript, Raku, Java, Python, and Ruby, to name
just a few. This note shows how an implementer in a host
language with variadic (any number of arguments) func-
tions can build a somewhat more powerful kernel language
and obviate some macros, including those for disjunction
and conjunction. Until now there was a large gap between
those microKanren implementations in languages with ex-
pressive macro systems and those without; variadic func-
tions permit an intermediate point in the language design
space. Implementers in languages with macro systems may
even choose to replace existing less powerful language prim-
itives by our comparatively short but more powerful vari-
ants.

Beyond being a conceptually simpler foundation for a full
Kanren language at the level of The Reasoned Schemer, Sec-
ond Edition, this implementation may even be more efficient.
miniKanren folklore conjectures that right-associative con-
junction is an inefficient design choice for implementing the
miniKanren search strategy. Thinking about the expressiv-
ity of these primitives and code improvement “horse sense”
led us to left-associate conjuncts.

In Section 2, we briefly revisit microKanren implementa-
tions and illustrate why surface syntax macros had seemed
practically mandatory. In Section 3, we implement conjunc-
tion and disjunction, and in Section 4 we discuss the re-
implementation of the impure operators. We discuss the
remaining macros in Section 5. We close some outstanding
questions on performance impacts of these implementation
choices, and consider how Kanren language implementers
outside of the Scheme family might benefit from these alter-
natives.

2 All Aboard!

We assume the reader is familiar with the miniKanren lan-
guage as described in The Reasoned Schemer, Second Edition
and in particular with microKanren implementations. See
minikanren.org for many implementations across multiple
host languages.
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Listing 1. A miniKanren version of the Carmelit subway

The world’s shortest subway system is Haifa’s Carmelit,
with only six stations. The system is a line, so its trains
travel back and forth. If we wanted to describe the order
in which we rode the train from the beginning to the end,
we could use the carmelit-subway relation in Listing 1. We
express this relation using the more compact miniKanren
syntax because unfolding this relation into binary conjunc-
tions and disjunctions would be painful. We certainly could
write it out by hand—in fact, we could write it out many
ways. We could nest those conjunctions to the left, or to the
right, or try and reduce the indentation by trying to keep
them somewhat balanced: the program itself does not seem
to obviously encourage one particular choice.

Listing 2 shows typical macro-based implementations of
conde and the underlying conjunction and disjunction op-
erations. Here, #s and #u represent primitive goals that un-
conditionally succeed and fail, respectively.

3 disj and conj logical goal constructors

The disj and conj macros of Listing 2 are not quite defined
as simple recursions over their binary functional primitives.
The definition of zero-way conjunction (disjunction) is in-
dependent of the unfolding of conj: (disj:). In a sense
the disj and conj macros confuse and entangle primitive
success and failure goals with those recursive unfoldings in
terms of the binary operators.

Those zero-way logical operation base cases don’t add
much. The programmer who tries to write an elegant, effi-
cient solution to a pure relational programming task would
not encounter these additional base cases in conde expres-
sions. The programmer knows statically how such goals
should behave, so there is no benefit to executing them. A
conjunction of no goals would simply succeed, and a dis-
junction of no goals would simply fail. Truthfully, only
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(define-syntax conde
(syntax-rules ()
((conde (g ...) ...)
(disj (conj g ...) ...))))

(define-syntax disj
(syntax-rules ()
((disj) #u)
((disj g) 9)
((disj ge g ...) (disj2 go (disj g ...)))))

(define ((disj2 g1 gz2) s)
(append= (g1 s) (g2 s)))

(define-syntax conj
(syntax-rules ()
((conj) #s)
((conj 9) g)
((conj ge g ...) (conj2 ge (conj g ...)))))

(define ((conj2 g1 g2) s)
(append-mape> gz (g1 s)))

Listing 2. Macro based implementations of disj and conj

(define ((disj g .
(D (g s) gs s))

gs) s)

(define (D s» gs s)
(cond
((null? gs) sw)
(else
(appendeo sew
(D ((car gs) s) (cdr gs) s)))))

Listing 3. Eventual redefinition of disj

the impure conda operator seems to require these additional
base cases (discussed further in Section 4). They are for all
intents and purposes superfluous.

To reduce the reliance on macros, we want to implement
disjunction and conjunction over one-or-more goals as func-
tions. These implementations should not require apply or
rely on the binary disj2 and conjz. Further, they should
not build any extraneous closures: unnecessarily building
closures at runtime is always a bad idea.

Listings 3 and 4 show our new implementations. Man-
dating one-or-more arguments lets us re-implement these
operators as shallow wrappers over simple folds. Variadic
functions make these operators make the operators more
ergonomic. The first step in each is merely to remove the
rest argument gs and act as if there were no need for a rest
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(define ((conj g .
(Cgs (g s)))

gs) s)

(define (C gs sw)
(cond
((null? gs) s=)
(else
(C (cdr gs)
(append-mape (car gs) sw)))))

Listing 4. Eventual redefinition of conj

argument. That is, all of our focus will be on the list, gs. Un-
like D, the function C does not take in the state s; the help
procedure does not need the state for conjunction. In each
recursive call, we accumulate by mapping (using the spe-
cial delaying implementation of append-map» for miniKan-
ren streams) the next goal in the list. This left-fold imple-
mentation of conjunction therefore left-associates the con-
juncts.

3.1 Semantic equivalence

A developer might derive these definitions as follows. We
start from the definition of the disj macro in Listing 5. At
the cost of an apply, we can build the corresponding explic-
itly recursive disj function.

(define-syntax disj
(syntax-rules ()
((disj g) 9)
((disj go 91 g ...)
(disjz ge (disj g1 g ...)))))

(define (disj g . gs)
(cond
((null? gs) g)
(else (disjz g (apply disj gs)))))

Listing 5. Deriving disj function from macro

Since disj produces and consumes goals, we can 1 expand
the definition in Listing 5 by a curried parameter s. We then
split disj into two mutually-recursive procedures, to build
the variant in Listing 6.

We can replace the call to disj: in Listing 6 by its definition
in terms of appende and perform a trivial B-reduction. The
explicit s argument suggests removing the call to apply and
making D recursive. The result is the version of D in Listing 7.
The definition of disj remains unchanged from Listing 6.
We combine g and s in each clause; this suggests construct-
ing that stream in disj and passing it along. Making this
final change results in the definition in Listing 3.
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(define ((disj g .
(D ggss))

gs) s)

(define (D g gs s)
(cond
((null? gs) (g s))
(else ((disjz g (apply disj gs)) s))))

Listing 6. An n expanded and split definition of disj

(define (D g gs s)
(cond
((null? gs) (g s))
(else
(appende (g s)
(D (car gs) (cdr gs) s)))))

Listing 7. Derivation of disj function definition

(define-syntax conj
(syntax-rules ()
((conj g) 9g)
((conj g g1 gs ...)
(conj (conj2 g g1) gs ...))))

(define (conj g . gs)
(cond
((null? gs) q)
(else
(apply conj
(cons (conjz2 g (car gs)) (cdr gs))))))

Listing 8. conjz-based conj function and macro

We can derive the definition of conj from Listing 4 via a
similar process. Starting with the variadic function based
on the macro in Listing 8, we first n-expand and split the
definition.

(define ((conj g .
(Cgagss))

gs) s)

(define (C g gs s)
(cond
((null? gs) (g s))
(else
((apply conj
(cons (conj2 g (car gs)) (cdr gs)))
s))))

Listing 9. Derivation of split conj function definition

We next substitute for the definitions of conj and conj-.
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(define (C g gs s)
(cond
((null? gs) (g s))
(else
(C (A (s) (append-mapx (car gs) (g s)))
(cdr gs)
s))))

Listing 10. Replacing apply in C function definition

Finally, since C only needs s to build the stream, we can
assemble the stream on the way in—instead of passing in g
and s separately, we pass in their combination as a stream.
The function is tail recursive, we can change the signature
in the one and only external call and the recursive call. We
show the result in Listing 4.

Both the functional and the macro based versions of List-
ing 8 use a left fold over the goals, whereas the versions of
disj use a right fold. This is not an accident. Folklore sug-
gests left associating conjunctions tends to improve the per-
formance of miniKanren’s interleaving search. The authors
know of no thorough algorithmic proof of such claims, but
see for instance discussions and implementation in [8] for
some of the related work so far. However, we have gener-
ally resorted to small step visualizations of the search tree
to explain the performance impact. The authors believe it
is worth considering if we can make an equally compelling
argument for this preference through equational reasoning
and comparing the implementations of functions.

(define (conj g . gs)
(cond
((null? gs) g)
(else (conj2 g (apply conj gs)))))

Listing 11. A right-fold variant of conj

Listing 11 shows a right-fold variant of conj. The choice
to fold left becomes a little more obvious after we n-expand,
unfold to a recursive help function, substitute in the defini-
tion of conj2, and B-reduce.

(define ((conj g .
(Cgs (g s)))

gs) s)

(define (C g gs s)
(cond
((null? gs) (g s))
(else (append-mape (apply C gs) (g s)))))

Here, we cannot (easily) replace the apply call by a recur-
sive call to C, because we are still waiting for an s. We can
only abstract over s and wait. Since we know that any call
to append-map~ we construct will always yield a result, the
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Listing 12. A new Carmelit subway without conde

version in Listing 4 is tail recursive. The equivalent right-
fold implementation needs either to construct a closure for
every recursive call, or otherwise demands a help function
mutually recursive with C.

(define (C gs s«)
(cond
((null? gs) sw)
(else
(append-mapw
(A (s) (C (cdr gs) ((car gs) s)))
s©))))

If we want to implement a variadic version that does not
rely on a primitive conj2 and does not resort to apply, we
have the two aforementioned choices. Basic programming
horse sense suggests the more elegant variant from List-
ing 4.

Though this note mainly concerns the choice to imple-
ment surface language behavior as functions, it may also
point to these as more natural user-level primitives than
conde. An implementation could choose to forego conde
and provide just those underlying logical primitives disj
and conj to the user, as in the new definition of Carmelit in
Listing 12. Moreover, reintroducing the nullary case only
requires a simple wrapper macro, or otherwise, a run-time
null? check for a very slight cost.

4 Tidying up the Impure Operators

The operators conda and conde look superficially similar,
syntactically. Semantically though, conda’s nested “if-then-
else” behavior is quite different, and implementing the de-
sired behavior for conda from existing pieces exposes some
strangeness. The definition of conda (see Listing 13) requires
one or more conjuncts per clause and one or more clauses.
The consequent of each conda clause is the one and only
place in the whole language implementation that permits
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(define-syntax conda
(syntax-rules ()
((conda (ge g ...)) (conj ge g ...))
((conda (ge g ...) ln ...)
(ifte ge (conj g ...) (conda ln ...)))))

(define ((ifte g1 g2 gs3) s)
(let loop ((s~ (g1 s)))
(cond
((null? seo) (gs s))
((pair? sw)
(append-map» g2 S»))
(else (lambda ()
(Loop (s®)))))))

Listing 13. A typical implementation of conda

(define ((conda g a . g-and-a*) s)
(A (g s) a g-and-a* s))

(define (A sw a g-and-a* s)
(cond
((null? sw)
(cond
((null? (cdr g-and-a*)) ((car g-and-a*) s))
(else (A ((car g-and-a*) s)
(cadr g-and-a*)
(cddr g-and-a*)
s))))
((pair? sw) (append-mape a sw))
(else (lambda () (A (sw) a g-and-a* s)))))

Listing 14. A functional conda implementation

nullary conjunctions of goals. This soft-cut operator seems
to force both nullary conjunction and those primitive goals
#s and #u into the language.

Some programmers would be perfectly satisfied just us-
ing ifte directly. But just as the standard forked if begat
McCarthy’s if notation and cond, a programmer may even-
tually feel the need for a nested implementation. Here are
other (alternative) implementation choices one could con-
sider.

1. Syntactically mandate that all clauses except the final
default clause contain at least two goals.

2. Introduce a special clause of the conda macro specifi-
cally for “if then” clauses with a single goal.

3. Unconditionally add a #s goal to each clause during
macro expansion.

Each of these choices can, implicitly or explicitly, force
additional unneeded executions of unwanted goals. Work-
ing with variable arity function syntax also suggests a more
elegant solution for conda.
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(define (once g)
(lambda (s)
(let loop ((s-inf (g s)))
(cond
((null? s-inf) '())
((pair? s-inf)
(cons (car s-inf) '()))
(else (lambda ()
(loop (s-inf))))))))

Listing 15. The once function

(define (subtleo x)
(Zzz
(disj
(subtleo x)
(== x 'cat))))

Listing 16. Omitting the delay is a subtle bug

The implementation in Listing 14 includes the delay-and-
restart behavior of ifte together with conda’s logical cas-
cade. The s« can be either empty, non-empty, or a function
of no arguments. In the last case, we invoke s». Rather than
building a largely redundant implementation of condu, we
expose the higher-order goal once to the user. The defini-
tion of once in Listing 15 is taken directly from [4]. The
programmer can simulate condu by wrapping once around
every test goal.

5 Macro-free microKanren

In this section we collect together some workarounds to ob-
viate macros in the rest of the implementation. Some of
these come with significant drawbacks. With these, how-
ever, a programmer in even a pedestrian functional language
should be able to directly translate the implementation and
our test programs.

define. The microKanren programmer can just use their
hostlanguage’s define feature to construct relations as host-
language functions, and manually introduce the delays in re-
lations. This may be a larger concession than it looks, since
it exposes the delay and interleave mechanism to the user,
and both correct interleaving and even the termination of re-
lation definitions rely on a whole-program correctness prop-
erty of relation definitions having a delay. Listing 16 relies
on a help function Zzz to introduce delays, akin to some ear-
lier implementations [5].

fresh. In any implementation there must be some mech-
anism to produce the next fresh variable. For example, we
treat the natural numbers as an indexed set of variables, and
we thread the current index through the computation. We
use add1 to get the next index; to go from index to variable is
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(call/initial-state 1
(let ((q (var 'q)))

(conj
(let ((x (var 'x)))
(==q x))

(reify q))))

Listing 17. Queries as expressed with global-state variables

the identity function. For another example, we could repre-
sent each variable using a unique memory location, sokuza-
kanren [7] style, and the operation to produce a new vari-
able requires introducing an unused memory location. De-
pending on the implementation of variables, you may also
need additional functions to support your implementation
of variables. If variables are not from an indexed set, you
may also need an operation to (re)construct specifically the
first element of the set, or otherwise store that value for later
re-use.

Of course, one of these approaches requires memory al-
location and external global state, while the other does not.
Furthermore, the latter approach models logic variables as
coming from a single global pool rather than reusing them
separately across each disjunct, and so requires some global
store and strictly more logic variables overall.

With this latter approach, however, we can expose var
directly to the programmer and the programmer can use
let bindings to introduce several logic variables simultane-
ously.

run. For the reader interested in removing macros, we
note that we can also implement run without using macros.
Using the purely-functional implementation of logic vari-
ables, the definitions of run and run* easily translate to func-
tions like call/initial-state [5]. The query is itself ex-
pressed as a goal that introduces the first logic variable g.
The pointer-based logic variable approach forces the pro-
grammer to explicitly invoke reify as though it were a goal
as the last step of executing the query, as in Listing 17.

6 Conclusion

This note shows how to provide a somewhat more powerful
core language that significantly reduces the need for macros.
The result comes much closer to the expressivity of the full
“microKanren + macros” approach. Variadic functions make
this implementation much more convenient for the end pro-
grammer, and Scheme’s polyvariadic function syntax (that
is to say “at least k arguments”, for some positive integer
k) ensures at a host-language level that the microKanren
programmer provides at least one parameter to conj and
disj. Embeddings in languages with variadic but without
polyvariadic function syntax would have to implement that

check.
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The old desugaring macros do not seem to suggest how
to associate the calls to the binary primitives—both left and
right look equally nice. Forcing ourselves to program the
solution functionally, and the restrictions we placed on our-
selves in this reimplementation, removed a degree of imple-
mentation freedom and led us to what seems like the right
solution.

The result is closer to the design of Prolog, where the user
represents conjunction of goals in the body of a clause with
a comma and disjunction, either implicitly in listing vari-
ous clauses or explicitly with a semicolon. We assume it is
agreed that our definitions of disj and conj themselves are
sufficiently high-level operators for a surface language and
that the zero-element base cases are at best unnecessary and
likely undesirable; given the opportunity to define a surface
language and its desugaring, we really shouldn’t tempt the
programmer by making undesirable programs representable
when we can avoid it.

We have not fully obviated the use of macros. Techniques
for implementing defrel, fresh and run (and run*) without
macros come with serious drawbacks. These include expos-
ing the implementation of streams and delays, and the in-
efficiency and clumsiness of introducing variables one at a
time, or the need to reason with global state.

From time to time we find that the usual miniKanren im-
plementation is itself lower-level than we would like to pro-
gram with relations. Early microKanren implementations
restrict themselves to syntax- rules macros. Some program-
mers use macros to extend the language further as with
matche [6]. Some constructions over miniKanren, such as
minikanren-ee [1], may rely on more expressive macro sys-
tems like syntax-parse [2].

We would still like to know if our desiderata here are
causally related to good miniKanren performance. Can we
reason at the implementation level and peer through to the
implications for performance? If left associating conj is in-
deed uniformly a dramatic improvement, the community
might consider reclassifying left-associative conjunction as
a matter of correctness rather than an optimization, as in

“tail call optimization” vs. “Properly Implemented Tail Call

Handling” [3]. Regardless, we hope this document helps
narrow the gap between implementations in functional host
languages with and without macro systems and helps imple-
menters build more elegant, expressive and efficient Kan-
rens in their chosen host languages.
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