
Functional Reactive GUI Programming with
Modal Types

Jean-Claude Disch, Asger Heegaard, and Patrick Bahr

IT University of Copenhagen, Copenhagen, Denmark
jdis@itu.dk, asgerheegaard@gmail.com, paba@itu.dk

Abstract.

Functional reactive programming (FRP) is a programming paradigm for
implementing reactive systems, i.e. programs that continuously interact with
their environments. While FRP allows for a functional, high-level programming
style, FRP programs are prone to undesirable operational behaviours such as
space leaks. To ensure favourable operational properties of FRP programs,
modal type systems have been introduced, which – among other things – make
it impossible to write FRP programs with implicit space leaks. In a recent
development, several modal FRP languages have been introduced that are
able to accommodate asynchronous events and behaviours – motivated by the
goal to use such languages for GUI programming.

This paper explores the suitability of one such asynchronous modal FRP
language – called Async Rattus – for GUI programming in practice. To this
end, we have implemented a mild extension of the Async Rattus language and
used it to implement a small GUI framework. We demonstrate the language
and its GUI framework by a number of case studies.

1 Introduction

Interactive applications, especially those with graphical user interfaces (GUIs),
form a cornerstone of contemporary software systems. Most modern GUI frame-
works use an imperative programming model that is based on shared mutable
state that is read and updated via callback functions. While computationally effi-
cient, this model combines features that are notoriously difficult to reason about,
namely mutable state, higher-order functions, and concurrency. This often leads
to error-prone code that is difficult to maintain and debug.

Functional reactive programming (FRP) has arisen as an alternative high-
level programming paradigm to implement such interactive systems [24]. The
fundamental idea is to represent dynamic behaviours using a type of time varying
values, called signals or behaviours:

type Sig a = Time → a

However, while conceptually simple and easier to reason about, functional reac-
tive programs directly based on this (denotational) notion of signals are impos-
sible to implement efficiently in general – with early implementations suffering

2 Disch et al.

from space and time leaks. This deficiency has led to two prominent lines of work
on devising FRP languages that carefully reign in the expressive power of the
language in order to avoid such pathologic performance behaviour: One based
on identifying a carefully restricted set of combinators that is made available to
programmers to construct signals [22,23], and one based on modal type systems
to keep track of temporal dependencies [14,15,21,18].

In this paper, we focus on the latter approach, which retains more of the
expressive power of the denotational notion of signals – they can still be manip-
ulated directly – at the cost of a more complicated type system. To this end,
these modal FRP languages feature a modal type operator ⃝, so that a value
of type ⃝A is the promise of a value of type A that is available in the next
time step. Using this later modality, (discrete) signals can be represented by the
recursive type1:

data Sig a = a :::⃝ (Sig a)

That is, a signal of type Sig a consists of a value of type a and the promise of a
new signal of type Sig a in the next time step.

However, these early modal FRP languages are inherently synchronous in
nature, i.e. each delayed value of type ⃝A arrives at the same time, namely
the next time step according to some global clock. This is an unrealistic and
fundamentally inefficient notion of time for GUI applications where different
signals may receive updates at different, independent times. In response to this,
the asynchronous modal FRP calculi λWidget [12] and Async RaTT [6] have been
proposed recently.

In this paper, we present Widget Rattus, an FRP language based on the
Async RaTT calculus and implemented as an embedded language in Haskell for
the purpose of GUI programming. Widget Rattus consists of a small extension of
the Async Rattus language [5], which implements Async RaTT as an embedded
language in Haskell, along with a small GUI framework.

In short, this paper makes the following contributions:

– We extend the Async Rattus language with a first-class notion of channels
and a generalised notion of output channels (section 2).

– We present a purely functional GUI framework implemented in Widget Rat-
tus and demonstrate its use on two extended examples (section 3).

– We give an overview of the implementation of the GUI framework based on
the principles of FRP (section 4).

– We compare Widget Rattus to λWidget and other related work (section 5).

The Widget Rattus language and GUI framework is available as a Haskell pack-
age [13], which also contains further examples beyond those presented in sec-
tion 3. Throughout this paper, we use Haskell syntax.

1 This definition uses ::: as an infix operator, similarly to : for Haskell lists.

Functional Reactive GUI Programming with Modal Types 3

Γ,✓cl(t) ⊢ t :: A

Γ ⊢ delaycl(t)t ::⃝A

✓ ̸∈ Γ ′ or A stable
Γ, x :: A,Γ ′ ⊢ x :: A

Γ ⊢ t :: □A

Γ ⊢ unbox t :: A

Γ□ ⊢ t :: A

Γ ⊢ box t :: □A

Γ ⊢ s ::⃝A Γ ⊢ t ::⃝B ✓ ̸∈ Γ ′

Γ,✓cl(s)⊔cl(t) , Γ
′ ⊢ select s t :: Select AB

Γ ⊢ t ::⃝A ✓ ̸∈ Γ ′

Γ,✓cl(t) , Γ
′ ⊢ adv t :: A Γ ⊢ never ::⃝A

Γ ⊢ chan :: C(Chan A)
†

Γ ⊢ t :: Chan A

Γ ⊢ wait t ::⃝A
†

Γ ⊢ t :: A A continuous
Γ ⊢ promote t :: □A

†

where ·□ = ·

(Γ,✓θ)
□ = Γ□

(Γ, x :: A)□ =

{
Γ□, x :: A if A stable
Γ□ otherwise

Fig. 1: Select typing rules for Async Rattus and its extension Widget Rattus.
New typing rules introduced by Widget Rattus are marked by †.

2 From Async Rattus to Widget Rattus

In this section, we give a brief introduction to the Async Rattus language [5]
(sections 2.1 to 2.5) and then present two extensions to the language that will
enable GUI programming (section 2.6).

2.1 Introduction to Async Rattus

Async Rattus is an implementation of the Async RaTT calculus [6] as a shallowly
embedded language in Haskell. By virtue of being shallowly embedded, Async
Rattus has access to Haskell’s extensive library ecosystem. However, Async Rat-
tus differs from Haskell in two major ways.

The first difference is that Async Rattus is eagerly evaluated while Haskell
uses lazy evaluation by default. The choice of eager evaluation is an important
part of how Async Rattus prevents space leaks while still allowing the program-
mer to manipulate signals directly [6].

The second fundamental difference introduced by Async Rattus is an exten-
sion of the type system. Async Rattus introduces two type modalities, ⃝ and
□, called the later and box modalities2. The later modality ⃝ represents val-
ues that will be available in the future, whereas the box modality □ is used for
computations that remain stable across time and can be executed when needed.
Figure 1 presents the most important typing rules of Async Rattus and its ex-
tension Widget Rattus (indicated by †). We describe the type modalities and
the type system that enables them in more detail below.

To account for these fundamental differences in semantics and type system,
Async Rattus is implemented by a combination of a Haskell library, which im-
plements the basic primitives and types of the language, and a compiler plugin.
This compiler plugin transforms the code so that it matches the eager evaluation
2 The concrete ASCII syntax for ⃝ and □ is O and Box, respectively.

4 Disch et al.

semantics of Async Rattus, and it performs an additional typechecking pass to
enforce the stricter typing rules of the language [5].

2.2 Later modality and clocks

The later modality ⃝ indicates values that are not immediately available but
expected in the future, contingent on the occurrence of some event. A value of
type⃝A represents a delayed computation that will produce a value of type A in
the future. The timing of when the value will become available is determined by
a clock, which is a record of data dependencies: An Async Rattus program may
receive data from several input channels such as the keyboard or a button on a
GUI. A clock θ is a set of such input channels, e.g. θ = {ckeyboard, cok_button},
and a tick on θ means that data has been received on some input channel c ∈ θ.

Any value of type⃝A is effectively a pair (θ, f) consisting of a clock θ and a
computation f that will produce a value of type A when executed. The compu-
tation f remains dormant until the clock θ ticks, which signals the occurrence
of the anticipated event. This mechanism ensures that delayed computations
respect temporal causality. That is, delayed computations are performed only
when their time comes, according to the ticking of their associated clocks.

Conceptually, we can think of the two components θ and f of a delayed
computation of type ⃝A to be accessible via two functions cl :: ⃝A → Clock
and adv :: ⃝A → A, respectively. However, as we shall see, cl is not directly
accessible to the programmer, and adv is subject to the typing rule in Figure 1,
which we discuss shortly. Conversely, to construct a delayed computation, one
can use the delay function, which – for now – we can think of as having type
delay :: Clock → A → ⃝A. That is, it takes a clock θ and a computation
producing A and returns a delayed computation (θ, f) that will yield the value
of type A once θ ticks. This conceptual representation suffices for the moment,
but we will refine this oversimplification when presenting the typing rules for adv
and delay. Also note that while Async Rattus is eagerly evaluated by default,
delay does not evaluate its argument of type A eagerly, since it represents a
delayed computation that may only be performed once the associated clock θ
ticks.

An illustrative example of the interplay between the later modality and clocks
is the following increment function:

incr ::⃝ Int →⃝ Int
incr x = delaycl(x)(adv x + 1)

The function incr delays the increment operation until the clock cl(x) associ-
ated with x ticks. This schedules the increment to happen when the underlying
value of x becomes available, thereby enforcing causality of the system.

To keep track of temporal dependencies, typing contexts contain tokens of
the form ✓θ to indicate that a tick on some clock θ has occurred. These tokens
✓θ are also called ticks. An example context in Async Rattus could look like this:

x :: Int ,✓θ , y :: Int , z :: Text ,✓θ′

Functional Reactive GUI Programming with Modal Types 5

Here the ticks represent the passage of time according to the clocks θ and θ′.
Intuitively speaking, this context expresses the fact that the value assigned to
variable x is available one time step (on clock θ) before the values assigned to y
and z, which in turn are one time step (on clock θ′) old. With this understanding
in mind, we can see from the typing rules in Figure 1 that adv can only be used
to advance a delayed computation t ::⃝A if a tick on the clock of t has occurred,
indicated by the token ✓cl(t) . Moreover, this tick must be the most recent tick,
i.e. there are no other ticks occurring to the right of it, which is indicated by
the condition ✓ ̸∈ Γ ′. And finally, t itself must be typeable using only using the
part of the context to the left of the tick ✓cl(t) , i.e. t must come from the time
before its clock ticked. This typing rule encodes the intuition that the presence
of the tick ✓cl(t) in the typing context indicates that the clock cl(t) has ticked in
response to an event making the value computed by t available now.

Consider the following example of a function for eliminating the later modal-
ity that is not causal and indeed does not typecheck:

advBad ::⃝ Int → Int
advBad x = adv x

The advBad function tries to use adv to extract a future value of the delayed
computation x without waiting for its clock cl(x) to tick. In other words, advBad
is not causal as it tries to look up data now that is only available later.

While adv is used for eliminating the later modality and executing delayed
computations in response to events, delay is used to construct delayed computa-
tions. To safely construct a delayed computation one needs to associate it with a
clock to indicate when it can be executed. The delay function allows us to delay
a computation t :: A until the time at which a certain clock θ ticks. The type
system keeps track of that by making sure that t type checks in a context that
includes ✓θ . The new context Γ,✓θ not only indicates that θ has ticked by the
time t gets evaluated, but also that all variables that were previously available
in Γ , are now one time step older according to the clock θ.

As an example, consider the following ill-typed definition using delay:

delayBad :: Int →⃝ Int
delayBad x = delayθ x -- no clock θ available

In this example, delayBad tries to delay an integer x, but in order to do so it
needs to specify a clock θ. Clocks cannot be constructed directly, but can only be
extracted from other delayed computations. Since no such delayed computation
is in context, we cannot use delay here.

Together, adv and delay enable precise control over when computations are
carried out in Async Rattus. This ensures that values are only accessed or modi-
fied at appropriate times, often in response to user generated input. The following
is a typical example of how adv and delay interact:

doubleLater ::⃝ Int →⃝ Int
doubleLater x = delaycl(x) (2 ∗ adv x)

6 Disch et al.

In this example, doubleLater takes a delayed integer and returns a new delayed
integer that is twice the original value. To this end, the new delayed computation
has the same clock as the incoming delayed computation x. That means, the term
2 ∗ adv x is type checked in the context x ::⃝Int ,✓cl(x) .

The clock argument to delay can typically be inferred from the context in
which it appears. In the above example, the clock has to be cl(x), as we need
the tick ✓cl(x) in context so that we can advance x. We therefore elide the clock
argument from now on, and indeed the Async Rattus type checker will infer the
clock argument. In practice, the above example would thus be written as follows
in Async Rattus:

doubleLater ::⃝ Int →⃝ Int
doubleLater x = delay (2 ∗ adv x)

2.3 The Box Modality and Stable Types

Computations in Async Rattus may contain references to time-dependent data
as for example the reference to x in the computation performed by 2∗adv x in the
definition of doubleLater above. Such references to time-dependent values may
cause space leaks in FRP programs as these values have to be kept in memory
until the computation that references it is performed. To prevent this, Async
Rattus does not allow programmers to move arbitrary data across time steps.
Only data of certain types can be moved across time. We call such types stable
types, and they include all types that cannot carry any temporal dependency.
Types of the form ⃝A and A → B are not stable, since delayed computations
are by definition time-dependent and since functions may contain references to
arbitrary data in their closure – including time-dependent data. Stable types
include all base types like Int and Bool as well as all algebraic data types and
record types that in turn only contain stable types, e.g. lists of integers.

The typing rule for variables enforces that only values of stable types can
be moved across time: A variable that occurs to the left of a tick – and is thus
from the past – can only be used if it is of a stable type. The following example
illustrates this:

mapLaterBad :: (a → b)→⃝ a →⃝ b
mapLaterBad f x = delaycl(x) (f (adv x)) -- f is out of scope

This definition does not typecheck since f is no longer in scope when it is used
under delay. The typing context to typecheck f (adv x) is f :: a → b, x ::
⃝a,✓cl(x) and according to the typing rule for variables, we can see that f
typechecks in this context only if its type a→ b was stable, which it is not.

To safely and efficiently move values of such non-stable types across time,
Async Rattus provides the box modality □, which turns any type A into a stable
type □A. However, when constructing values of type □A using the box primitive,
the type system enforces restrictions that makes sure that such boxed values are
indeed time-independent. The typing rule for box requires that its argument t

Functional Reactive GUI Programming with Modal Types 7

typecheck in a context Γ□, which is obtained from Γ by removing all ticks and
all variable bindings x :: A where A is not stable. This ensures that box t is
time-independent and can thus be moved across time. Similarly to delay, also
box evaluates its argument lazily. That is, the argument t is only evaluated when
the boxed value is forced using unbox.

Using the box modality, we can revise the mapLaterBad function so that it
takes a boxed function instead:

mapLater ::□ (a → b)→⃝ a →⃝ b
mapLater f x = delaycl(x) (unbox f (adv x))

Now f is in scope because, while it is still occurring to the left of a tick, it is of
a stable type, namely □ (a→ b).

2.4 Signals

Signals can be defined in Async Rattus by the following definition:

data Sig a = a :::⃝ (Sig a)

That is, a signal of type Sig a consists of a current value of type a and a future
update to the signal of type ⃝(Sig a). Such signals can be easily manipulated
using pattern matching and recursion. For example, we can define a map func-
tion for signals, but similarly to the mapLater function on the ⃝ modality, the
function argument has to be boxed:

map ::□ (a → b)→ Sig a → Sig b
map f (x ::: xs) = unbox f x ::: delay (map f (adv xs))

In order to ensure productivity of recursive function definitions, Async Rattus
requires that recursive function calls, such as map f (adv xs) above, are guarded
by a delay. More precisely, such a recursive occurrence may only occur in a
context Γ that contains a ✓θ .

The following example shows the use of never to introduce delayed computa-
tions that will never be triggered:

const :: a → Sig a
const x = x ::: never

This function allows us to construct signals whose update component will never
be triggered and thus maintain a constant value.

2.5 Asynchronous computations

Unlike synchronous modal FRP languages, each delayed computation in Async
Rattus comes with its own local clock. That means we cannot easily combine
two delayed computations since they may not be triggered simultaneously. For
example, we cannot implement a function like this:

8 Disch et al.

addBad ::⃝ Int →⃝ Int →⃝ Int
addBad x y = delay (adv x + adv y)

The problem is that we cannot annotate delay with a single clock θ that will
allow us to advance on both x and y since they may have different clocks.

To process more than one delayed computation, Async Rattus allows us to
form the union θ ⊔ θ′ of two clocks θ and θ′, which ticks whenever θ or θ′ ticks.
We can use such union clocks via the select primitive, which takes two delayed
computations s :: ⃝A and t :: ⃝B as arguments and requires that a tick on
the clock cl(s)⊔ cl(t) is in the context. In return, select produces a value of type
Select AB:

data Select a b = Fst a (⃝ b) | Snd (⃝ a) b | Both a b

A term select s t produces a value with constructor Fst , Snd , or Both if cl(s)
ticks before, after, or at the same time as cl(t), respectively. Using select, we can
implement a combinator that allows us to dynamically switch from one signal
to another one:

switch :: Sig a →⃝ (Sig a)→ Sig a
switch (x ::: xs) d = x ::: delay (case select xs d of

Fst xs ′ d ′ → switch xs ′ d ′

Snd d ′ → d ′

Both d ′ → d ′)

The signal produced by switch xs ys, first behaves like the signal xs, but it will
start behaving like the delayed signal ys as soon as it arrives, i.e. when cl(ys)
ticks.

2.6 Widget Rattus

Widget Rattus is a small extension of the Async Rattus language with two
features that enable GUI programming: first-class channels and continuous types.

First-class channels. To implement GUIs we need to be able to dynamically
create GUI components, or widgets, which in turn must be able to produce data
obtained from user interaction, e.g. button press events or keyboard inputs from
a text field. To this end, Widget Rattus introduces two primitives – shown in
Figure 1 – to construct and interact with channels, which can then be used by
widgets to send their data: chan creates a new channel of type ChanA, which can
send data of type A, and wait turns such a channel into a delayed computation
that produces a value of type A as soon as such a value is sent on the channel.
Since chan is an effectful operation – it allocates a fresh channel – it uses a
monad C to indicate its effectful nature.

Below we use a channel to construct a simple button that consists of a signal
that describes its text and a channel of type Chan () that is intended to produce
a unit value whenever it is pressed:

Functional Reactive GUI Programming with Modal Types 9

data SimpleButton = SimpleButton (Sig Text) (Chan ())

simpleButton :: C SimpleButton
simpleButton = do c ← chan

return (Button (const "OK") c)

Here the button just displays a constant signal of the text “OK”. In the example
below we make a more dynamic button that changes its text from “OK” to
“Clicked” as soon as the button is clicked

respond :: C SimpleButton
respond = do
c ← chan
let sig = switch (const "OK")

(mapLater (box (λ()→ const "Clicked")) (wait c))
return (Button sig c)

The dynamic behaviour is achieved by the switch function from section 2.5. In
turn, mapLater is used to turn the delayed computation wait c :: ⃝() into a
delayed signal of type ⃝(Sig Text).

The channel type Chan a is stable and can thus be moved across time, which
allows us to implement the following combinator to turn channels into signals:

chanSig :: Chan a →⃝ (Sig a)
chanSig c = delay (adv (wait c) ::: chanSig c)

Since the channel c is of a stable type, we can move it across the tick introduced
by delay and then pass it to the recursive call of chanSig .

Continuous types. The second extension provided by Widget Rattus generalises
the outputs that a reactive program can produce. An Async Rattus program
can produce output in the form of signals of type Sig A for basic types A. A
value of type Sig A is of the form v0 ::: (θ0, f0), where v0 :: A and f is a
delayed computation that produces a new signal v1 ::: (θ1, f1) as soon as θ0
ticks. That is, a signal produces a sequence of values v0, v1, . . . , each triggered
by a corresponding clock.

The output produced by GUI programs does not have this linear structure
but is instead tree-shaped. We can imagine a GUI being represented as a signal
of type Sig Widget , where Widget is a type that describes the top-level widget
of the GUI, e.g. a container widget that contains other widgets, which in turn
may consist of other widgets. That is, GUIs are described by a tree structure.
For example, we may define a widget that consists of several buttons:

data Buttons = Buttons (Sig Color) (Sig (List SimpleButton))

This container widget consists of a colour signal but also of a signal of a list of
buttons. Since buttons themselves consist of signals, the output mechanism of
the language needs to handle nested signals.

10 Disch et al.

To this end, Widget Rattus introduces the notion of continuous types. These
are types whose values may dynamically change over time. For each continuous
type A, the runtime system of Widget Rattus has a clock function clock :: A→
Clock and an update function update :: InputValue→ A→ A. If we have a value
v of a continuous type A, and we receive an input i on a channel c ∈ clock(v), the
value v is updated to update i v :: A. For example, Sig Int is a continuous type:
An integer signal value v0 ::: (θ0, f0) has the clock θ0 and is updated once an
input i is received on a channel c ∈ θ0 by performing the delayed computation
f0 which yields a new signal v1 ::: (θ1, f1).

Continuous types allow us to deal with signals of type Sig A where A is not
a basic type but may in general be a continuous type. In that case, the clock of a
signal v0 ::: (θ0, f0) is the union of the clock of v0 and θ0, i.e. clock(v0)⊔θ0. If we
receive input i on channel c ∈ clock(v0)⊔ θ0, there are two possible outcomes for
the updated signal. If c ∈ θ0, then the new signal is produced by performing the
delayed computation f0, which produces a new signal v1 ::: (θ1, f1). Otherwise,
if c ̸∈ θ0 (and thus c ∈ clock(v0)), then the new signal is update i v0 ::: (θ0, f0).

Any basic type is a continuous type, and – like stable types – continuous
types are closed under product, sum and recursive types. However, unlike stable
types, continuous types are closed under forming signal types, i.e. if A is a
continuous type, then so is Sig A. Since continuous types can be updated over
time, Widget Rattus comes with a primitive promote that promotes a continuous
type to a boxed type as shown in Figure 1. In particular, any widget type that
we implement in Widget Rattus is a continuous type. That means, it can be used
by Widget Rattus’ runtime system to render it as a GUI on screen and update it
in response to GUI events. Moreover, we can promote any widget so that we can
safely move it into the future. So a button that is constructed at some point in
time can safely be moved into the future by promoting it to a boxed type. The
semantics of promote makes sure that the boxed widget is updated in response
to events that make its clock tick, e.g. if it is the respond button defined above,
it will change its label when it is clicked.

3 GUIs in Widget Rattus

This section will cover two examples of GUIs implemented using Widget Rattus3.
The GUIs are based on the counter and timer benchmarks from Kiss’s 7GUIs
benchmark [17]. The GUIs are constructed using the Widget Rattus libraries
shown in Figure 2 and Figure 5. Figure 2 shows a selection of combinators to
construct and manipulate signals, and Figure 5 contains functions to construct
widgets. Most of the signal combinators shown in Figure 2 are taken from the
original Async Rattus work [5]. But we have added a few combinators that have
become handy for implementing the GUI examples, and we discuss their imple-
mentation in this section. The implementation of widgets and their constructor
functions will be covered in more detail in section 4.
3 Further examples are included in the Widget Rattus package [13]: https://github.
com/pa-ba/AsyncRattus/tree/WidgetRattus/examples/gui

https://github.com/pa-ba/AsyncRattus/tree/WidgetRattus/examples/gui
https://github.com/pa-ba/AsyncRattus/tree/WidgetRattus/examples/gui

Functional Reactive GUI Programming with Modal Types 11

map ::□ (a → b)→ Sig a → Sig b

mkSig ::□ (⃝ a)→⃝ (Sig a)

const :: a → Sig a

scan :: (Stable b)⇒ □ (b → a → b)→ b → Sig a → Sig b

scanAwait :: (Stable b)⇒ □ (b → a → b)→ b →⃝ (Sig a)→ Sig b

switch :: Sig a →⃝ (Sig a)→ Sig a

switchS :: Stable a ⇒ Sig a →⃝ (a → Sig a)→ Sig a

switchR :: Stable a ⇒ Sig a →⃝ (Sig (a → Sig a))→ Sig a

interleave ::□ (a → a → a)→⃝ (Sig a)→⃝ (Sig a)→⃝ (Sig a)

zipWith :: (Stable a,Stable b)⇒ □ (a → b → c)→ Sig a → Sig b → Sig c

stop ::□ (a → Bool)→ Sig a → Sig a

timer :: Int → □ (⃝ ())

mkSig ::□ (⃝ a)→⃝ (Sig a)

Fig. 2: Signal combinator library.

(a) Counter. (b) Timer.

Fig. 3: Example GUIs.

3.1 Counter

We begin with an example of a simple counter GUI depicted in Figure 3a. It
contains a button that increments a label whenever it is pressed [17]. The im-
plementation of this GUI in Widget Rattus is shown in Figure 4.

To start a GUI application using Widget Rattus, we have to pass the (com-
pound) widget that is to be rendered in the application to the runApplication
function. Widget Rattus provides a number of functions to create widgets. For
the widgets relevant to the examples in this section, the type signatures can be
seen in Figure 5.

For the counter GUI it is necessary to make a button and a label. The
mkButtons function takes a signal that determines what text to display on the
button. The signal may be of any type a that implements the Displayable type
class, which includes Text and Int . For the counter we simply give our button a
constant signal with the Text value "Increment".

To add functionality to a button the btnOnClickSig function is used. This
function takes as input a button and returns a signal that ticks – producing
a unit – whenever the button is pressed. This signal can be turned into an

12 Disch et al.

counter :: C VStack
counter = do

btn ← mkButton (const "Increment")
let clicks = btnOnClickSig btn
let counts = scanAwait (box (λn ()→ n + 1)) 0 clicks
lbl ← mkLabel counts
mkVStack (const [mkWidget lbl ,mkWidget btn])

main :: IO ()
main = runApplication counter

Fig. 4: Counter GUI Implementation

mkButton ::Displayable a ⇒ Sig a → C Button
btnOnClickSig :: Button →⃝ (Sig ())

mkTextField :: Text → C TextField
textFieldOnInputSig :: TextField →⃝ (Sig Text)

mkLabel ::Displayable a ⇒ Sig a → C Label

mkVStack :: IsWidget a ⇒ Sig (List a)→ C VStack
mkConstVStack ::Widgets ws ⇒ ws → C VStack

mkSlider :: Int → Sig Int → Sig Int → C Slider
sldCurr :: Slider → Sig Int

mkProgressBar :: Sig Int → Sig Int → Sig Int → C Slider

mkWidget :: IsWidget a ⇒ a →Widget

runApplication :: IsWidget a ⇒ C a → IO ()

Fig. 5: GUI combinator Library

integer signal that produces the intended value of the counter. To this end,
we use the scanAwait combinator, which similarly to Haskell’s scanl combi-
nator on lists applies a given function f to a signal. An input signal that
produces values v1, v2, . . . is thus transformed into a signal producing values
x, f x v1, f (f x v1) v2, . . . , where x is the starting value provided to scanAwait .
In this case, we start with 0 and increment the previous value by one at each
tick of the input signal clicks. The resulting signal counts is then used to create
a label that always displays the current value of counts, which is exactly the
number of times that the button has been pressed.

Finally, runApplication only takes as input a single widget, but in most GUIs
it is necessary to display multiple widgets. For this purpose Widget Rattus pro-
vides horizontal and vertical stacks. Stacks are widgets that take as input a list
of other widgets, allowing users of Widget Rattus to create their GUI as a tree
structure composed of widgets. In the counter GUI a single vertical stack is made
using the mkVStack function to contain both the button and label.

Functional Reactive GUI Programming with Modal Types 13

Note that lbl and btn are of two different types, namely Label and Button,
but we have to construct a list of a single widget type in order to pass it to
mkVStack . To this end, the library provides the mkWidget function to turn
any widget type into the type Widget . Since we often find ourselves passing a
constant signal of a list of differently-typed widgets, the library also provides a
mkConstVStack function that takes any tuple consisting of widget types, e.g.
Label × Button. That means, the last line of counter can be more compactly
written as mkConstVStack (lbl × btn) instead.

3.2 Timer

As a second example, we consider an interactive timer that ticks up every sec-
ond and whose value is displayed in both a progress bar and numerically on a
label [17]. User input comes in the form of a slider that determines the max-
imum value of the timer, as well as a button that resets the timer. Figure 3b
shows our Widget Rattus implementation of this GUI application: The grey bar
is the progress bar which – like the text label above it – increments towards the
maximum value determined by the blue slider at the top. However, the progress
bar also changes in response to inputs to the slider, since changing the maxi-
mum timer value changes the percentage of how much time has passed relative
to the maximum. Pressing the reset button sets the timer (and thus both the
label and the progress bar) to zero. The primary challenge of the timer GUI is
concurrency, since user input competes with the state of the timer.

The full Widget Rattus code for the timer GUI is shown in Figure 6. At the
top, mkTimerSig defines the base signal that increments the timer value until we
reach the end of the timer. The state of the timer consists of two integer values:
the number of seconds elapsed since the start of the timer and the maximum
value of the timer, i.e. the number of seconds at which the timer will stop. This
state is represented by the type Int × Int , where × denotes the strict pair type
of Widget Rattus.

The mkTimerSig function takes the initial state as input and produces a new
timer signal that starts with that state. To this end, we use timer and mkSig from
Figure 2 to produce a signal of type⃝(Sig ()) that ticks every second (= 1000000
microseconds). Using scanAwait we turn this into a signal that advances the state
of the timer, by incrementing the first component (elapsed seconds) but leaving
the second component (the maximum timer value) untouched. To stop the timer
when the maximum value is reached, we finally apply the stop combinator. This
combinator takes a predicate and a signal as argument, and produces a new signal
that behaves as the old signal, but stops as soon as the predicate is satisfied. We
can implement stop as follows:

stop ::□ (a → Bool)→ Sig a → Sig a
stop f (x ::: xs) = if unbox f x then const x

else x ::: delay (stop f (adv xs))

The below example shows how the stop function works:

14 Disch et al.

everySecondSig ::⃝ (Sig ())
everySecondSig = mkSig (timer 1000000)

mkTimerSig :: Int × Int → Sig (Int × Int)
mkTimerSig startState = stop (box (λ(n × nMax)→ n ⩾ nMax)) timerSig

where timerSig :: Sig (Int × Int)
timerSig = scanAwait (box (λ(n × nMax) ()→ (n + 1)× nMax))

startState everySecondSig

reset :: ()→ (Int × Int)→ (Int × Int)
reset () (n × nMax) = (0× nMax)

setMax :: Int → (Int × Int)→ (Int × Int)
setMax nMax ′ (n × nMax) = min n nMax ′ × nMax ′

window :: C VStack
window = do

slider ← mkSlider 50 (const 1) (const 100)
resetBtn ← mkButton (const ("Reset" :: Text))

let resetSig = mapAwait (box reset) (btnOnClickSig resetBtn)
let setMaxSig = mapAwait (box setMax) (future (sldCurr slider))

let inputSig ::⃝ (Sig (Int × Int → Int × Int))
= interleave (box (◦)) resetSig setMaxSig

let inputSig ′ ::⃝ (Sig (Int × Int → Sig (Int × Int)))
= mapAwait (box (λf → mkTimerSig ◦ f)) inputSig

let currentMax = current (sldCurr slider)
let counterSig = switchR (mkTimerSig (0× currentMax)) inputSig ′

let currentSig = map (box fst ′) counterSig
let maxSig = map (box snd ′) counterSig

label ← mkLabel currentSig
pb ← mkProgressBar (const 0) maxSig currentSig

mkConstVStack (slider × resetBtn × label × pb)

Fig. 6: Timer GUI implementation

xs : 1 2 3 4 5 6 ...

stop (box (⩾ 3)) xs : 1 2 3

To illustrate a modular programming style, we have used two separate com-
binators – scanAwait and stop – to first define a signal and then modify it so
that it stops at a certain point. Of course, we could have also used a combinator
that combines the functionality of scanAwait and stop.

The GUI constructed by window in Figure 6 first constructs the slider to
adjust the timer and the reset button. The mkSlider function constructs a slider
with 50 as its initial value and two constant signals that determine the minimum
and maximum value of the slider to be 0 and 100, respectively.

Both the reset button and the slider change the state of the timer as de-
scribed by the reset and setMax functions defined above window . These two

Functional Reactive GUI Programming with Modal Types 15

Table 1: Example table for counterSig
Events 1 second Max set to 10 1 second Reset pressed

inputSig setMax 10 reset
counterSig (0,50) (1,50) (1,10) (2,10) (0,10)

functions are applied to the two signals produced by the reset button and the
slider using mapAwait , to obtain the signals resetSig and setMaxSig , both of
type ⃝(Sig((Int × Int) → (Int × Int))). Both signals produce functions that
are meant to manipulate the timer state, and we combine the two with the
interleave combinator to create a signal that responds to both types of user in-
put. The resulting signal inputSig ticks whenever either input signal ticks. When
both signals tick, then the values of the two signals are combined – in this case
using function composition ◦, so that both functions are applied – one after the
other.

As an example of how interleave works consider the following integer signals
xs and ys and how their interleaving looks like with the addition operator.

xs : 1 3 5 3 1 3 ...
ys : 0 2 4 ...

interleave (box (+)) xs ys : 1 3 2 5 7 1 3 ...

Next, we need to combine the inputSig signal with the timer signal produced
by mkTimerSig . To do so, we make use of a switch combinator. The signal
combinator library in Figure 2 has three such combinators: The simplest, switch,
we have already seen in section 2.5. It takes a signal xs and a delayed signal
ys as arguments and produces a signal that first behaves like xs and switches
to behaving like ys as soon as it arrives. The stateful version, switchS , works
similarly but ys is now a delayed function that produces a signal depending on
the previous value of the signal, rather than just a signal that is independent
of the previous value of the signal. Finally, switchR is a repeating version of
switchS . Instead of a single delayed function ys, it takes a delayed signal of such
functions, and each time this signal produces a new function, that function is
used to change the behaviour of the signal. We can implement it by repeatedly
calling switchS :

switchR :: Stable a ⇒ Sig a →⃝ (Sig (a → Sig a))→ Sig a
switchR xs ys = switchS xs
(delay (let step ::: ys ′ = adv ys inλx → switchR (step x) ys ′))

We use switchS to construct a signal that first behaves like sig . We further give
switchS a delayed function that takes as argument the previous value x of the
signal and produces a new signal. As soon as a function step :: a → Sig a is
received on the steps signal, our delayed function will apply step to x to obtain
a new signal on which to recursively continue.

16 Disch et al.

In the case of the timer GUI, switchR is used to create counterSig, a signal
representing a capped timer, whose maximum and current value can be affected
by user input. The signal first starts as mkTimerSig (0 × currentMax), i.e. it
simply ticks up every second. This signal then dynamically switches according
to the signal inputSig ′, which takes the functions of inputSig and composes
them with mkTimerSig . In other words, for every user input, which produces a
function f on inputSig , we apply that function f to the current timer state, and
then we pass the resulting new state to mkTimerSig to resume the timer with
this new state.

Table 1 illustrates an example of how counterSig behaves for a given sequence
of user input: counterSig initially behaves like mkTimerSig applied to (0× 50).
After every second the first part of counterSig increments. When the user sets
the maximum value to 10 by dragging the slider, setMax 10 is applied to the
current value of counterSig. This returns (1 × 10) and counterSig switches its
behaviour to reflect mkTimerSig (1 × 10). This increments to (2 × 10) after
another second. Once the reset button is pressed the reset function is called
with the current value of counterSig. This returns (0× 10) and counterSig now
behaves like mkTimerSig (0× 10).

Finally, counterSig is split into its two components with the help of the two
projection functions fst ′ :: a× b→ a and snd ′ :: a× b→ b. The resulting signals
are passed on to the label and the progress bar, which along with the other
widgets are grouped into a vertical stack.

4 GUI Library Implementation

After demonstrating the use of the Widget Rattus GUI library in the previ-
ous section, we turn to the implementation of the GUI library in this section.
To simplify the implementation of the GUI library, we have built it on top of
Monomer [25], a Haskell library for writing GUI applications using pure func-
tional code in a style pioneered by Elm [9].

GUI elements in Widget Rattus GUIs are called widgets and the GUI is
represented as a tree structure. Conceptually speaking, widgets are simply GUI
elements that are defined as unique data structures. A button, for example,
consists of two fields: a signal of text btnContent and an input channel btnClick :

data Button where
Button ::Displayable a
⇒ {btnContent :: Sig a, btnClick :: Chan ()} → Button

The btnContent field represents the value displayed on the button. Any widget
that takes user input needs to instantiate a channel of the corresponding type
as described in section 2.6. In the case of a button this is a channel of type (),
since the click event does not carry any data.

The Displayable type class is a variant of the standard type class Show :

class Stable a ⇒ Displayable a where
display :: a → Text

Functional Reactive GUI Programming with Modal Types 17

It provides a method to render a value as text. The difference to Show is that:
(1) it is a subclass of Stable, (2) it produces text of type Text , which unlike
String is a strict type, and (3) its instance for Text implements display as the
identity function rather than embedding the text in quotation marks.

To render widgets using Monomer, we need a way to turn them into corre-
sponding data structures in Monomer, called widget nodes. This is achieved by
the IsWidget type class:

class Continuous a ⇒ IsWidget a where
mkWidgetNode :: a → Monomer .WidgetNode AppModel AppEvent

The mkWidgetNode method translates a Wiget Rattus widget of type a into a
widget node in Monomer, which can then be rendered by the monomer library.
Every widget node in monomer has a model and event type. We will return to
the definition of these types shortly.

Note that IsWidget is a subclass of Continuous, which we introduced in
section 2.6. This ensures that we can use widgets in a way that is similar to
signals: Widgets have a current state, which is rendered on screen, and they
can be updated in response to events. Recall that any stable type is continuous,
and that continuous types are closed under forming product types, sum types,
recursive types, and signals. Widget Rattus provides Template Haskell code that
automatically generates Continuous instance declarations for such types, so we
can focus on defining instances of IsWidget. For buttons, the instance declaration
looks as follows:

instance IsWidget Button where
mkWidgetNode Button {btnContent = val ::: , btnClick = click } =
Monomer .button (display val) (AppEvent click ())

The Monomer button constructor takes as input the text to be shown on the
button and the event that should be produced when clicking the button. For the
first argument, we use the current value of the btnContent signal and render it
as text. For the second argument, we want the event to contain both the channel
associated with the button, and the value it produces when clicking the button –
in this case (). To this end, we define an AppEvent data type to contain exactly
this data:

data AppEvent where
AppEvent :: Chan a → a → AppEvent

This data type consists of an input a channel of type a and a value of type a.
Button click events are of type (), since they do not contain any information.

As shown in Figure 5, Widget Rattus provides functions to make the process
of constructing GUI elements simpler. The mkButton function is implemented
as follows:

mkButton ::Displayable a ⇒ Sig a → C Button
mkButton t = do c ← chan

return Button {btnContent = t , btnClick = c}

18 Disch et al.

The mkButton function only takes a signal as input. The input channel required
for btnClick is allocated by the call to chan. This simple widget only consists of
a single signal and a single channel. A more full-featured library would include
additional signals (e.g. signals describing colour, styling etc.) and channels (e.g.
a channel to indicate that the button received focus).

Widgets can be nested so that they form a tree structure. Vertical stacks
provide the simplest example of this nested structure:

data VStack where
VStack :: IsWidget a ⇒ Sig (List a)→ VStack

As observed before, the list of widgets that the signal of a stack produces only
allows lists of the same widget type (e.g. only a list of buttons). To allow widgets
of different types, we also have a wrapper type Widget , so that we can turn a
widget of any type into a widget of type Widget :

data Widget where
Widget :: IsWidget a ⇒ a → Sig Bool →Widget

Such a wrapper widget type can contain any additional data that applies to
all widgets. For our simple library, we include a signal of type Bool that is used
to determine whether the widget is enabled at any given time. If a Widget never
needs to be disabled, one can use the mkWidget function:

mkWidget :: IsWidget a ⇒ a →Widget
mkWidget w = Widget w (const True)

Finally, we turn to the implementation of runApplication, which takes a com-
putation of type C w that produces a widget of type w and runs an application
that renders this widget. To this end, runApplication uses Monomer’s startApp
function, which requires four components, which we present here in simplified
form. First, we have the event type AppEvent , which we have introduced above.
Second, we have the AppModel type, which describes the current state of the
application:

data AppModel where
AppModel :: IsWidget a ⇒ a → Clock → AppModel

That is, the state of a Widget Rattus application is solely described by the widget
that is to be rendered and a clock. The latter is simply the clock that represents
all timers that are currently running, i.e. delayed computations produced by
timer from Figure 2. The runApplication function initialises the AppModel data
structure with the widget it takes as argument and with the empty clock.

The last two components for Monomer’s startApp are functions that interact
with the state and event types. The first is a function that constructs a new
widget node from the current state of the GUI application:

build ::AppModel →WidgetNode AppModel AppEvent
build (AppModel w cl) = mkWidgetNode w

Functional Reactive GUI Programming with Modal Types 19

The second function is an event handler that updates the model. Below we
present a simplified version that ignores timers (the cl component of the model):

handle ::AppModel → AppEvent → AppModel
handle (AppModel w cl) (AppEvent c i) =
if c ∈ clock w then AppModel (update i w) cl else AppModel w cl

Since the widget w is of a continuous type, it can be updated using the clock
and update functions as described in section 2.6.

5 Related Work

There is a long history of using the FRP paradigm to implement GUI frameworks
in a functional programming language: Notable examples are the Haskell libraries
FranTk [24] (based on the original Functional Reactive Animation framework
Fran [10]), Fruit [8] (based on the arrowized FRP library Yampa [22]), and
Threepenny GUI [2] (based on Reactive Banana [1], a traditional FRP library
with a carefully selected set of combinators to avoid time leaks). The prominent
Elm language [9] was initially also implemented as an embedded language in
Haskell designed for FRP-based GUI programming but has later abandoned the
FRP paradigm in favour of the Elm Architecture.

More recently, FRP languages have emerged that use modal types with the
goal of avoiding issues of traditional FRP [20,14,15,21,18,16,7,3,4,12,6], namely
space/time leaks and causality, while still maintaining its conceptual simplicity,
i.e. manipulation of first-class signals using functional programming. The first
foray into modal FRP for GUI programming was undertaken by Krishnaswami &
Benton [19] using linear types to describe dynamically updating GUIs. However,
this language is synchronous, which is at odds with the asynchronous nature of
GUI applications and thus leads to inefficiencies. Graulund et al. [12] introduced
the λWidget calculus which also combines modal types and linear types, but its
temporal modalities are asynchronous. A crucial difference between Widget Rat-
tus and λWidget is that the latter uses destructive updates to dynamically change
GUI components, e.g. via a setColor function. By contrast Widget Rattus uses
the core FRP idea of signals to declaratively describe the dynamic behaviour of
GUI elements. Moreover, to our knowledge Widget Rattus is the first implemen-
tation of an asynchronous modal FRP language for GUI programming.

6 Conclusions and Future Work

We have demonstrated how the modal FRP language Async Rattus can support
purely functional GUI programming with two mild extensions to the language:
first-class channels and continuous types. We consider this work as a proof of
concept that demonstrates the language’s expressiveness for GUI programming.
There are several avenues for future research to make it easier to implement GUIs
(e.g. by devising a more expressive signal library that incorporates ideas from
push-pull FRP [11]) and to further improve runtime efficiency (e.g. by updating
nested widgets in-place rather that producing a new full widget tree).

20 Disch et al.

References

1. Apfelmus, H.: Reactive Banana. https://wiki.haskell.org/Reactive-banana
(2011)

2. Apfelmus, H.: Threepenny GUI. https://wiki.haskell.org/Threepenny-gui
(2013)

3. Bahr, P., Graulund, C.U., Møgelberg, R.E.: Simply RaTT: A Fitch-style modal
calculus for reactive programming without space leaks. PACMPL 3(ICFP) (2019)

4. Bahr, P., Graulund, C.U., Møgelberg, R.E.: Diamonds are not forever: liveness in
reactive programming with guarded recursion. PACMPL 5(POPL) (2021)

5. Bahr, P., Houlborg, E., Rørdam, G.T.S.: Asynchronous reactive programming
with modal types in Haskell. In: Gebser, M., Sergey, I. (eds.) Practical Aspects
of Declarative Languages (2024)

6. Bahr, P., Møgelberg, R.E.: Asynchronous modal FRP. Proc. ACM Program. Lang.
7(ICFP) (Aug 2023)

7. Cave, A., Ferreira, F., Panangaden, P., Pientka, B.: Fair Reactive Programming.
In: POPL (2014)

8. Courtney, A., Elliott, C.: Genuinely functional user interfaces. In: Haskell Work-
shop (2001)

9. Czaplicki, E., Chong, S.: Asynchronous functional reactive programming for GUIs.
In: PLDI (2013)

10. Elliott, C., Hudak, P.: Functional reactive animation. In: ICFP (1997)
11. Elliott, C.M.: Push-pull Functional Reactive Programming. In: Symposium on

Haskell (2009)
12. Graulund, C.U., Szamozvancev, D., Krishnaswami, N.: Adjoint reactive gui pro-

gramming. In: FoSSaCS (2021)
13. Houlborg, E., Rørdam, G., Bahr, P., Disch, J.C., Heegaard, A.: WidgetRattus:

An asynchronous modal FRP language. https://hackage.haskell.org/package/
WidgetRattus (2024)

14. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs
as functional reactive programs. In: PLPV (2012)

15. Jeltsch, W.: Towards a common categorical semantics for linear-time temporal
logic and functional reactive programming. ENTCS 286 (2012)

16. Jeltsch, W.: Temporal logic with "until", functional reactive programming with
processes, and concrete process categories. In: PLPV (2013)

17. Kiss, E.: 7GUIs: A GUI programming benchmark. https://eugenkiss.github.
io/7guis/tasks (2014)

18. Krishnaswami, N.R.: Higher-order Functional Reactive Programming Without
Spacetime Leaks. In: ICFP (2013)

19. Krishnaswami, N.R., Benton, N.: A semantic model for graphical user interfaces.
In: ICFP (2011)

20. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:
LICS (2011)

21. Krishnaswami, N.R., Benton, N., Hoffmann, J.: Higher-order functional reactive
programming in bounded space. In: POPL (2012)

22. Nilsson, H., Courtney, A., Peterson, J.: Functional reactive programming, contin-
ued. In: Workshop on Haskell (2002)

23. Ploeg, A.v.d., Claessen, K.: Practical principled FRP: forget the past, change the
future, FRPNow! In: ICFP (2015)

24. Sage, M.: FranTk - a declarative GUI language for Haskell. In: ICFP (2000)
25. Vallarino, F.: Monomer. https://hackage.haskell.org/package/monomer (2018)

https://wiki.haskell.org/Reactive-banana
https://wiki.haskell.org/Threepenny-gui
https://hackage.haskell.org/package/WidgetRattus
https://hackage.haskell.org/package/WidgetRattus
https://eugenkiss.github.io/7guis/tasks
https://eugenkiss.github.io/7guis/tasks
https://hackage.haskell.org/package/monomer

	Functional Reactive GUI Programming with Modal Types

