
Exploring Female and Male Student Perceptions

in a Functional-Programming-Based Automata

Theory Course

Marco T. Morazán, Tijana Mini¢, and Andrés M. Garced

Seton Hall University, USA {morazanm|minictij|maldona2}@shu.edu

Abstract. Historically, it has been challenging for students to be inter-
ested in and for instructors to teach Formal Languages and Automata
Theory courses. The challenges stem from a multitude of reasons includ-
ing the theoretical nature of the material, the use of formal notation,
student lack of experience with problem solving and proof development,
and the student perception that the material is not relevant to major-
ing in Computer Science. In this article, we illustrate our novel design-
and programming-based approach to building state machines and de-
veloping constructive proofs. Student perceptions, both overall and by
gender, are explored to determine if this approach e�ectively addresses
some of the negative historical trends. Our empirical results suggest that
the approach has a positive impact overall and by gender. In addition,
the results reveal nuanced di�erences between female and male students
and areas for future improvements.

1 Introduction

Historically, among Computer Science students, it has been di�cult to motivate
interest in Formal Languages and Automata Theory (FLAT) courses. The lack of
interest is due to a plethora of reasons that include: student perceptions of no
association with other courses in the Computer Science curriculum [7,24,50,54],
student di�culty to understand abstract mathematical topics [7,19,65], student
di�culty to understand formal notation [5], lack of problem-solving skills [55,65],
and lack of proof-development skills [7,54]. Most of these reasons are likely to
resonate with FLAT instructors that need to deliver a Computer Science theory
course to an audience trained to program and with an appetite for software
development. These are all general problems in the FLAT student population
that have led to high drop-out rates [30,50,63]. At a more human level, readers
of this article are likely to recall multiple occasions when they have witnessed the
enthusiasm in students when they get a program to run. The same readers are
less likely to have witnessed the same enthusiasm when a student gets a proof
right. We are trying to get students enthusiastic about FLAT without sacri�cing
content nor rigor.

In addition to the problems above, many female students have further com-
pounding problems in Computer Science that include: the perception that �hack-
ing" abilities are a required prerequisite skill in Computer Science [14,31], the



perception that male students know much more [14,31], the need to survive the
�boys' club� [14,31], a stronger need to connect computing to other �elds and
to see the computer as a tool to use in a broader context [14,31], lower self-
con�dence [6,14,22,25,31,62], and the perception that Computer Science is nar-
rowly focused on programming [14]. Many of these problems come from a male-
dominated discipline that, indi�erently or unconsciously, perpetuates stereotypes
about persons in Computer Science. By listing the problems that tend to a�ect
female students more, we are not suggesting that female students perform worse
than male students in Computer Science. Studies have suggested, for example,
that there are no di�erences between female and male students in programming
performance [26,34].

In the literature, there is a clear emphasis on practices that discourage Com-
puter Science students with many articles focusing on the practices that dis-
courage women. In this article, we break away from the from this norm and try
to shed light on practices that encourage students, including women, in a new
programming-based FLAT curriculum tightly-coupled with FSM�a functional pro-
gramming language for the FLAT classroom. We present data collected through
anonymous surveys at two universities, Seton Hall University (SHU) and Worces-
ter Polytechnic Institute (WPI), using the programming-based FLAT curriculum
put forth in Programming-Based Formal Languages and Automata Theory: De-
sign, Implement, Validate, and Prove. [40]. We analyze the collected data in
aggregate to capture overall perceptions across our sample population as well as
by gender1 to determine any di�erences. Our focus is on the following research
questions:

� RQ1 Do students feel that programming state machines is straightforward?
� RQ2 Do students feel that Automata Theory, programming state ma-

chines, and programming constructive algorithms is intellectually stim-
ulating?

� RQ3 Do students feel that Automata Theory is relevant to their Computer
Science education?

� RQ4 Is programming in FSM useful to understand Automata Theory and
to develop constructive proofs?

The article is organized as follows. Section 2 presents a brief introduction
to FSM, the design-based programming methodology used to instruct students,
and examples of machine and constructive algorithm implementations. Section 3
presents the collected empirical data. Section 4 compares and contrasts with
related work. Section 5 presents a discussion of the results. Finally, Section 6
presents concluding remarks and directions for future work.

2 Programming in FSM

To illustrate the design methodology and the style used in class instruction, two
examples are presented. The �rst is the design and implementation of a dfa. The

1 In this article, the term gender refers to female and male, given that our sample
population only contains two individuals that do not self-identify as such.



second is the implementation of an algorithm developed as part of a constructive
proof. Speci�cally, we outline the design and implementation of a construction
algorithm developed to prove the closure of regular languages under Kleene star
(e.g., as discussed in [27,29,40,56,60]).

2.1 The Language

FSM [41] is a domain-speci�c language embedded in Racket [16]. It provides
constructors for state machines: deterministic �nite-state automata (dfa), non-
deterministic �nite-state automata (ndfa), pushdown automata (pda), Turing
machines (tms), composed Turing machines (ctms) [35], and multitape Turing
machines (mttms)2. For instance, the constructor for deterministic �nite-state
automata has the following signature:

make-dfa: S Σ s F δ ['no-dead] → dfa

S denotes the set of states. Σ denotes the input alphabet. The starting state is
denoted by s. F denotes a set of �nal states. The transition function is denoted
by δ. Finally, the optional argument, 'no-dead, informs the constructor that
the transition function is fully speci�ed. When this argument is omitted, the
constructor adds a dead/trap state and adds transitions to this state to fully
specify the transition function. Constructors for other machines are similar in
nature. Readers may consult the FSM documentation for all constructors [39].

The language also provides observers to extract the components of a machine,
observers to apply a machine to a word, unit testing facilities using RackUnit

[66], and random testing facilities. In addition, integrated into FSM is a powerful
suite of static and dynamic visualization tools. On the static side, FSM o�ers the
automatic generation of transition diagrams [48] and computation graphs [44].
On the dynamic side, FSM o�ers tools to trace machine application [48] and to
trace the conversion between computation models (e.g., transforming to/from
an ndfa to a regular expression [45] and transforming an ndfa to a dfa [46]).
The required graphics are made visually appealing by using Graphviz [17,18] to
generate them.

Finally, FSM o�ers tailor-made error-messaging system that associates misuse
of machine constructors with an informative error messages [43,9]. The error
messaging system is tightly-coupled with the design-based methodology put forth
by Morazán [40]. Each error message includes the step of the design recipe that
has not been successfully completed along with a short, nonprescriptive, and
jargon-free problem description. The error messages use the same vocabulary
used in the textbook of instruction [40] and that instructors are encouraged to
use in class. We coin such errors as recipe-based errors3 [9].



1. Name the machine, specify the alphabets, and formulate, if applicable, the pre and
post conditions.

2. Write unit tests
3. Identify conditions that must be tracked as input is consumed, associate a state

with each condition, and determine the start and �nal states.
4. Formulate the transition relation
5. Implement the machine
6. Run the tests and, if necessary, redesign
7. Design, implement, and test an invariant predicate for each state
8. Prove L = L(M)

Fig. 1: The design recipe for state machines.

2.2 Design-Based Programming Methodology

The design methodology put forth by Morazán uses design recipes [40]. A design
recipe is a series of steps, each with a concrete outcome, that guides a student
from a problem statement to a solution. Design recipes were �rst introduced by
Felleisen et al. to instruct beginners in programming [12] and later expanded
by Morazán to a 2-semester introduction for beginners [36,37,38]. The design
recipe for state machines is displayed in Figure 1. Unlike most design recipes for
beginners, this design recipe includes machine veri�cation steps (i.e., steps 7 and
8). Such steps are appropriate and necessary for students starting to formally
explore the realm of theoretical Computer Science. We note, however, that we are
not suggesting that such steps are inappropriate for beginners. On the contrary,
beginners have successfully been introduced to program correctness using Hoare
logic [20,21] as part of designing while-loops [38,49].

Steps 1 and 2 ask for a descriptive machine name, the needed alphabets, and
a thorough set of unit tests. Step 3 asks for the conditions that must be tracked
as the machine processes the input and associating a state with each. In design
recipes for beginners, this step is equivalent to developing a design idea. Step 4
asks for the development of the transition relation. Each transition is developed
assuming that the condition describing the source state holds. The actions taken
by a transition must guarantee that the conditions of the destination state hold.
Steps 5 and 6 ask for the machine's implementation and the running of tests. If
errors are thrown or tests fail, students must revisit the steps of the design recipe
to debug. Step 7 asks students to formalize the conditions that are tracked by
the states (developed for step 3) as a computation advances. This is done by
designing and implementing an invariant predicate for each state to a�rm its
design role. Step 8 asks for a proof of partial correctness. This is done in two
steps. First, students prove by induction that the state invariants hold during a

2 Constructors for grammars and regular expressions are also provide, but these are
not addressed in this article

3 We thank Rose Bohrer for honing us into this vocabulary.



1 #lang fsm

2 ;; State Documentation
3 ;; S aaba not in the consumed input and no proper pre�x of aaba is at the end
4 ;; of the consumed input, starting state
5 ;; A aaba not in the consumed input and a is detected at the end of the
6 ;; consumed input
7 ;; B aaba not in the consumed input and aa is detected at the end of the
8 ;; consumed input
9 ;; C aaba not in the consumed input and aab is detected at the end of the

10 ;; consumed input
11 ;; F aaba is detected in the consumed input, �nal state
12 (define has-aaba (make-dfa '(S A B C F)

13 '(a b)

14 'S

15 '(F)

16 '((S a A) (S b S)

17 (A a B) (A b S)

18 (B a B) (B b C)

19 (C a F) (C b S)

20 (F a F) (F b F))

21 'no-dead))

22

23 (check-equal? (sm-apply has-aaba '()) 'reject)

24 (check-equal? (sm-apply has-aaba '(a)) 'reject)

25 (check-equal? (sm-apply has-aaba '(a a)) 'reject)

26 (check-equal? (sm-apply has-aaba '(a a b)) 'reject)

27 (check-equal? (sm-apply has-aaba '(a a a b)) 'reject)

28 (check-equal? (sm-apply has-aaba '(b b a a b)) 'reject)

29 (check-equal? (sm-apply has-aaba '(a a b a)) 'accept)

30 (check-equal? (sm-apply has-aaba '(b b a a a b a b b)) 'accept)

31 (check-equal? (sm-apply has-aaba '(b b b a a a b a a a)) 'accept)

Fig. 2: dfa for L={w|w∈(a b)* ∧ w contains aaba}.

computation. Second, based on state invariants always holding, students prove
that the machine's language is correct.

2.3 Programming Machines

To illustrate how students are instructed to design state machines, consider
using the design recipe to implement a deterministic �nite-state automaton for
L={w|w∈(a b)* ∧ w contains aaba}. The reader is sure to recognize this as an
instance of the problem of �nding a pattern (i.e., a subword) in a word. Such an
example is a good pedagogic choice as it serves as en e�ective introduction to
illustrate the development of the KMP algorithm [23].

The machine implementation after following the �rst 6 steps of the design
recipe is displayed in Figure 2. The �rst step of the design recipe is satis�ed



by lines 12 and 13 using the descriptive name has-aaba and identifying the
alphabet as (a b). The second step of the design recipe is satis�ed with the unit
tests in lines 23�31. It is emphasized to students that tests must be thorough
and, when a machine decides a language, include words that are in and that
are not in the machine's language. In this example, the tests are written using
FSM's observer, sm-apply, to apply a machine to a word. Step 3 is satis�ed by
(informally) documenting the meaning of each state as done in lines 2�11 and
providing the states to the constructor as done in line 12. Based on the result
of step 3, the transition function is formulated to satisfy step 4. Students are
taught to assume that the role of a state, say M, is satis�ed and that the action
taken by a transition out of M to state N must guarantee that the role of N is
satis�ed. For instance, consider developing the transitions out of A. In this state,
the consumed input ends with an a and does not contain aaba. Upon reading
an a, the consumed input does not contain aaba and ends with aa, satisfying
the role of state B. Therefore, a transition needed is (A a B). Upon reading a
b, the consumed input does not contain aaba and does not end with a proper
pre�x of aaba, satisfying the role of state S. Therefore, a transition needed is
(A a S). Performing this analysis for each state yields the transitions needed
to satisfy Step 4 and the result is displayed in lines 16�20 in Figure 2. Steps 5
and 6 are satis�ed by the code in Figure 2 and running the program to establish
that all the tests pass. If syntax or constructor misuse errors are thrown or if
any tests fail, students debug by revisiting the steps of the design recipe. In our
experience, the sca�olding provided by the design recipe and by the FSM error
messaging system reduce frustration among students by providing a framework
to reason about errors and reducing the sitting in front of a monitor not knowing
what to do.

To satisfy step 7, the predicates are designed starting with the state roles
identi�ed in step 3. Figure 3 displays the state invariant predicates developed for
has-aaba4. For instance, the invariant predicate, C-INV (lines 23�27 in Figure 3)
for state C takes as input, ci, the consumed input. This predicate may be used
by the FSM visualization tool when the machine transitions into C. It checks that
ci does not contain aaba and that it ends with aab. If this predicate holds, then
the role of C is a�rmed and the visualization tool renders the state in green.
Otherwise, the state is rendered in red. In this manner, students may validate
their design before attempting to develop a proof of partial correctness.

To satisfy step 8, it must be established that has-aaba's language is equal
to L. This is done in two steps. The �rst establishes by induction, on the num-
ber of transitions performed, that the invariant predicates hold during machine
execution. In the interest of brevity, we do not outline the entire proof. Instead,
we provide proof snippets to communicate the spirit of what is done in the
classroom. For the base case, we argue that S-INV holds as follows:

4 In the interest of brevity, neither the unit tests for each invariant predicate nor
the implementation of the auxiliary functions (i.e., contains?, ends-with?, and
does-not-end-with?) are displayed. We trust that enough context is provided to
understand the invariant predicates.



1 ;; word → Boolean
2 ;; Purpose: Determine that aaba not in the consumed input and no subword
3 ;; of aaba is at the end of the consumed input
4 (define (S-INV ci)

5 (or (eq? ci '())

6 (and (does-not-end-with? ci '(a))

7 (does-not-end-with? ci '(a a))

8 (does-not-end-with? ci '(a a b))

9 (not (contains? ci '(a a b a))))))

10

11 ;; word → Boolean
12 ;; Purpose: Determine if aaba not in the consumed input and a is detected
13 ;; at the end of the consumed input
14 (define (A-INV ci)

15 (and (not (contains? ci '(a a b a))) (ends-with? ci '(a))))

16

17 ;; word → Boolean
18 ;; Purpose: Determine that aaba not in the consumed input and aa is detected
19 ;; at the end of the consumed input
20 (define (B-INV ci)

21 (and (not (contains? ci quot(a a b a))) (ends-with? ci '(a a))))

22

23 ;; word → Boolean
24 ;; Purpose: Determine that aaba not in the consumed input and aab is detected
25 ;; at the end of the consumed input
26 (define (C-INV ci)

27 (and (not (contains? ci '(a a b a))) (ends-with? ci '(a a b))))

28

29 ;; word → Boolean
30 ;; Purpose: Determine that aaba is detected in the consumed input
31 (define (F-INV ci) (contains? ci '(a a b a)))

Fig. 3: State invariant predicates for has-aaba.

When the machine starts, the consumed input is empty. Given

that (eq? ci '()) holds, we have that S-INV holds.

For the inductive step, each transition rule is proven correct by assuming that
the predicate invariant for the source state holds and establishing that, after the
actions performed by the transition, the predicate invariant for the destination
state holds. For instance, consider using (A a B):

By inductive hypothesis, A-INV holds. This means that the

consumed input does not contain aaba and that it ends with

an a. This transition reads an a. Therefore, after performing

this transition, the consumed input ends with aa and does not

contain aaba. Thus, B-INV holds.



Finally, to argue for the correctness of the machine, students assume predicate
invariants hold and prove the following equivalences:

w∈L ⇔ w∈L(has-aaba) w/∈L ⇔ w/∈L(has-aaba)

Brie�y, for example, students argue that w∈L(has-abaa) ⇒ w∈L holds as fol-
lows:

Assume w∈L(has-aaba). Given that predicate invariants always

hold, this means that w contains abaa. Thus, w∈L.

The remaining implications are established in a similar manner. In the interest
of brevity, their proofs are omitted.

This completes our presentation of how students are taught to design, imple-
ment, validate, and verify machines. The reader can appreciate that none of the
steps of the design recipe are beyond an advanced undergraduate that has taken
a introduction to Discrete Mathematics course and has taken an introduction
to programming course. We note that for students that are introduced to pro-
gramming using HtDP [12] or APS [37] and APD [38], as is the case at WPI and at
SHU, the use of FSM quickly becomes natural given that its syntax is familiar to
students. For students that are not familiar with Lisp-like syntax, feeling com-
fortable with FSM may take a little longer and students are helped by the syntax
explanations found in the textbook used for instruction [40].

2.4 Programming Constructive Proofs

To illustrate our approach to teaching students about constructive proofs, we
outline an algorithm to establish the closure of regular languages under Kleene
star. Let M = (make-ndfa S Σ s F R). We denote M's language as L(M).

After a brief class discussion, most students understand that a machine, say
M*, that accepts words obtained by concatenating zero or more words in L(M)

needs to be designed. With a bit more e�ort, class discussion de�nes:

L(M∗) = {w|w=ϵ ∨ w=w0...wn, where wi∈L(M)}

The de�nition above is not an algorithm for constructing M*, but students are
encouraged to use it to start designing such an algorithm. Based on it, students
assert the following about M*:

◦ needs M's states and δ
◦ starting state ought to be an accepting state, given that ϵ∈L(M*)
◦ M* needs to loop
◦ M's starting state cannot be made M*'s starting state
◦ M* may nondeterministically move from a �nal state to its starting state

The �rst two assertions stem from class discussion observing that words in L(M*)

are constructed from words in L(M) and that ϵ∈L(M*). The third assertion stems
from observing that multiple words in L(M) may need to be read by M*. The



S

...

M

Z ...
ϵ

ϵ

ϵ

F

Fig. 4: Graphical description of the construction algorithm for L = L(M)∗.

fourth assertion stems from class discussion and/or a homework exercise illus-
trating what goes wrong if M's starting state is arbitrarily made a �nal state in
M*. This observation naturally leads to concluding that a new starting state, say
Z, is needed for L(M*). The �fth assertion stems from realizing that M* needs to
loop after reading a word in L(M).

Based on this discussion, both the graphical description of the construction
algorithm displayed in Figure 4 and the following formal description are devel-
oped:

M∗ = (make-ndfa S∪{Z} Σ Z F∪{Z} R∪{(f ϵ Z)|f∈F}), where Z/∈S

Invariably, a signi�cant number of students �nd both descriptions di�cult to
understand. A sample of questions/comments raised by students include:

1. What is Z?
2. What is little f?
3. Where did all those arrows labeled with the empty word come from?
4. This is unreadable.
5. Why is Z a �nal state?
6. Why is there an or-statement [referring to �|�]?.

We observe that such questions are consistent with the historical observations
that students struggle with formal notation.

In our experience, an instructor may repeatedly answer such questions for
students, but the answers are not fully assimilated until they are tied to design
and programming. To this end, we use the ideas outlined above as a draft design
idea, use elements from the design recipe for state machines, and follow the de-
sign recipe for function development taught to beginners [12,37,38] to complete
the implementation. The developed constructor is displayed in Figure 5. For
step 1, the constructor's signature, purpose, and header are displayed in lines
1�35. To satisfy step 2, the unit tests displayed on lines 23�28 are developed
using a sample constructor application displayed on line 21. To design and im-
plement the body of the constructor, the input machine and the design of the
new machine are considered. Locally, variables are de�ned the components of

5 The type fsa (i.e., �nite-state automaton) denotes either a dfa or an ndfa.



1 ;; fsa → ndfa
2 ;; Purpose: Build the ndfa for L(M)*
3 (define (build-Kleene*-machine M)

4 (let* [(Mstates (sm-states M))

5 (Msigma (sm-sigma M))

6 (Mstart (sm-start M))

7 (Mfinals (sm-finals M))

8 (Mrules (sm-rules M))

9 (Z (gen-state Mstates))]

10 ;; New state documentation
11 ;; Z the consumed input is the concatenation of 0 or more words
12 ;; in L(M), starting state
13 (make-ndfa (cons Z Mstates)

14 Msigma

15 Z

16 (cons Z Mfinals)

17 (append

18 (cons (list Z 'ϵ Mstart) Mrules)

19 (map (lambda (f) (list f 'ϵ Z)) Mfinals)))))

20

21 (define has-aaba-Kstar (build-Kleene*-machine has-aaba))

22

23 (check-equal? (sm-apply has-aaba-Kstar '(a b b)) 'reject)

24 (check-equal? (sm-apply has-aaba-Kstar '(a a b b a a b)) 'reject)

25 (check-equal? (sm-apply has-aaba-Kstar '()) 'accept)

26 (check-equal? (sm-apply has-aaba-Kstar '(a a b a)) 'accept)

27 (check-equal? (sm-apply has-aaba-Kstar '( b a a b b a a b a b))

28 'accept)

Fig. 5: Constructor for regular language closure under Kleene star.

the input machine. In addition, a local variable, Z, is de�ned for the needed new
state, using FSM's gen-state6. The roles of M's states remain unchanged in the
constructed machine. Students must, however, de�ne the Z's role. An immediate
answer provided by some students is that Z is the starting state of the constructed
machine, which is not enough. It is during this design step that students begin
to understand that if the constructed machine is in Z then the consumed input
is the concatenation of zero or more words in the language of the input machine.
This is re�ected in lines 10�12 in Figure 5 and provides answers to the �rst and
�fth student questions above. With this new found understanding, most students
now understand that the constructed machine may nondeterministically transi-
tion from Z to S to start reading (another) word in the input machine's language
and that ϵ-transitions are needed from the input machine's �nal states to Z to
loop. Thus, providing concrete answers to the second, third, and sixth student
questions above that resonate with most students. Finally, after designing and

6 Generates a state guaranteeing that it does not match any state in its given input.



implementing the constructor most students state that Figure 4 and its formal
description are understandable.

Finally, the proof of correctness follows in two steps as done in Section 2.3.
First, students assume that state roles hold for the input machine and argue by
induction that for the constructed machine the state roles hold. Second, assuming
state roles hold, students argue that L(M*)=L(M)*, where M* is the constructed
machine and M is the given machine.

3 Empirical Data

To answer RQ1�RQ4, students enrolled in their �rst FLAT course at SHU and at
WPI were anonymously surveyed. The two courses enrolled a total of 106 students,
11 at SHU and 95 at WPI. A total of 53 students volunteered to participate in the
survey, 10 from SHU and 43 from WPI, making the overall response rate among
registered students 43% (the response rate among registered students is 91% at
SHU and 45% at WPI). The day the survey was administered, a total of 43 students
attended class at WPI (31 in-person and 12 remotely) and 10 students attended
class at SHU (all in-person). This attendance rate is typical for both institutions.
The responses, therefore, re�ect the perceptions of students that regularly attend
class and not the perceptions of all students registered for these courses. Among
the respondents, 14 (26%) self identi�ed as female, 36 (68%) self identi�ed as
male, and the remaining 3 (6%) self identi�ed as: 1 nonbinary, 1 agender, and
1 declined to respond. Finally, students at both institutions received neither
payment nor bene�ts for participating in the survey.

The survey includes 10 questions to measure their perceptions. Each ques-
tion presents a statement and the respondent is asked to identify their level of
agreement using using a Likert scale [28]: [1] Strongly disagree. . .Strongly
agree [5] (including, [3], a neutral category). The overall response distributions
as well as the distributions by gender are presented.

3.1 Programming Machines is Straightforward

To explore RQ1, Do students feel that programming state machines is straight-
forward?, the following statement are used:

1. Programming dfas is straightforward.

2. Programming ndfas is straightforward.

3. Programming pdas is straightforward.

4. Programming tms is straightforward7.

The overall distribution of responses is displayed in Figure 6a. We observe that
for all machine types a majority of respondents tend to agree with the statements:
83%, 74%, 55%, and 52%, respectively for dfas, ndfas, pdas, and tms. Thus, for
our sample at large, the answer to RQ1 is that students feel that programming

7 One respondent failed to provide a valid response.



1 2 3 4 5

0

0.2

0.4

0.6

0.02 0.04

0.11

0.3

0.53

0.02
0.05

0.19

0.34

0.4

0.04

0.11

0.3

0.38

0.17

0.02

0.15

0.31

0.37

0.15

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts dfa

ndfa

pda

tm

(a) Overall distribution.

1 2 3 4 5

0

0.2

0.4

0.6

0 0

0.07

0.36

0.57

0.03 0.05

0.14

0.25

0.53

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(b) dfa

1 2 3 4 5

0

0.2

0.4

0 0

0.29

0.36 0.36

0.03

0.08

0.17

0.31

0.41

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(c) ndfa

1 2 3 4 5

0

0.2

0.4

0

0.07

0.21

0.43

0.29

0.06

0.14

0.33
0.36

0.11

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(d) pda

1 2 3 4 5

0

0.2

0.4

0

0.21

0.29

0.21

0.29

0.03

0.14

0.33
0.36

0.11

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(e) tm

Fig. 6: Programming dfa/ndfa/pda/tm machines is straightforward.

state machines is straightforward. As machine complexity increases, we observe
that the proportion of respondents that tend to agree with the statements de-
creases. This is to be expected given that the programming tasks become more
di�cult. Nonetheless, the data suggests that students found the experience of
programming state machines straightforward. It is also noteworthy that only a
small proportion of respondents tend to disagree with the statements: 6%, 7%,
15%, and 17%, respectively, for dfas, ndfas, pdas, and tms. We interpret this as



further evidence is support of our answer to RQ1. These results are very encour-
aging considering that Computer Science popular culture states: Beware of the
Turing tar-pit in which everything is possible but nothing of interest is easy [53].
Easy may or may not be interchangeable with straightforward in this context,
but it is certainly the case that anything easy is likely to also be straightforward.

Figures 6b to 6e presents the distributions for females and males. These
distributions paint a much more nuanced picture. For all machine types, females
students tend to agree (i.e., responses 4 and 5) more or the same with the
statements than male students: 93% versus 78%, 72% versus 72%, 72% versus
47%, and 50% versus 47%, respectively, for dfas, ndfas, pdas, and tms. Among
male students, the proportion agreeing with the statements tends to decrease
more sharply as machine complexity increases and drops just under 50% for the
two most complex machine types (i.e., pda and tm). Among females, no such
tendency is observed. The female proportion agreeing with the statements drops
from dfa to ndfa, remains steady from ndfa to pda, and drops from pda to
tm. The �rst drop coincides with student's �rst exposure to nondeterminism
and, therefore, is expected regardless of gender. The female proportion agreeing
remains steady for pdas and presents the widest gap with male students. It is
di�cult to explain why this occurs, but a plausible explanation is that female
students tend to do less unguided exploration and adhere more closely to the
steps of the design recipe. Thus, they assimilate nondeterminism better than
male students. The next drop in the female agreeing proportion, from pda to
tm, coincides with the introduction of mutation (i.e., tms mutating their tape),
which is also expected regardless of gender given that reasoning about mutations
is challenging. The challenge appears signi�cant enough to virtually make the
levels of agreement among female and male students the same. Our answer for
RQ1, when examined by gender, is that both genders agree that programming
state machines is straightforward. However, female students tend to feel stronger
on this dimension.

3.2 Intellectual Stimulation and CS Education Relevance

To explore RQ2, Do students feel that Automata Theory, programming state ma-
chines, and programming constructive algorithms is intellectually stimulating?,
and RQ3, Do students feel that Automata Theory is relevant to their Computer
Science education?, the following statements are used:

Q1. Automata Theory is intellectually stimulating.

Q2. Programming state machines [grammars and regular

expressions]8 is intellectually stimulating.

Q3. Programming constructive algorithms is intellectually

stimulating.

Q4. The course is relevant to my Computer Science education.

8 The survey studied topics beyond the scope of this article. Square brack-
ets are used to indicate full question text where not the entire text is rele-
vant to this article.



1 2 3 4 5

0

0.2

0.4

0.6

0.01

0.13

0.25

0.36

0.25

0

0.13 0.11

0.49

0.26

0.01
0.04

0.25

0.57

0.13

0.04

0.11

0.19

0.38

0.28
P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Q1

Q2

Q3

Q4

(a) Overall intellectual stimulation and relevance to CS education.

1 2 3 4 5

0

0.2

0.4

0

0.07

0.36

0.43

0.14

0.03

0.14

0.22

0.31 0.3

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(b) Automata theory.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

0 0

0.14

0.72

0.14

0

0.19

0.08

0.42

0.31

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(c) Programming state machines.

1 2 3 4 5

0

0.2

0.4

0.6

0 0

0.21

0.64

0.14

0.03
0.06

0.25

0.52

0.14

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(d) Programming constructive algorithms.

1 2 3 4 5

0

0.2

0.4

0.07

0.14

0.07

0.43

0.29

0.03

0.11

0.19

0.39

0.28

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(e) Relevant to CS education.

Fig. 7: Intellectual stimulation and relevance to CS education .

The overall distribution is displayed in Figure 7a. We observe that for all state-
ments a majority of respondents tend to agree (i.e., answers 4 and 5). An un-
expected result is that 61% of the respondents tend to agree that Automata
Theory is intellectually stimulating. A further unexpected result is that only
a small minority, 14%, tend to disagree. This bucks the historical trend that
suggests that students do not feel stimulated by Automata Theory. Given that
our curriculum covers all the classical topics taught in a �rst Automata Theory



course, we interpret this as evidence that a programming-based approach makes
Automata Theory more stimulating for students. Another encouraging result is
that an overwhelming majority (i.e., > 67%), respectively 75% and 70%, tend
to agree that programming state machines and programming constructive algo-
rithms is intellectually stimulating. Therefore, the respondents feel more strongly
about programming in Automata Theory than about Automata Theory itself.
We interpret this as evidence that programming is an e�ective means to engage
Computer Science students in Automata Theory. Thus, our answer to RQ2, for
our sample at large, is that students feel that Automata Theory, programming
state machines, and programming constructive algorithms is intellectually stim-
ulating.

A majority of respondents, 66%, tend to agree that the course in relevant to
their Computer Science education. Besides unexpected, this result, once again,
goes against what is reported in the literature. To us, it suggests that a program-
ming approach is a key that makes Automata Theory appealing and relevant to
Computer Science majors. Therefore, for our sample at large, our answer to RQ3
is that students feel that course is relevant to their Computer Science education.

The distributions by gender are displayed in Figures 7b to 7e. We observe
that a larger proportion of female students, 57%, than males students, 34%,
tend to agree (responses 4 and 5) that Automata Theory is intellectually stimu-
lating. This suggests that our design- and programming-based approach makes
Automata Theory signi�cantly more stimulating for female students. We also
observe that a larger proportion of female students, 86%, than males students,
73%, tend to agree that programming state machines is intellectually stimulat-
ing. In addition, we see a larger proportion among females, 78% versus 66%,
agreeing that programming constructive algorithms is intellectually stimulating.
These results suggest that connecting Automata Theory with programming is
more intellectually stimulating for females students. Our answer for RQ2, under
the lens of gender, is that female students �nd Automata Theory, when con-
nected with programming, more intellectually stimulating than male students
and that both genders �nd programming in FLAT intellectually stimulating.

Finally, we observe that both genders exhibit overwhelming majorities, 72%
for females and 67% for males, that tend to agree (i.e., responses 4 and 5) that
the course is relevant to their Computer Science education. This is a rather
astonishing result considering decades of research suggesting that students feel
that Automata Theory has little relevance to their major. It suggests that a
design- and programming-based methodology in FLAT is an e�ective means to
make it relevant for male and female Computer Science students. Our answers
for RQ3, under the lens of gender, is that both genders in our sample feel very
strongly that FLAT is relevant to their Computer Science education.

3.3 FSM Programming Helpfulness

To explore RQ4, Is programming in FSM useful to understand Automata Theory
and to develop constructive proofs?, the survey presents the following statements:



1 2 3 4 5

0.1

0.2

0.3

0.4

0.06

0.15 0.15

0.26

0.38

0.18 0.19
0.17

0.23 0.23
P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Q1

Q2

(a) Overall helpfulness for Automata Theory material.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.07 0.07

0.14

0.36 0.36

0.05

0.17
0.14

0.25

0.39

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(b) Understand Automata theory.

1 2 3 4 5

0.2

0.4

0.07 0.07

0.36

0.43

0.07

0.22 0.22

0.11

0.17

0.28

P
ro
p
o
rt
io
n
o
f
R
es
p
o
n
d
en
ts Female

Male

(c) Constructive proofs.

Fig. 8: FSM Programming helpfulness.

Q1 Programming in FSM helped me understand Automata Theory.

Q2 Writing programs in FSM helped me develop constructive

proofs.

The overall distribution of responses is displayed in Figure 8. We observe that
the majority of respondents, 64%, tend to agree (i.e., responses 4 and 5) that
programming in FSM is useful to understand Automata Theory. We interpret this
as evidence that programming helps elucidate topics in Automata Theory. This
suggests that future studies ought to tease out what topics are elucidated. We
hypothesize, for example, that programming helps students understand nonde-
terminism.

In contrast, the distribution for Q2 is polarized. Just less than half of the re-
spondents, 46%, tend to agree that writing programs in FSM helps them develop
constructive proofs while 37% tend to disagree. This polarization is unexpected.
It can be argued that the act of only writing, not designing, a machine de�ni-
tion in FSM provides little help in developing a proof. Our curriculum, however,
requires students to carefully elaborate the meaning of each state and develop
invariant predicates that can be validated with FSM visualization tools. Both of
these activities have a direct bearing on the development of correctness proofs.
This suggest that there is room for improvement in tying together design and



proof development or that the survey statement is not detailed enough causing
students to equate �writing programs� with only writing machine de�nitions.
Therefore, our answer to RQ4, for the sample population at large, is that the
results are inconclusive.

The distributions by gender are displayed in Figures 8b to 8c. It paints a
much more nuanced picture. A larger proportion of female students, 72%, tend
to agree (responses 4 and 5) with Q1 versus 64% for male students. A similar
disparity is observed with the proportions, 14% and 22%, that disagree (i.e.,
responses 1 and 2). This suggests that female students �nd programming in FSM

is more elucidating regarding Automata Theory topics. For Q2, we observe that
half of the female respondents tend to agree (i.e., responses 4 and 5) and about a
third, 36%, are neutral. The distribution for male students is polarized with 45%
that tend to agree and 44% that tend to disagree. This suggests that female stu-
dents are more likely than male students to see the connection between designing
and implementing construction algorithms and the development of correctness
proofs. A plausible explanation for this, once again, is that female students ad-
here more closely to following the steps of the design recipe. Thus, our answer
for RQ4, under the lens of gender, is that female students �nd programming in
FSM useful to understand Automata Theory and to develop constructive proofs.
On the other hand, the results are mixed for male students. Male students �nd
programming in FSM useful to understand Automata Theory. However, the re-
sults are inconclusive for male students regarding whether programming in FSM is
useful to develop constructive proofs. These results, indeed, suggest that future
research is required to explain this gender di�erence in more detail.

4 Related Work

4.1 FLAT Instruction

A signi�cant hurdle that many FLAT students need to overcome is the intrin-
sic mathematical/theoretical nature of the material [5,7,11,30,51,54,64,65]. For
Computer Science students, this problem can be compounded by a lack of expe-
rience with formal notation [5,30], a lack of a natural programming component
that permeates most other courses in the curriculum [58,63], a lack of maturity
in developing proofs [7], and a lack of problem-solving abilities [55,65]. Collec-
tively, these problems lead students to feel that FLAT courses present a high risk
of failure [65] and can lead to high drop-out rates [54,63]. Furthermore, students
fail to develop motivation to master the material given that they perceive it as
having little or no relevance to the Computer Science major [7,51,54]. If a FLAT

course is taught using a traditional �chalkboard approach,� it is common for
students to also have di�culty piecing together the details of machine execution
[33] and of construction algorithms [54,55] resulting in students only achieving
a super�cial understanding of the material [4,63].

To address these problems, many FLAT instructors have turned to a con-
structivism [4,54,63]. Constructivism is a theory of learning that postulates that
knowledge is constructed by students engaged in building activities [2,52]. In



FLAT education, this has taken two primary approaches. The �rst (and most
common) approach uses visualizations to engage students in building instances
of the models of computations they study (e.g., [1,3,10,19,32,57,59,58,61,63]).
These tools can help students develop conceptual models, but must be used with
care. Visualization tools by themselves do not help students develop knowledge
nor their problem-solving skills [2,55,63]. The second approach uses (textual)
programming to engage students in building instances of the models of com-
putations they study (e.g., [7,67]). Such approaches promote deep learning and
encourage exploration by having students, carefully think about a programming
implementation.

In contrast, FSM and its design-based methodology is the �rst e�ort unit-
ing both approaches. In addition to providing students with the opportunity
to program machines, FSM also integrates visualization tools to help understand
algorithms taught in the FLAT classroom (e.g., [44,45,46,47,48]). The FSM visual-
ization tools are designed to engage students in thinking by providing informative
messages that explain the last step taken. In this manner, FSM helps students by
presenting two views of FLAT algorithms and helps instructors by providing the
means to move away from static images to explain dynamic processes.

4.2 Female Students in Computer Science

It is widely recognized that the female Computer Science student population
faces unique obstacles. Perhaps, the most accentuated problem is self-con�dence
[8,13,15,22,31]. In this population, low self-con�dence is attributed to many fac-
tors including stereotypes about hacking skills being a prerequisite to study
Computer Science [15], about needing to be narrowly focused on programming
[15,25,62], about women's abilities in science [31], and about Computer Science
being mundane and tedious [25]. These stereotypes create a hostile environment,
for example, by suggesting that others know so much more [15,31], by suggest-
ing that the study of Computer Science is unrelated to its usefulness in the real
world [62], by intimidating those that do not �nish assignments quickly [68], and
by suggesting that long hours of unguided exploration (i.e., hacking) or luck is
rewarded when completing assignments [68].

To combat these stereotypes, the literature suggests taking actions outside
and inside of the classroom. Outside classroom, universities can increase the
number of female role models by increasing the number of female faculty mem-
bers [68] and create a departmental environment that highlights the creative,
the interesting, and the challenging opportunities found in Computer Science.
Inside the classroom, instructors can use examples that highlight the bene�ts of
Computer Science in real life [62], can create an environment that encourages
questions [68], can highlight that successes are not due to luck and failures are
not due to lack of ability [68], and can actively discourage the belief that �you
are only here because you are a girl� [31].



5 Discussion

In this section, we address how we believe the FSM methodology addresses the
challenges in teaching FLAT courses. We address some of the challenges faced by
all students and some of the compounding challenges faced by female students.

5.1 Addressing Challenges in Teaching FLAT Courses

Providing a programming language is not enough to make FLAT courses at-
tractive to students. The programming language must not require skills beyond
those expected from students taking their �rst FLAT course and must provide the
proper abstractions to build instances of computation models and to implement
construction algorithms. For instance, we would not expect programming state
machines using assembly to satisfy this criteria neither would we expect this
result if students had to implement the searches necessary to determine if a non-
deterministic machine accepts or rejects a given word. The results obtained for
RQ1, suggest that FSM meets this criteria for programming state machines and as-
sociated construction algorithms. If the use of FSM abstractions were beyond the
skills of our students, then it is unlikely that students would �nd programming
them straightforward.

When the language provides an environment in which programming is straight-
forward, it provides a natural programming component that permeates most
other courses in the Computer Science curriculum. Students have the opportu-
nity to focus on problem solving and cast theory problems, expressed in formal
notation, as programming problems. Thus, helping students understand the ma-
terial's intrinsic theoretical nature and the formal notation used by creating an
environment for exploration and knowledge-building that provides immediate
feedback upon running programs. In turn, this sparks intellectual interest and
provides the sense that FLAT is relevant to a student's Computer Science edu-
cation as re�ected in the responses obtained for RQ2 and RQ3. Furthermore, it
helps understand the responses obtained for RQ4: implementing a machine or an
algorithm that works con�rms understanding and is a step towards developing
a constructive proof.

The lack of problem solving and proof development skills commonly reported
by FLAT instructors is, in part, addressed by providing students with a design
recipe for state machines. The design recipe provides sca�olding to guide students
in the problem solving process. This sca�olding does not exist in most FLAT

textbooks and, therefore, probably in most FLAT courses. Thus, feeding student
fears that they are at high risk for failure, which is likely to prompt higher
drop-out rates. For students that are introduced to programming using a design-
based methodology [12,37,38], this approach creates a stronger connection with
other Computer Science courses, which reinforces the feeling of relevance to their
major. In addition, it also provides sca�olding for proof development, which
elucidates the results seen for RQ4.

The use of a design recipe also addresses some of the concerns we face with
female students. It emphasizes design over hacking, expands problem solving



beyond coding, and moves FLAT beyond (the perception of) its mundane and
tedious mathematical nature. Female students see themselves, as well as their
male counterparts, work hard to ful�ll the steps of the design recipe, thus, elim-
inating to some degree the perceptions that unguided exploration and luck is
rewarded and that others know more because they �nish assignments quickly.
In addition, using examples, like �nding a pattern from Section 2.3, reinforces
(to students of all genders) that FLAT is relevant in the real world.

Finally, using a design recipe encourages questions. It provides a lingua franca
in which students and instructors can discuss FLAT programs. Instead of not
knowing what to ask when they are confused, students can ask questions about
a design recipe step they are stuck on. Furthermore, instructors can ask questions
about a student's design in the language used in class and found in the textbook.

6 Concluding Remarks and Future Work

This paper illustrates a design- and programming-based methodology to teach
students about state machines in a Formal Languages and Automata Theory
course using the domain-speci�c language FSM. In addition, it explores student
perceptions, overall and by gender, about programming state machines, about
how intellectually stimulating Automata Theory, programming state machines,
and programming constructive proofs are, about the relevance of Automata The-
ory to majoring in Computer Science, and about the usefulness of programming
to understand Automata Theory and to develop constructive proofs. The em-
pirical results suggest the following conclusions:

◦ students of both genders feel that programming state machines in FSM is
straightforward

◦ students feel that Automata Theory, programming state machines, and pro-
gramming constructive algorithms is intellectually stimulating, but female
students feel stronger than male students that programming state machines
and construction algorithms is intellectually stimulating

◦ female students feel more strongly that Automata Theory is intellectually
stimulating

◦ students of both genders feel that Automata Theory is relevant to majoring
in Computer Science

◦ students feel that programming in FSM helps them understand Automata
Theory, but female students feel more strongly about it

◦ students are polarized about how much FSM programming helps them develop
constructive proofs, but male students more so than female students

Future work includes more nuanced studies to better understand what top-
ics students feel are most elucidated by our design- and programming-based
approach using state machines. Future work also includes studies to measure
student perceptions about our design- and programming-based approach using
grammars (i.e., regular, context-free, and context-sensitive). Finally, future work
will explore the e�ectiveness of FSM visualizations to help students understand
and to motivate interest in FLAT.



References

1. Barwise, J., Etchemendy, J.: Turing's world. Journal of Symbolic Logic 55(1),
370�371 (1990). https://doi.org/10.2307/2275002

2. Ben-Ari, M.: Constructivism in computer science education. In: Proceedings of the
Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education. p.
257�261. SIGCSE '98, Association for Computing Machinery, New York, NY, USA
(1998). https://doi.org/10.1145/273133.274308

3. Castro-Schez, J.J., del Castillo, E., Hortolano, J., Rodriguez, A.: Designing and Us-
ing Software Tools for Educational Purposes: FLAT, a Case Study. IEEE Transac-
tions on Education 52(1), 66�74 (2009). https://doi.org/10.1109/TE.2008.917197

4. Chesñevar, C.I., González, M.P., Maguitman, A.G.: Didactic Strategies for Pro-
moting Signi�cant Learning in Formal Languages and Automata Theory. In: Pro-
ceedings of the 9th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. p. 7�11. ITiCSE '04, Association for Computing Ma-
chinery, New York, NY, USA (2004). https://doi.org/10.1145/1007996.1008002

5. Chesñevar, C.I., Cobo, M.L., Yurcik, W.: Using Theoretical Computer Simulators
for Formal Languages and Automata Theory. ACM SIGCSE Bull. 35(2), 33�37
(2003). https://doi.org/10.1145/782941.782975

6. Christensen, M.A.: Tracing the Gender Con�dence Gap in Computing: A Cross-
National Meta-Analysis of Gender Di�erences in Self-Assessed Technological
Ability. Social Science Research 111, 102853 (2023). https://doi.org/https:
//doi.org/10.1016/j.ssresearch.2023.102853

7. Chua, Y.S., Winton, C.N.: Teaching Theory of Computation at the Junior Level.
In: Proceedings of the International Conference on APL: APL in Transition. p.
69�78. APL '87, Association for Computing Machinery, New York, NY, USA
(1987). https://doi.org/10.1145/28315.28324

8. Du, J., Wimmer, H.: Hour of Code: A Study of Gender Di�erences in Computing.
Information Systems Education Journal 17 (aug 2019)

9. Dzhatdoyev, S., Des Rosiers, J.A., Morazán, M.T.: A Contract-Based Error Mes-
saging and Tutorial System to Support Design: Improved Error Messages in FSM.
In: Hemann, J. (ed.) Proceedings of Trends in Functional Programming 2024.
LNCS, Springer (2024), to appear

10. D'Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., Weininger, M.: Automata
Tutor v3. In: Computer Aided Veri�cation: 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21�24, 2020, Proceedings, Part II. p. 3�14.
Springer-Verlag, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-030-
53291-8_1

11. Estrebou, F.C., Lanza, M., Mauco, V., Barbuzza, R., Favre, L.:
Minerva: Una Herramienta para un Curso de Lenguajes For-
males y Autómatas. https://www.researchgate.net/publication/
266384889_Minerva_Una_Herramienta_para_un_Curso_de_Lenguajes_Formales_y_Automatas

(2002), last accessed: October 2024

12. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge, MA,
USA, Second edn. (2018)

13. Fisher, A., Margolis, J.: Unlocking the Clubhouse: The Carnegie Mellon Ex-
perience. SIGCSE Bull. 34(2), 79�83 (Jun 2002). https://doi.org/10.1145/
543812.543836

https://doi.org/10.2307/2275002
https://doi.org/10.2307/2275002
https://doi.org/10.1145/273133.274308
https://doi.org/10.1145/273133.274308
https://doi.org/10.1109/TE.2008.917197
https://doi.org/10.1109/TE.2008.917197
https://doi.org/10.1145/1007996.1008002
https://doi.org/10.1145/1007996.1008002
https://doi.org/10.1145/782941.782975
https://doi.org/10.1145/782941.782975
https://doi.org/https://doi.org/10.1016/j.ssresearch.2023.102853
https://doi.org/https://doi.org/10.1016/j.ssresearch.2023.102853
https://doi.org/https://doi.org/10.1016/j.ssresearch.2023.102853
https://doi.org/https://doi.org/10.1016/j.ssresearch.2023.102853
https://doi.org/10.1145/28315.28324
https://doi.org/10.1145/28315.28324
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1007/978-3-030-53291-8_1
https://www.researchgate.net/publication/266384889_Minerva_Una_Herramienta_para_un_Curso_de_Lenguajes_Formales_y_Automatas
https://www.researchgate.net/publication/266384889_Minerva_Una_Herramienta_para_un_Curso_de_Lenguajes_Formales_y_Automatas
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836
https://doi.org/10.1145/543812.543836


14. Fisher, A., Margolis, J., Miller, F.: Undergraduate Women in Computer Science:
Experience, Motivation and Culture. SIGCSE Bull. 29(1), 106�110 (mar 1997).
https://doi.org/10.1145/268085.268127

15. Fisher, A., Margolis, J., Miller, F.: Undergraduate Women in Computer Sci-
ence: Experience, Motivation and Culture. In: Proceedings of the Twenty-Eighth
SIGCSE Technical Symposium on Computer Science Education. p. 106�110.
SIGCSE '97, Association for Computing Machinery, New York, NY, USA (1997).
https://doi.org/10.1145/268084.268127

16. Flatt, M., Findler, R.B., PLT: The Racket Guide. PLT (2024), https://

docs.racket-lang.org/guide/, last accessed: June 2024
17. Gansner, E.R., Koutso�os, E., North, S.C., V, K.P.: A Technique for Drawing Di-

rected Graphs. IEEE Transactions on Software Engineering 19(3), 214�230 (1993).
https://doi.org/10.1109/32.221135

18. Gansner, E.R., North, S.C.: An Open Graph Visualization System and Its Ap-
plications to Software Engineering. Softw. Pract. Exper. 30(11), 1203�1233 (sep
2000). https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>
3.0.CO;2-N

19. García-Osorio, C., Mediavilla-Sáiz, I.n., Jimeno-Visitación, J., García-Pedrajas, N.:
Teaching Push-down Automata and Turing Machines. In: Proceedings of the 13th
Annual Conference on Innovation and Technology in Computer Science Education.
p. 316. ITiCSE '08, Association for Computing Machinery, New York, NY, USA
(2008). https://doi.org/10.1145/1384271.1384359

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576�580 (Oct 1969). https://doi.org/10.1145/363235.363259

21. Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall series in
computer science, Prentice Hall (1998)

22. Kemp, P.E.J., Wong, B., Berry, M.G.: Female Performance and Participation in
Computer Science: A National Picture. ACM Trans. Comput. Educ. 20(1) (nov
2019). https://doi.org/10.1145/3366016

23. Knuth, D.E., Morris, Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
Journal on Computing 6(2), 323�350 (1977). https://doi.org/10.1137/0206024

24. Korte, L., Anderson, S., Pain, H., Good, J.: Learning by Game-Building: A Novel
Approach to Theoretical Computer Science Education. SIGCSE Bull. 39(3), 53�57
(jun 2007). https://doi.org/10.1145/1269900.1268802

25. Lasen, M.: Education and Career Pathways in Information Communication Tech-
nology: What are Schoolgirls Saying? Computers & Education 54(4), 1117�1126
(2010). https://doi.org/https://doi.org/10.1016/j.compedu.2009.10.018

26. Lau, W.W.F., Yuen, A.H.K.: Exploring the E�ects of Gender and Learning Styles
on Computer Programming Performance: Implications for Programming Peda-
gogy. British Journal of Educational Technology 40(4), 696�712 (2009). https:
//doi.org/https://doi.org/10.1111/j.1467-8535.2008.00847.x

27. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2nd edn. (1997). https://doi.org/
10.1145/300307.1040360

28. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychology
140, 1�55 (1932)

29. Linz, P.: An Introduction to Formal Languages and Automata. Jones and Bartlett
Publishers, Inc., USA, 5th edn. (2011)

30. Mane, D.T., Howal, S.S., Lokare, V.T.: Problem-based Learning using Simulation
Tools for Automata Theory. Journal of Engineering Education Transformations
30 (2016). https://doi.org/10.16920/jeet/2016/v0i0/85708

https://doi.org/10.1145/268085.268127
https://doi.org/10.1145/268085.268127
https://doi.org/10.1145/268084.268127
https://doi.org/10.1145/268084.268127
https://docs.racket-lang.org/guide/
https://docs.racket-lang.org/guide/
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1145/1384271.1384359
https://doi.org/10.1145/1384271.1384359
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/3366016
https://doi.org/10.1145/3366016
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1145/1269900.1268802
https://doi.org/10.1145/1269900.1268802
https://doi.org/https://doi.org/10.1016/j.compedu.2009.10.018
https://doi.org/https://doi.org/10.1016/j.compedu.2009.10.018
https://doi.org/https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/https://doi.org/10.1111/j.1467-8535.2008.00847.x
https://doi.org/10.1145/300307.1040360
https://doi.org/10.1145/300307.1040360
https://doi.org/10.1145/300307.1040360
https://doi.org/10.1145/300307.1040360
https://doi.org/10.16920/jeet/2016/v0i0/85708
https://doi.org/10.16920/jeet/2016/v0i0/85708


31. Margolis, J., Fisher, A.: Unlocking the Clubhouse: Women in Computing. MIT
Press, Cambridge, MA (2001)

32. Martínez, M., Barbuzza, R., Mauco, M.V., Favre, L.: MTSolution: A Visual and In-
teractive Tool for a Formal Languages and Automata Course. Information Systems
Education Journal 7(10) (March 2009), http://isedj.org/7/10/

33. McDonald, J.: Interactive Pushdown Automata Animation. SIGCSE Bull. 34(1),
376�380 (feb 2002). https://doi.org/10.1145/563517.563489

34. McDowell, C., Werner, L.L., Bullock, H.E., Fernald, J.: The Impact of Pair Pro-
gramming on Student Performance, Perception and Persistence. In: Clarke, L.A.,
Dillon, L., Tichy, W.F. (eds.) Proceedings of the 25th International Conference on
Software Engineering, May 3-10, 2003, Portland, Oregon, USA. pp. 602�607. IEEE
Computer Society (2003). https://doi.org/10.1109/ICSE.2003.1201243

35. Morazán, M.: Composing Turing Machines in FSM. In: Proceedings of the 2023
ACM SIGPLAN International Symposium on SPLASH-E. p. 38�49. SPLASH-E
2023, Association for Computing Machinery, New York, NY, USA (2023). https:
//doi.org/10.1145/3622780.3623647

36. Morazán, M.T.: Infusing an HtDP-based CS1 with Distributed Programming Us-
ing Functional Video Games. Journal of Functional Programming 28, e5 (2018).
https://doi.org/10.1017/S0956796818000059

37. Morazán, M.T.: Animated Problem Solving - An Introduction to Program Design
Using Video Game Development. Texts in Computer Science, Springer (2022).
https://doi.org/10.1007/978-3-030-85091-3

38. Morazán, M.T.: Animated Program Design - Intermediate Program Design Using
Video Game Development. Texts in Computer Science, Springer (2022). https:
//doi.org/10.1007/978-3-031-04317-8

39. Morazán, M.T.: FSM. Seton Hall University, South Orange, NJ, USA (2024),
https://morazanm.github.io/fsm/fsm/index.html, last Accessed: October 2024

40. Morazán, M.T.: Programming-Based Formal Languages and Automata Theory
- Design, Implement, Validate, and Prove. Texts in Computer Science, Springer
(2024). https://doi.org/10.1007/978-3-031-43973-5

41. Morazán, M.T., Antunez, R.: Functional Automata�Formal Languages for Com-
puter Science Students. In: Caldwell, J.L., Hölzenspies, P.K.F., Achten, P. (eds.)
Proceedings 3rd International Workshop on Trends in Functional Programming in
Education, TFPIE 2014, Soesterberg, The Netherlands, 25th May 2014. EPTCS,
vol. 170, pp. 19�32 (2014). https://doi.org/10.4204/EPTCS.170.2

42. Morazán, M.T., Bohrer, R., Dzhatdoyev, S., Des Rosiers, J.A.: Cooking Up Errors
for Languages and Automata: Recipe-Based Error Messages in the Classroom. In:
TBA (ed.) Proceedings of CHI 2025. ACM (2025), under Review

43. Morazán, M.T., Des Rosiers, J.A.: FSM Error Messages. In: Achten, P., Miller,
H. (eds.) Proceedings Seventh International Workshop on Trends in Functional
Programming in Education, TFPIE@TFP 2018, Chalmers University, Gothenburg,
Sweden, 14th June 2018. EPTCS, vol. 295, pp. 1�16 (2018). https://doi.org/
10.4204/EPTCS.295.1

44. Morazán, M.T., Kempinski, O.: Using Computation Graphs to Explain Non-
determinism to Students. In: Proceedings of the 2024 ACM SIGPLAN Inter-
national Symposium on SPLASH-E. p. 23�33. SPLASH-E '24, Association for
Computing Machinery, New York, NY, USA (2024). https://doi.org/10.1145/
3689493.3689978

45. Morazán, M.T., Mini¢, T.: Finite-state automaton to/from regular expression vi-
sualization. Electronic Proceedings in Theoretical Computer Science 405, 36�55
(jul 2024). https://doi.org/10.4204/eptcs.405.3, in Proceedings TFPIE 2024

http://isedj.org/7/10/
https://doi.org/10.1145/563517.563489
https://doi.org/10.1145/563517.563489
https://doi.org/10.1109/ICSE.2003.1201243
https://doi.org/10.1109/ICSE.2003.1201243
https://doi.org/10.1145/3622780.3623647
https://doi.org/10.1145/3622780.3623647
https://doi.org/10.1145/3622780.3623647
https://doi.org/10.1145/3622780.3623647
https://doi.org/10.1017/S0956796818000059
https://doi.org/10.1017/S0956796818000059
https://doi.org/10.1007/978-3-030-85091-3
https://doi.org/10.1007/978-3-030-85091-3
https://doi.org/10.1007/978-3-031-04317-8
https://doi.org/10.1007/978-3-031-04317-8
https://doi.org/10.1007/978-3-031-04317-8
https://doi.org/10.1007/978-3-031-04317-8
https://morazanm.github.io/fsm/fsm/index.html
https://doi.org/10.1007/978-3-031-43973-5
https://doi.org/10.1007/978-3-031-43973-5
https://doi.org/10.4204/EPTCS.170.2
https://doi.org/10.4204/EPTCS.170.2
https://doi.org/10.4204/EPTCS.295.1
https://doi.org/10.4204/EPTCS.295.1
https://doi.org/10.4204/EPTCS.295.1
https://doi.org/10.4204/EPTCS.295.1
https://doi.org/10.1145/3689493.3689978
https://doi.org/10.1145/3689493.3689978
https://doi.org/10.1145/3689493.3689978
https://doi.org/10.1145/3689493.3689978
https://doi.org/10.4204/eptcs.405.3
https://doi.org/10.4204/eptcs.405.3


46. Morazán, M.T., Mini¢, T.: Nondeterministic to Deterministic Finite-State Machine
Visualization: Implementation and Evaluation. In: ITiCSE 2024: Proceedings of the
2024 Conference on Innovation and Technology in Computer Science Education V.
1. p. 262�268. ITiCSE 2024, Association for Computing Machinery, New York, NY,
USA (2024). https://doi.org/10.1145/3649217.3653641

47. Morazán, M.T., Mini¢, T., Kempinski, O.: Visualizing Composed Turing Ma-
chines. In: Proceedings of the 2024 ACM SIGPLAN International Symposium on
SPLASH-E. p. 34�44. SPLASH-E '24, Association for Computing Machinery, New
York, NY, USA (2024). https://doi.org/10.1145/3689493.3689979

48. Morazán, M.T., Schappel, J.M., Mahashabde, S.: Visual Designing and Debug-
ging of Deterministic Finite-State Machines in FSM. Electronic Proceedings in
Theoretical Computer Science 321, 55�77 (aug 2020). https://doi.org/10.4204/
eptcs.321.4

49. Morazán, M.T.: How to Design While Loops. Electronic Proceedings in Theoretical
Computer Science 321, 1�18 (Aug 2020). https://doi.org/10.4204/eptcs.321.1

50. Naveed, M.S., Sarim, M.: Didactic Strategy for Learning Theory of Automata and
Formal Languages. Proceedings of the Pakistan Academy of Sciences: A. Phys-
ical and Computational Sciences 55(2), 55�67 (2018), https://www.ppaspk.org/
index.php/PPAS-A/article/view/171

51. Neeman, A.: Buy One Get One Free: Automata Theory Concepts Through Soft-
ware Test. J. Comput. Sci. Coll. 31(6), 90�96 (Jun 2016)

52. Papert, S., Harel, I.: Situating Constructionism. In: Papert, S., Harel, I. (eds.)
Constructionism, chap. 1. Ablex Publishing Corporation, Norwood, NJ (1991),
http://www.papert.org/articles/SituatingConstructionism.html

53. Perlis, A.J.: Special Feature: Epigrams on Programming. SIGPLAN Not. 17(9),
7�13 (sep 1982). https://doi.org/10.1145/947955.1083808

54. Pillay, N.: Teaching the Theory of Formal Languages and Automata in the Com-
puter Science Undergraduate Curriculum. South Afr. Comput. J. 42, 87�94 (2008),
http://reference.sabinet.co.za/document/EJC28069

55. Pillay, N.: Learning Di�culties Experienced by Students in a Course on Formal
Languages and Automata Theory. SIGCSE Bull. 41(4), 48�52 (jan 2010). https:
//doi.org/10.1145/1709424.1709444

56. Rich, E.: Automata, Computability and Complexity: Theory and Applications.
Pearson Prentice Hall (2019)

57. Rodger, S.H.: JFLAP: An Interactive Formal Languages and Automata Package.
Jones and Bartlett Publishers, Inc., USA (2006)

58. Rodger, S.H., Bilska, A.O., Leider, K.H., Procopiuc, C.M., Procopiuc, O.,
Salemme, J.R., Tsang, E.: A collection of tools for making automata theory and
formal languages come alive. In: White, C.M., Erickson, C., Klein, B.J., Miller,
J.E. (eds.) Proceedings of the 28th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 1997, San Jose, California, USA, February 27 - March
1, 1997. pp. 15�19. ACM (1997). https://doi.org/10.1145/268084.268089

59. Rodger, S.H., Bressler, B., Finley, T., Reading, S.: Turning automata theory into
a hands-on course. In: Baldwin, D., Tymann, P.T., Haller, S.M., Russell, I. (eds.)
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Edu-
cation, SIGCSE 2006, Houston, Texas, USA, March 3-5, 2006. pp. 379�383. ACM
(2006). https://doi.org/10.1145/1121341.1121459

60. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, USA,
3rd edn. (2013)

https://doi.org/10.1145/3649217.3653641
https://doi.org/10.1145/3649217.3653641
https://doi.org/10.1145/3689493.3689979
https://doi.org/10.1145/3689493.3689979
https://doi.org/10.4204/eptcs.321.4
https://doi.org/10.4204/eptcs.321.4
https://doi.org/10.4204/eptcs.321.4
https://doi.org/10.4204/eptcs.321.4
https://doi.org/10.4204/eptcs.321.1
https://doi.org/10.4204/eptcs.321.1
https://www.ppaspk.org/index.php/PPAS-A/article/view/171
https://www.ppaspk.org/index.php/PPAS-A/article/view/171
http://www.papert.org/articles/SituatingConstructionism.html
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
http://reference.sabinet.co.za/document/EJC28069
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1145/268084.268089
https://doi.org/10.1145/268084.268089
https://doi.org/10.1145/1121341.1121459
https://doi.org/10.1145/1121341.1121459


61. Stallmann, M.F., Balik, S.P., Rodman, R.D., Bahram, S., Grace, M.C., High,
S.D.: ProofChecker: An Accessible Environment for Automata Theory Correctness
Proofs. In: Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. p. 48�52. ITiCSE '07, Association for
Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/
1268784.1268801

62. Vekiri, I.: Information Science Instruction and Changes in Girls' and Boy's Ex-
pectancy and Value Beliefs: In Search of Gender-Equitable Pedagogical Practices.
Computers & Education 64, 104�115 (2013). https://doi.org/https://doi.org/
10.1016/j.compedu.2013.01.011

63. Verma, R.M.: A Visual and Interactive Automata Theory Course Emphasizing
Breadth of Automata. In: Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education. p. 325�329. ITiCSE
'05, Association for Computing Machinery, New York, NY, USA (2005). https:
//doi.org/10.1145/1067445.1067535

64. Vieira, L.F.M., Vieira, M.A.M., Vieira, N.J.: Language Emulator, A Helpful Toolkit
in the Learning Process of Computer Theory. SIGCSE Bull. 36(1), 135�139 (mar
2004). https://doi.org/10.1145/1028174.971348

65. Vijayalaskhmi, M., Karibasappa, K.: Activity Based Teaching Learning in For-
mal Languages and Automata Theory - An Experience. In: 2012 IEEE In-
ternational Conference on Engineering Education: Innovative Practices and
Future Trends (AICERA). pp. 1�5. IEEE (2012). https://doi.org/10.1109/
AICERA.2012.6306722

66. Welsh, N., Culpepper, R.: RackUnit: Unit Testing. PLT Racket, v8.12 edn. (May
2024), last accessed 05-20-2024

67. Wermelinger, M., Dias, A.M.: A Prolog Toolkit for Formal Languages and Au-
tomata. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education. p. 330�334. ITiCSE '05, Associ-
ation for Computing Machinery, New York, NY, USA (2005). https://doi.org/
10.1145/1067445.1067536

68. Wilson, B.C.: A Study of Factors Promoting Success in Computer Science Including
Gender Di�erences. Computer Science Education 12(1-2), 141�164 (2002). https:
//doi.org/10.1076/csed.12.1.141.8211

https://doi.org/10.1145/1268784.1268801
https://doi.org/10.1145/1268784.1268801
https://doi.org/10.1145/1268784.1268801
https://doi.org/10.1145/1268784.1268801
https://doi.org/https://doi.org/10.1016/j.compedu.2013.01.011
https://doi.org/https://doi.org/10.1016/j.compedu.2013.01.011
https://doi.org/https://doi.org/10.1016/j.compedu.2013.01.011
https://doi.org/https://doi.org/10.1016/j.compedu.2013.01.011
https://doi.org/10.1145/1067445.1067535
https://doi.org/10.1145/1067445.1067535
https://doi.org/10.1145/1067445.1067535
https://doi.org/10.1145/1067445.1067535
https://doi.org/10.1145/1028174.971348
https://doi.org/10.1145/1028174.971348
https://doi.org/10.1109/AICERA.2012.6306722
https://doi.org/10.1109/AICERA.2012.6306722
https://doi.org/10.1109/AICERA.2012.6306722
https://doi.org/10.1109/AICERA.2012.6306722
https://doi.org/10.1145/1067445.1067536
https://doi.org/10.1145/1067445.1067536
https://doi.org/10.1145/1067445.1067536
https://doi.org/10.1145/1067445.1067536
https://doi.org/10.1076/csed.12.1.141.8211
https://doi.org/10.1076/csed.12.1.141.8211
https://doi.org/10.1076/csed.12.1.141.8211
https://doi.org/10.1076/csed.12.1.141.8211

	Exploring Female and Male Student Perceptions in a Functional-Programming-Based Automata Theory Course

