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1 Introduction

Christopher Strachey is one of the founding fathers of functional programming.
His lecture notes from 1963 together with David Barron, as transcribed in Ad-
vances in Programming and Non-Numerical Computation, contain several exam-
ples of CPL programs [1]. Among these, is a function for computing the cartesian
product of a list of lists. Consider the following example call to this function,
using the GHCi read-eval-print-loop:

Main> product [[1,2],[3,4,5],[6,7]]
[[1 , 3 , 6 ], [1 , 3 , 7 ], [1 , 4 , 6 ],
[1 , 4 , 7 ], [1 , 5 , 6 ], [1 , 5 , 7 ],
[2 , 3 , 6 ], [2 , 3 , 7 ], [2 , 4 , 6 ],
[2 , 4 , 7 ], [2 , 5, 6 ], [2 , 5 , 7]]

The definition of the product function presented by Barron and Strachey is quite
puzzling at first glance. We present it here, based on the modern definition given
by Danvy and Spivey [7]:

product :: [[a]] → [[a]]
product xss = foldr f [[]] xss
where
f :: [a] → [[a]] → [[a]]
f xs yss = foldr g [] xs
where
g :: a → [[a]] → [[a]]
g x zss = foldr (λ ys qss → (x : ys) : qss) zss yss
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This definition uses three calls to foldr , lexical scoping, and several higher order
functions – all rather unusual for a program that is over sixty years old! This
definition of Barron and Strachey’s cartesian product function has been carefully
dissected by Danvy and Spivey [7], who refer to it as ‘possibly the first ever
functional pearl.’ What more could there possibly be to say about this mother
of pearls?

One issue that remains unexplored is a formal correctness proof of Barron
and Strachey’s cartesian product function: this paper addresses precisely this
issue. In doing so, we illustrate several techniques for the specification, testing
and verification of functional programs, ultimately leading to an intrinsically
correct function definition in the proof assistant Agda. In writing the proof, the
inductive argument will elucidate the inductive structure of the function itself –
giving a better insight into how this program computes the cartesian product.

This paper presents a mix of Haskell, Agda and REPL interactions. To dis-
tinguish between them, Haskell code is written in italics, Agda code is written
using a sans serif font, and example REPL interactions use a teletype font.

2 Specification

There are numerous ways to specify a function’s intended behaviour. One ap-
proach, popularised by Bird [3], is to start from an inefficient yet ‘obviously
correct’ reference implementation. A more efficient solution may then be calcu-
lated from this specification. This approach is less suitable here for three reasons:
firstly, efficiency is not our primary concern; secondly, it is not so easy to come
up with a reference implementation that is both shorter and obviously correct;
finally, a reference implementation can be overly restrictive, fixing the order of
elements in the list that is produced. In this case, we are only concerned that
all elements of the cartesian product occur in the final list. A good specification
does not fix the order in which the elements occur must occur in the resulting
list. This last point may seem like a theoretical issue, but pops up when Bird
considers greedy algorithms or other non-deterministic computations [4, 5].

Instead, we give a relational specification, describing the properties of the
desired outputs in terms of the function’s inputs. Before we give the specification,
however, we introduce a few auxiliary predicates and predicate transformers.
First and foremost, we will use Haskell’s elem function to check if a given element
occurs in a list:

elem :: Eq a ⇒ a → [a] → Bool
elem y [] = False
elem y (x : xs) = x ≡ y ∨ elem y xs

The definition in the standard library has been generalised to work over any arbi-
trary Traversable structure [8]; to keep things simple, however, we only consider
lists. To specify the intended behaviour of the cartesian product function, we
need two additional predicate transformers: all and pairwise. The all predicate
transformer asserts that its argument predicate holds for each element of a list:
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all :: (a → Bool) → ([a] → Bool)
all p [] = True
all p (x : xs) = p x ∧ all p xs

Finally, we need a second predicate transformer, pairwise, that asserts that a
binary relation holds pairwise between two lists:

pairwise :: (a → b → Bool) → ([a] → [b] → Bool)
pairwise p [] [] = True
pairwise p (x : xs) (y : ys) = p x y ∧ pairwise p xs ys
pairwise p = False

Note that if the two lists have different lengths, they cannot satisfy any pairwise
property.

Using all three these predicates, we define the soundness property that we
expect of the cartesian product function:

soundness :: Eq a ⇒ [[a]] → [[a]] → Bool
soundness xss = all (λ ys → pairwise elem ys xss)

The soundness property states that each list in the output draws its elements
from the corresponding list in the input. Without this property, we could cre-
ate in the output a list whose head is drawn from the second input list. The
soundness property rules out such invalid outputs. Formulated in this fashion,
the property is wholemeal [2], defined in terms of entire lists rather than fiddling
with individual indices. In particular, we never have to perform any (partial)
lookup operation, but instead define a specification built exclusively from total
functions.

Given this property, we use tools such as QuickCheck [6] to test whether our
product function satisfies the specification:

satisfies :: (a → b) → (a → b → c) → (a → c)
satisfies f p = λ x → p x (f x )

soundnessTest :: Eq a ⇒ [[a]] → Property
soundnessTest xss = product ‘satisfies‘ soundness

Unsurprisingly, QuickCheck cannot find a counterexample that falsifies this prop-
erty.

Main> quickCheck soundnessTest
+++ OK, passed 100 tests

There is one caveat: the exponential nature of the cartesian product function
does create substantial outputs. To keep testing times in check, we limit the size
of the random inputs that QuickCheck generates.

This specification of the cartesian product function leaves room for incorrect
implementations. For example, the function that always returns an empty list,
const [], satisfies the soundness property. To rule out such trivial solutions, we
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also require that each list constructed by drawing arbitrary elements of the input
does occur in the output list. As a QuickCheck test, we might write:

completeness :: Eq a ⇒ [[a]] → [[a]] → [a] → Property
completeness xss yss xs = pairwise elem xs xss =⇒ elem xs yss

The completeness property now not only refers to the input and output lists
(xss and yss respectively), but also mentions a third list xs. The completeness
statement now asserts that whenever xs draws its elements pairwise from the
input xss, the list xs should occur in the output yss. If we run QuickCheck to
test this property, it fails to find a counterexample again. On closer inspection,
however, we have fallen victim to the ‘false sense of security’ that QuickCheck
sometimes provides [6, §5.4.1]: although QuickCheck has not found a counterex-
ample, it has only generated a limited number of tests. This becomes even more
apparent when we classify the results according to the length of xs:

Main> quickCheck (product ‘satisfies‘ completeness)
*** Gave up! Passed only 26 tests; 1000 discarded tests:
77% 0
19% 1
4% 2

This test of completeness is not very useful! The odds of generating a random
list xs that happens to occur in the cartesian product of another random list xss
are rather slim. What to do? One solution is to write a custom generator that
produces random lists in the cartesian product. Using QuickCheck’s library for
writing generators, we might write:

completeness :: (Eq a, Show a) ⇒ [[a]] → [[a]] → Property
completeness xss yss =
(any null xss ∧ null yss)
.||. forAll (pick xss) (λ xs → elem xs yss)
where
pick :: [[a]] → Gen [a]
pick [] = return []
pick (xs : xss) = (:) ⟨$⟩ elements xs ⟨∗⟩ pick xss

The random generation of an element of the cartesian product is done using
the pick function. This repeatedly selects a random element of each list in the
input xss. Unfortunately, the elements function requires a non-empty list as its
argument. Hence we test a more complicated property: if the input xss contains
an empty list element, the resulting list yss is empty; otherwise, each randomly
generated list picked from the lists in xss occurs in the output yss.

This specification, however, is a bit more clunky: it makes an additional case
distinction that our implementation does not make. What should have been a
simple specification requires a custom generator and some quite sophisticated
functionality from the QuickCheck library.
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There is, however, yet another solution: what if we could avoid quantifying
over the additional list xs? That would yield a specification that no longer re-
quires a custom generator and could be tested more easily. To achieve this, we
redefine the completeness property using a (higher order) accumulating param-
eter:

completeness :: Eq a ⇒ [[a]] → [[a]] → Bool
completeness xss yss = completeAcc (λ xs → elem xs yss) xss

Here we define completeness in terms of an auxiliary function, completeAcc.
Initially, we pass a predicate stating that some list xs occurs in the output list
yss. The actual work is done by the completeAcc function that iterates over the
input list:

completeAcc :: ([a] → Bool) → ([[a]] → Bool)
completeAcc p [] = p []
completeAcc p (xs : xss) = all (λ x → completeAcc (p ◦ (x :)) xss) xs

If the input list is empty, the output list should contain the empty list. Otherwise,
we assert that for each possible choice of x , drawn from the first list in our input
xs, the completeness holds of the tail using the predicate p ◦ (x :). In this way,
we build increasingly complex predicates to test the presence of every possible
combination of elements from our input lists.

When we run the corresponding tests, QuickCheck fails to find a counterex-
ample:

ghci> quickCheckWith (product ‘satisfies‘ completeness)
+++ OK, passed 100 tests.

Although the tests pass, this definition is more complicated than the original
soundness property. It is not even immediately clear that the direct and accu-
mulating versions of completeness define the same property. At this point, it
makes sense to use an interactive theorem prover to check our work.

3 Formal verification

In this section, we show how to verify that the product function satisfies both the
soundness and completeness properties from the previous section. To do so, we
begin by redefining the boolean properties used in our specifications as inductive
relations.

The binary relation _∈_ says when an element occurs in a list:

data _∈_ (x : A) : List A → Set where
here : x ∈ (x :: xs)
there : x ∈ xs → x ∈ (y :: xs)

This definition is easy to read off from the Haskell definition: if the list is empty,
the property is false and hence there is no corresponding constructor. If the list
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is non-empty, there are two alternatives: either the element we are looking for
occurs in the head, or it occurs in the tail of the list.

Similarly, the Pairwise data type lifts a relation between A and B to one over
lists of A and lists of B:

data Pairwise (P : A → B → Set) : List A → List B → Set where
[] : Pairwise P [] []
_::_ : P x y → Pairwise P xs ys → Pairwise P (x :: xs) (y :: ys)

Again the choice of constructors mirrors the test we wrote in Haskell. Finally,
inhabitants of the All data type prove that all the elements of a list satisfy a
given predicate:

data All (P : A → Set) : List A → Set where
[] : All P []
_::_ : P x → All P xs → All P (x :: xs)

We define the specification of the cartesian product function using these
predicates. The product function is correct when it is both sound and complete:

correctness : List (List A) → List (List A) → Set
correctness xss yss = soundness xss yss ∧ completeness xss yss

Just as we saw previously, the definition of soundness says that all the elements in
the output list arise from picking one element from the list at the corresponding
position in the input list of lists:

soundness : List (List A) → List (List A) → Set
soundness xss yss = All (λ ys → Pairwise _∈_ ys xss) yss

Completeness, on the other hand, quantifies over an additional list xs. When-
ever this list draws its elements pairwise from the input xss, it must also occur
in the output yss:

completeness : List (List A) → List (List A) → Set
completeness xss yss = ∀ xs → Pairwise _∈_ xs xss → xs ∈ yss

In contrast to the QuickCheck specification, we do not need to worry about how
the lists xs are generated, but instead merely focus on the property we wish to
assert.

3.1 Soundness

Proving soundness is fairly straightforward: we follow the inductive structure of
the definition, computing the induction hypotheses we need along the way. Here
we present the proof in a top down fashion:

sound : (xss : List (List A)) → soundness xss (product xss)
sound [] = [] :: []
sound (xs :: xss) = f-sound xs (sound xss)
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The main soundness result establishes the base case: if our input list is empty,
the All predicate used to define soundness holds trivially. If the input list is non-
empty, we pass the induction hypothesis as an argument, but defer the further
work to correctness of the inner loop, f-sound:

f-sound : ∀ xs → soundness xss yss → soundness (xs :: xss) (f xss xs yss)
f-sound [] ih = []
f-sound (x :: xs) ih = g-sound ih (f-sound xs ih)

From this point onwards, we will liberally use Agda’s variable notation to
quantify implicitly over unbound variables in type signatures using the usual
conventions for naming lists. For instance, xss and yss are both lists of lists,
whereas xs is a list. Furthermore, to refer to any locally bound function, like
f, requires passing any locally bound variables (such as xss) as additional argu-
ments. Throughout the coming lemmas, we will use the same naming convention
as the definition site of the product function.

To understand the f-sound lemma, focus on the second case first: it states
that the function f constructs the cartesian product of (xs :: xss), provided we
already have yss, the cartesian product of xss. The proof itself, once again, merely
constructs the induction hypothesis and defers the actual proof to the innermost
fold, given by a third lemma, g-sound:

g-sound : soundness xss yss →
soundness (xs :: xss) zss →
soundness ((x :: xs) :: xss) (g xss xs yss x zss)

Once again, let’s read the type first: it states that cartesian product is sound
for (x :: xs) :: xss given the soundness of cartesian product for xss and for xs :: xss.
We use yss as the name for the cartesian product of xss, and zss as the name for
the cartesian product of xs :: xss. Although the lists of lists are quite dizzying at
this point, the specification of the innermost function g is clear. Deconstructing
the inductive nature of the correctness proof exposes exactly how the three nested
folds relate: the outermost fold iterates over the outermost list; the second fold
adds the elements of xs one by one; the innermost fold adds a single element x to
the results yss and zss constructed so far. The proof of this last lemma proceeds
by induction on (the soundness of) xss.

g-sound (ih1 :: ihs1) ih2 = (here :: ih1) :: g-sound ihs1 ih2
g-sound [] ih2 = all-map sound-step ih2

where
sound-step : Pairwise _∈_ xs (ys :: yss) → Pairwise _∈_ xs ((y :: ys) :: yss)
sound-step (e :: es) = there e :: es

We use a few helper lemmas, essentially to show how g does not invent new
elements, but rather draws them from yss or extends the intermediate results
from zss with the new element x. Using the following lemma, we map over all
the proofs in All P xs:

all-map : (∀ {x} → P x → Q x) → All P xs → All Q xs
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3.2 Completeness

Completeness is a bit harder to establish. The pattern of induction follows the
same structure as we saw previously, defining three functions that each handle
an individual layer of recursion.

complete : (xss : List (List A)) → completeness xss (product xss)
f-complete : completeness xss yss → completeness (xs :: xss) (f xss xs yss)
g-complete : completeness xss yss →

completeness (xs :: xss) zss →
completeness ((x :: xs) :: xss) (g xss xs yss x zss)

The proofs of the first two completeness statements are (almost) identical to
the soundness proofs. The completeness of g uses two helper lemmas. The first
proves that if a list as occurs in xss, then a call to g with the argument a will
produce a list containing a :: as:

g-in-xss : (xs : List A) (yss : List (List A)) →
as ∈ xss → (a :: as) ∈ g yss xs xss a zss

g-in-xss xs yss here = here
g-in-xss xs yss (there elem) = there (g-in-xss xs yss elem)

The second lemma proves that any call to g contains all the elements in zss. This
is easy to see, as the base case of g returns zss:

g-in-zss : (xs : List A) (xss : List (List A)) →
as ∈ zss → as ∈ g xss xs yss x zss

g-in-zss {yss = []} xs xss = λ a∈zs → a∈zs
g-in-zss {yss = :: yss} xs xss = there ◦ g-in-zss {yss = yss} xs xss

With these two lemmas, the proof of g-complete follows readily.

3.3 Accumulation

What about our alternative notion of completeness? In Agda, we can formulate
the corresponding property easily enough:

accumulate : (P : List A → Set) → List (List A) → Set
accumulate P [] = P []
accumulate P (xs :: xss) = All (λ x → accumulate (P ◦ (x ::_)) xss) xs
complete-acc : List (List A) → List (List A) → Set
complete-acc xss yss = accumulate (_∈ yss) xss

But what about proving that the cartesian product function is complete? Or
proving that the two definitions of completeness coincide?

The code accompanying this paper contains a direct proof that the cartesian
product function satisfies this property too. More interestingly, however, we show
that for any property, the accumulating and pairwise definitions are equivalent:
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acc-equiv : {P : List A → Set} (xss : List (List A)) →
accumulate P xss ⇔ ((∀ xs → Pairwise _∈_ xs xss → P xs))

This directly implies that the accumulating and direct definitions of complete-
ness are equivalent. Hence we can also re-use our previous completeness proof.
Proving this follows by induction, using one crucial lemma:

all∈ : ({x : A} → x ∈ xs → P x) ⇔ All P xs

The implication in each direction is used to establish the corresponding direction
of acc-equiv.

4 Intrinsic verification

The inductive structure of the proof and program both coincide closely: why not
do both at once the two? To achieve this, we need to abandon the simply typed
folds used in Haskell, in favour of the dependently typed induction principle or
eliminator :

elim : {P : List A → Set} →
(∀ x {xs} → P xs → P (x :: xs)) →
P [] →
∀ xs → P xs

elim step base [] = base
elim step base (x :: xs) = step x (elim step base xs)

Operationally, the two functions behave the same. The key difference is in the
return type. A simply typed fold produces a value of the same type, irrespective
of its input. On the other hand, the return type of the eliminator depends on its
input value xs. As we have set out to define a function returning both a list and
the proof that this resulting list is the cartesian product of its input, we need
this extra generality.

To make this even more clear, we introduce a type for ‘correct cartesian
product’, or CCP for short:

data CCP (xss : List (List A)) : Set where
_,_ : (yss : List (List A)) → correctness xss yss → CCP xss

Such a correct cartesian product of the list xss consists of an output list yss,
together with the desired correctness proof relating xss and yss. The CCP type
will form the first (implicit) argument P to the eliminator, sometimes referred
to as the motive.

We now define a correct by construction cartesian product function. The
complete listing is given in Figure 4, lightly edited for the sake of legibility.
Replacing elim with foldr, we have almost exactly the same function as in the
introduction, only we now return both a list and correctness proof. We have two
base cases for our proofs, but left out their definition. The type signatures of the
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product : (xss : List (List A)) → CCP xss
product xss = elim f ([ [] ] , base) xss

where
base : correctness [] [ [] ]
f : (xs : List A) → {xss : List (List A)} → CCP xss → CCP (xs :: xss)
f xs (yss , yss-c) = elim g ([] , f-base) xs

where
f-base : correctness ([] :: xss) []
g : (x : A) → {xs : List A} → CCP (xs :: xss) → CCP ((x :: xs) :: xss)
g x (zss , zss-c) =
(foldr (λ ys → (x :: ys) ::_) zss yss , g-correct yss-c zss-c)

Fig. 1. A correct-by-construction cartesian product

auxiliary functions, f and g, mention an additional (implicit) argument – but this
is not used in the function’s definition. The only real work – as always – is done
by the innermost function, g, that uses a simple fold to construct the desired list
and assembles the desired correctness proof. Written in this way, the correct by
construction cartesian product function is only slightly more complicated than
the original definition.

5 Discussion

In a way it is unsurprising that a function defined using a fold is (relatively) easy
to test and verify. Nonetheless, the establishing the correctness of a triply nested
fold, making clever use of lexical scoping, is still an amusing puzzle: finding
a suitable specification, proving the required lemmata, and assembling all the
pieces requires a bit of thought. In doing so, we illustrate just how far testing
and verification technology has come in the last sixty years.
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