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Abstract. Domain-specific languages, DSLs, enhance the productivity
of programmers. The abstraction level of a DSL is tailored to an applica-
tion domain to facilitate the production and maintenance of programs.
Functions add an important abstraction and repetition mechanism to
DSLs, just as for any other programming language. For the evaluation
of embedded DSLs one can use functions in the host language for this
purpose. However, for example in case of recursion, this use of host lan-
guage functions may cause undesirable side effects for some views of the
DSL, like pretty printing and code generation.
In this paper, we offer a systematic overview of the options for defining
functions in an embedded DSL, in particular tagless-final, or class-based
shallow embedding. These functions are type safe, require minimal syn-
tactic overhead, and are suitable for multiple views of the DSL.

Keywords: Embedded Domain-Specific Languages· Static Typing· Func-
tional Programming· Recursion

1 Introduction

A Domain-Specific Language, DSL, helps one to develop and maintain software
for a particular application domain. An embedded DSL, eDSL, is implemented
as a library in a host programming language. Preferably, an eDSL supports
multiple interpretations, views, for example printing, optimization, evaluation,
or compilation. It is desirable that the type safety of the host language is also
available in the embedded DSL. Embedding a DSL saves us from making a
complete standalone tool chain with parser, type checker, and so on for the
DSL, as they are inherited from the host language. Typically, the host language
becomes a powerful generator of eDSL programs [16]. Though some trade offs
have to be made for the correct typing and sharing of identifiers, like function
names, and when using them in function application.

Functional programming languages have shown to be well-suited host lan-
guages for embedded DSLs. This has been recognized long ago by Hudak [9]
and others. Moreover, recent extensions of functional programming languages
increase their quality as host languages for eDSLs. Among the properties con-
tributing are the ability to define infix operators, generalized algebraic data
types, multi-parameter type (constructor) classes and powerful function types.
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In this paper, we focus on the definition of functions in eDSLs. Basically,
functions can be handled like identifiers with a fancy type. In a naive implemen-
tation, identifiers are just a variable tag, either a constructor or a function, and
some identifier. In that approach, the host language compiler cannot check that
the variable is properly defined nor that the type is used correctly. On the other
hand, the compiler can check variables if we represent them by functions or func-
tion arguments in the host language. This is an old idea known as Higher-Order
Abstract Syntax, HOAS [26]. We use this concept to define functions in DSLs
and thus reducing syntactic overhead and improving type safety.

1.1 Requirements for DSL Functions

For embedded functions, we have some requirements. Firstly, we want to have
control over the types of function arguments. Even for polymorphic and over-
loaded functions, it should not be possible to use types that are not considered
to be part of the DSL. For some applications, it is required to have an upper
limit on the number of arguments of the function, e.g. when an evaluator of
the eDSL needs to store thunks in some finite memory location or to disallow
partial function applications. Similarly, we want to choose in the eDSL design
between first-order and higher-order functions. Secondly, embedded functions
should be able to call each other and themselves. We require at least recursion,
and preferably mutual recursion. Thirdly, sharing in the host language should
be maintained in the DSL [23]. For views that directly interpret terms in the
DSL, sharing is automatically maintained, but for views such as printing or code
generation, this could be made explicit. Finally, function application in the DSL
resembles the function application in the host language and preferably does not
require an explicit apply. That is, we prefer to write f x over ap f x in our eDSL
to minimize the semantic friction and syntactic overhead.

1.2 Choice of Embedding

There are two main flavours for embedding DSLs, deep embedding and shallow
embedding. In deep embedding, DSL constructs are represented as data types
in the host language. Views are functions over these data types. In class-based
shallow embedding, an extension of standard shallow embedding, the DSL con-
structs are type classes in the host language. Here, views are instances of these
classes. Due to space restrictions, the deeply embedded version using generalized
ADTs [25] version of our examples are only provided in the artefact and only
the tagless-final implementation is shown.

1.3 Research Contribution

The research contribution of this paper is twofold. Firstly, it provides a sys-
tematic overview of the options for defining type-safe functions in shallowly
embedded DSLs. All variants to obtain type-safety are based on the ability of
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the host language to check functions and function arguments at compile time.
We encode the embedded functions either as arguments or as functions in the
host language. There are various ways to encode embedded functions, and our
choices have a significant impact on what is allowed for our embedded functions.

Secondly, several novel ideas are described: how to deal with type annotations
in a language without type ascriptions, encoding named arguments in embedded
functions using record types, restrict functions to be only definable at the top
level, and show how embedded functions can be made reusable without restrict-
ing their scope. All examples are given in the purely functional programming
language Clean [4, 28] but can be applied to other languages as well.1

2 Class-based Shallow Embedding

In the coming sections, we show various versions of embedding functions. We
use class-based embedding rather than a traditional shallow embedding to allow
multiple views of the DSL. This class-based embedding is also known as tagless-
final embedding [5].

We start with the class for the ordinary operators that is reused by all ver-
sions of the DSL. Infix operators are used with the usual binding power and
associativity to beautify the syntax. We add a dot to the operator name when-
ever required to avoid name clashes with the host language.

class lit v :: a � v a | toString a
class arith v where
(+.) infixl 6 :: (v a) (v a) � v a | + a
(-.) infixl 6 :: (v a) (v a) � v a | - a
(*.) infixl 7 :: (v a) (v a) � v a | * a
(/.) infixl 7 :: (v a) (v a) � v a | / a

class bool v where
(&&.) infixr 3 :: (v Bool) (v Bool) � v Bool
(||.) infixr 3 :: (v Bool) (v Bool) � v Bool

class comp v where
(==.) infix 4 :: (v a) (v a) � v Bool | == a
(<.) infix 4 :: (v a) (v a) � v Bool | < a

class If v :: (v Bool) (v a) (v a) � v a

We add type classes for local values (cons) and single argument functions (fun1).

class cons v :: ((v a) �In (v a) (v b)) � v b
class fun1 v :: (((v a)�v b)�In ((v a)�v b) (v c)) � v c

:: In a b = (In) infix 0 a b // a prettier tuple

The definition of the familiar factorial function serves as an example in
ex1_v2.2 There is no higher meaning to the trivial definition of one, it is just
to illustrate the cons function. The argument of ex1_v2 is the value of the ar-
gument of the factorial function, i.e. the value is inlined. This illustrates how
the host language and the eDSL can mix. For recursive functions, like fac, it is
essential that we combine the function definition and its application in a single
1 A concise guide to Clean for Haskell programmers is found here [18].
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construct. The defined function should be in scope of the application in its own
body as well as the applications of the function.

ex1_v2 n =
cons λone = lit 1 In
fun1 λfac = (\n. If (n ==. one) one (n *. fac (n -. one))) In
fac (lit n)

2.1 Evaluation

Evaluating these operators in the monad E is completely standard. This monad
is an identity functor with a strict value but illustrates that it could work in any
more complex monad. Some class instances are listed in Appendix A.

For the evaluation of the fun1 and cons class, we uniformly substitute the body
of the definition to all applied occurrences using a cyclic definition. Thanks to
lazy evaluation, this works flawlessly.

instance lit E where lit a = pure a
instance arith E where
(+.) x y = (+) <$> x <*> y
(-.) x y = (-) <$> x <*> y
...

instance fun1 E where fun1 f = let (val In body) = f val in body
instance cons E where fun1 f = let (val In body) = f val in body

The effect of this circular use of the body at each applied occurrence of the
function is very similar to the use of an explicit fixed-point combinator (see
Section 2.3).

In shallow embedding, the view is already embedded in the data type. So
evaluating expressions in our DSL is a matter of unpacking the datatype E, as
seen in eval2.

eval2 :: (E a) � a
eval2 (E a) = a

The main function eval (ex1_v2 4) produces the value 24.

2.2 Printing

The printing view for this DSL is slightly more complex. We use the tooling
shown in Appendix B that uses a reader writer state monad, RWS. Here, the
writer is a list of strings, the state contains fresh identifiers and the reader is not
used. Printing these language constructs in this monad is fairly straightforward.
To generate concise prints we skip the keyword lit in the Print instance of the
class lit and the suffixes of the infix operators. For brevity in presentation, we
do not attempt to print minimal parentheses. Printing of the other basic classes
is similar and shown in Appendix B.

2 In Clean, �,= and . can be used for lambdas, we pick according to our taste.
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instance lit Print where lit a = P (tell [toString a])
instance arith Print where
(+.) x y = printBin x y "+"
(-.) x y = printBin x y "-"
...

printBin x y op
= P (tell ["("] >> | runPrint x >> | tell [op] >> | runPrint y >> | tell [")"])

For printing the definitions, we use the same idea as in the previous section.
A fresh identifier is used for all applied occurrences of the defined DSL object.3
However, we prefer to use an instance of the more general definitions introduced
in Section 3 and 4 below. Reuse is more concise and shows that this is indeed a
special case of the more general definitions.4

instance cons Print where cons f = def f
instance fun1 Print where fun1 f = funa f

Evaluating printMain (ex1_v2 4) produces:
def v0 = 1 In
def v1 = λv2 � (If (v2==.v0)

v0
(v2*(v1 (v2-v0)))) In

(v1 4)

Although we use a single cons and fun1 definition in this example, it is im-
portant to realize that these constructs can be nested arbitrarily. Each of these
definitions is a valid value of type v a.

2.3 Why no Fixed-Point Combinator

Our DSL primitives for local- and function definitions abstract the definition it-
self from its body and its applications. This resembles the common way to define
recursive functions in the λ-calculus using the fixed-point combinator [3]. It is
possible to implement recursion in our DSLs with such a fixed-point combinator.
However, the direct approach used here has a number of advantages. First, we
need only a single abstraction of the function name instead of a separate ab-
straction from the function body and another abstraction from the application
expression. Second, the cyclic implementation of the evaluation view is more
direct and efficient than the approach based on an explicit fixed-point combina-
tor. Third, the generalization to more flexible DSL definitions as shown below
is easier in our direct approach, e.g. each type of mutual recursion requires a
separate fixed-point combinator. Finally, in our experience the approach based
on fixed-point combinators is slightly more error prone both for the DSL user
and the DSL implementer.
3 Unfortunately, the names used by the user of the DSL are not accessible without

template metaprogramming magic, see also Section 5.
4 The only consequence is that the printed name of all definitions becomes the name

of the most general case. We do not consider that a problem. Whenever required,
we can make this name an additional parameter of a helper function that is called
in the actual print class.
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3 Controlled Function Arguments

The cons definitions in the DSL above cannot have an argument. The functions in
fun1 have exactly one argument, which is a single value in the DSL. By replacing
this argument of type v a by the type variable a, making it a multi-parameter
type class [7], we generalize this.

class funa a v :: ((a�v b)�In (a�(v b)) (v c)) � v c

With this definition we can allow more argument types. We can for instance
make instances of this class for various tuples to allow multiple arguments. By
making an instance for unit, (), we allow functions without arguments in C style.
Note that this does not imply that tuples become part of the types in the DSL.
The tuples in the host language are just a way to denote multiple arguments in
the DSL. This is very useful if you want to limit the number of arguments, for
example in low memory environments.

The Ackermann function is a famous example of a function with two argu-
ments. It is defined as ex2.

ex2 =
cons λzero = lit 0 In
cons λone = lit 1 In
funa λack = (λ(m,n)�If (m ==. zero) (n +. one)

(If (n ==. zero) (ack (m -. one, one))
(ack (m -. one, ack (m, n -. one))))) In

ack (lit 2, lit 2)

3.1 Evaluation

The evaluation instances is identical to the definitions shown above. We imple-
ment it in terms of the most general combinator (def, Section 4) as it is just a
specialisation. Executing eval ex2 produces the desired value 7.

instance funa a E where funa f = def f

3.2 Printing

The printing of this language construct is again more work. The instance for
(Print a) Print is equal to the instance of fun1 for Print, only the name fun1
should be changed to funa. In the same style, we can make an instance for
() Print to allow functions with zero arguments, or a unit argument to be more
precise. We show the instance with a tuple of two arguments, as used in the
example ex2 above. The difference with the single argument function is that we
generate two symbolic arguments for the body and handle a tuple of arguments
in the applications.

instance funa (Print a,Print b) Print where
funa f = P (fresh>>=λv � fresh>>=λa � fresh>>=λb �

let (body In main) = f (λ(c,d).P (tell ["(",v," ("] >> | runPrint c >> |
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tell [", "] >> | runPrint d >> | tell [")"])) in
tell ["funa ",v," = \\(",a,",",b,") � "] >> |
runPrint (body (P (tell [a]),P (tell [b]))) >> |
tell [" In\n"] >> | runPrint main)

This prints our example ex2 as:

def v0 = 0 In
def v1 = 1 In
def v2 = λ(v3,v4) � (If (v3==.v0)

(v4+v1)
(If (v4==.v0)
(v2 ((v3-v1), v1))
(v2 ((v3-v1), (v2 (v3, (v4-v1))))))) In

(v2 (2, 2))

4 Arbitrary Number of Arguments

By changing the class for definitions a little more, we can handle literals as well
as functions with an arbitrary number of arguments in the style of the host
language. The function can be used uncurried, i.e. without the need to pack the
arguments in a tuple. We just replace a�v b in the definition by a and make
again appropriate instances. The class def defines these more general definitions
in the DSL.

class def a v :: (a � In a (v b)) � v b

We illustrate the power of this approach by the algorithm to compute powers in
logarithmic time.

ex3 = def λone = lit 1 In
def λtwo = lit 2 In
def λodd = (\n.If (n ==. one) (lit True)

(If (n <. one) (lit False) (odd (n -. two)))) In
def λpow = (λx n.If (n ==. lit 0)

one
(If (odd n)

(x *. pow x (n -. one))
(def λy.pow x (n /. two) In y *. y))) In

pow (lit 3) (lit 5)

The definitions one and two have no arguments, odd has a single argument, and
pow has two arguments. The functions with arguments are recursive.

The definition of the value y is local inside the else branch of a conditional
in the function pow. It is convenient that such arbitrary nested definitions are
possible.

4.1 Evaluation

The evaluation can again be general for any definition of an arbitrary type a.

instance def a E where def f = let (body In exp) = f body in exp
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Defining such an instance of this class can allow more than we want. It works
for any type a. By defining more specific instances for various instance of a
instead of this very general instance, we can control the allowed arguments in
detail. In the mTask DSL for microcontrollers, we use this to limit the amount
of function arguments, and forbid currying in such a way that we can use fixed
size heap nodes [20]. For instance, by making only the instances def (E a) E and
def (E a, E b) E we allow only functions with one and two arguments. Allowing
more function arguments in definitions is just a matter of making instances for
longer tuples.

Evaluating expression eval ex3 yields the desired value 243.

4.2 Printing

Printing of the lit and arith classes is already defined in Section 2.2. That
implementation is also used with the more general definitions. Here we define
the Print instance of our most general definition class def.

The class def works for definitions with an arbitrary number of arguments.
In the applied function occurrences, we print a generated name for the functions
as well as the actual arguments. To print the body of the expression, we supply
functions that print variable names as arguments to the defined function. The
helper class defType does exactly that for various types of arguments. The Boolean
argument of actArg indicated whether a closing parenthesis is needed.

class defType a where
actArg :: Bool (Print c) � a
formArg :: a � Print c

Printing definitions becomes straightforward with this tooling. First, we generate
a fresh name n for the definition. Next, the defining function f is applied to the
function that prints the actual arguments. Initially, this prints just the name of
the function by P (tell [n])). The actArg adds the actual arguments one by one.
To print the function body, we supply the formal arguments one by one with
formArg. Finally, we only have to add some bookkeeping code to announce that
there is definition and print the definition to finally print the body.

instance def a Print | defType a where
def f = P (fresh>>= \n.

let (a In b) = f (actArg False (P (tell [n]))) in
incr >> | tell ["def ",n," = "] >> | runPrint (formArg a) >> |
tell [" In"] >> | decr >> | nl >> | runPrint b)

The basic case for the class defType covers the case that there are no more
arguments. In this situation, the object to be printed has type Print a. For the
actual argument actArg, we just run the given printer p and add a closing paren-
thesis whenever the Boolean argument b indicates that this is required. For the
formal argument formArg, we just run the given printer.5

5 In both cases the body is P (runPrint p) instead of just p to make the required type
transition from Print a to Print c.
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instance defType (Print a) where
actArg b p | b = P (runPrint p >> | tell [")"])

| otherwise = P (runPrint p)
formArg p = P (runPrint p)

The instance of defType for (Print a)�b handles the case for a single function ar-
gument. Recursive calls handle multiple arguments one by one. The instance for
an actual argument takes that argument as argument and prints it after the ac-
cumulator f. The function paren prints an open parenthesis whenever needed and
calls actArg recursively. For the formal argument, a fresh argument variable v is
generated. The function yields a printer that produces the corresponding lambda
definition and provides the printer P (tell[v]) as argument to the function.

instance defType ((Print a)�b) | defType b where
actArg b f = λx.paren b (runPrint f >> | tell [" "] >> | runPrint x)
formArg f = P (fresh>>=λv � tell ["\\",v," � "] >> |
runPrint (formArg (f (P (tell [v])))))

paren :: Bool (PrintM ()) � a | defType a
paren b f = actArg True (P (if b f (tell ["("] >> | f)))

This prints our power function example ex3 as:

def v0 = 1 In
def v1 = 2 In
def v2 = λv3 � (If (v3==.v0)

True
(If (v3<.v0)
False
(v2 (v3-v1)))) In

def v4 = λv5 � λv6 � (If (v6==.0)
v0
(If (v2 v6)
(v5*(v4 v5 (v6-v0)))
def v7 = (v4 v5 (v6/v1)) In
(v7*v7))) In

(v4 3 5)

4.3 Indicating Types

The host language compiler is able to derive types for almost all DSL expressions
though there are some exceptions. For these exceptions or software engineering
reasons, it is convenient to specify types inside our DSL [27, §11.4]. Our host
language Clean has no syntax for adding type ascriptions to expressions.6 With
the definition of type witnesses and two combinators we can mimic the effect for
the monomorphic definitions in our DSL. The type witnesses are values inside
our DSL with suggestive names. In these definitions, we hide on purpose that
these are types in our DSL rather than plain values.

Bool :: v Bool | lit v
Bool = lit False

6 Something that is available in e.g. Haskell98 [24, §3.16].
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Int :: v Int | lit v
Int = lit 42

We define two combinators. The first infix combinator is used to indicate that an
expression e has type T as e ::: T. The second infix operator constructs function
types as (λx. x +. lit 1) ::: Int �. Int.
(:::) infix 1 :: a a � a
(:::) a t = a

(�.) infixr 2 :: a b � a�b
(�.) a b = λa � b

This approach is very similar to the use of Proxy and native type annotations.
The advantage of our approach with type witnesses is that we never need to write
Proxy in the types and are not building on language extensions. The disadvantage
is that it must be possible to create a value of the type, something that is always
the case, e.g. a value of a World [2] or Void type. Though undef can be used as the
value is never evaluated anyway.

In this approach these witnesses are never materialized in any view of the
DSL. The definition of ::: discards them. An application is the factorial defini-
tion below. Definition evenOdd in Section 4.4 contains a bigger illustration. The
examples show that we can type definitions with various arities as well as sub
expressions.
ex1_typed n = def λone � lit 1 ::: Int In

def λequ � (λx y � x ==. y) ::: Int �. Int �. Bool In
def λfac � (\n. If (equ n one ::: Bool)

one
(n *. fac (n -. one) ::: Int)) ::: Int �. Int In

fac (lit n) ::: Int

4.4 Mutual Recursion

By placing the function body inside the scope of the function name, we facilitate
recursive functions in the DSL. The function name can be used inside its body
as well as inside the expression after the In constructor. This is not good enough
for mutual recursion since the ordering dictates that the first function is in scope
of the second function, but not the other way around. We solve this problem by
defining the functions at the same time in a tuple. A mutually recursive example
is the definition of the functions even and odd in terms of each other.
evenOdd = def λone = lit 1 ::: Int In

def λisZero = (\n.n ==. lit 0) ::: Int �. Bool In
def λisOne = (==.) one ::: Int �. Bool In // Currying!
def λ(odd,even) =

(\n.If (isZero n) (lit False)
(If (isOne n) (lit True) (odd (n -. one) ::: Bool))

,\n.If (isZero n) (lit True)
(If (isOne n) (lit False) (even (n -. one)))

) ::: (Int �. Bool, Int �. Bool)
In odd (lit 7) ::: Bool
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To add tuples of definitions to our DSL we need an instance of def for evaluation
for this.7

instance def (a,b) E where
def f = let (pair In exp) = f (fst pair, snd pair) in exp

To print such mutual recursive definitions, a tuple which prints the names is
given as argument to the defining function. The obtained bodies and the main
expression are printed in order. We just have to add some text to distinguish the
parts. In the same way we can add instances to define three or more mutually
recursive functions simultaneously.

instance def (a,b) Print | defType a & defType b where
def f = P (fresh>>= \n. fresh>>=λm.

let ((e1a, e1b) In e2) =
f (actArg False (P (tell [n])), actArg False (P (tell [m]))) in

incr >> | tell ["def (",n,",",m,") ="] >> | incr >> | nl >> |
tell ["("] >> | runPrint (formArg e1a) >> | nl >> |
tell [","] >> | runPrint (formArg e1b) >> | tell [") In "] >> |
decr >> | decr >> | nl >> | incr >> | runPrint e2 >> | decr)

4.5 Named Arguments

Sometimes it is convenient to indicate function arguments by a name rather than
by their position. For instance when a function has multiple arguments of the
same type. We can facilitate named arguments in the DSL by using a record
type of the host language.

For instance, we calculate the compound interest of some loan based on four
real numbers8 The record Loan introduces names for these values. All values are
Real numbers in our DSL. Hence, they are views v on such a value. This view v
parameterizes the record.

:: Loan v = { sum :: v Real // principal sum
, rate :: v Real // nominal annual interest rate
, freq :: v Real // compound frequency
, time :: v Real // overall length of time
}

Using this record we can use named function arguments and parameters as
in the example compoundInterest. Note that the order of fields in the definition
of the function ci differs from the argument loan1. Allowing this is exactly the
purpose of the named arguments.

compoundInterest =
def λci = (λ{sum, rate, freq, time} �

sum *. (lit 1.0 +. rate /. freq) ^. (freq *. time)) In
ci { freq = lit 4.0, time = lit 6.0

, sum = lit 1500.0, rate = lit 4.3 /. lit 100.0}

7 The standard implementation fails since it evaluates the tuple too soon, due to
pattern matching being strict in the constructor.

8 See https://en.wikipedia.org/wiki/Compound_interest for an explanation.

https://en.wikipedia.org/wiki/Compound_interest
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Without any changes to the given DSL implementation, this evaluates to 1938.8.
We need to add an instance of the class defType from Section 4.2 when we want

to print DSL expressions with instances of this type. We need to add argument
identifiers to record fields to cope with multiple arguments of type Loan. Hence,
it is more concise to print only this identifier as the formal argument of DSL
definitions. Since records and record updates are part of the host language rather
than the DSL, the only safe option is to print each record field explicitly in every
application. This can become rather verbose. A direct implementation yields for
our compound interest example:9

def v0 = λv1 � (v1.sum*((1+(v1.rate/v1.freq))^(v1.freq*v1.time)))
In (v0 {sum=1500,rate=(4.3/100),freq=4,time=6})

4.6 Only Top-Level Functions

The definitions introduced above can be nested arbitrarily. It is for the program-
mer convenient that arguments of a function are available in a nested definition.
See for instance example ex3 at the start of Section 4. The arguments x and
n of function pow are used in the body of y. For some DSLs this is undesir-
able. Nested definitions require special attention in code generation to make the
implicit arguments reachable. Well-known solutions are closure conversion and
lambda lifting.

Using a slightly different function definition class, we can prevent nested
definitions. The key is to replace the expression where the definition is applied
by a more specific datatype. Here we use a record, but an algebraic datatype
also works. By embedding the main expression in a record, we ensure that the
type system enforces that the DSL user only writes definitions at the top level.
To reuse as much as possible from the existing definitions, we use two arguments
for the record Main.
:: Main v b = {main :: v b}

To avoid confusion, the class to make DSL definitions is called defM. Enforcing
only top-level functions works of course only in a DSL where the ordinary class
def is not available. We can still have multiple definitions, but only definitions at
the outermost level. Any defM definition at a nested position causes the required
type error. For brevity we do not implement defM separately but use def.
defM :: (a � In a (Main v b)) � Main v b | def a (Main v)
defM f = def f

instance def a (Main v) | def a v where
def f = {main = def ((λ(a In {main = b}) = a In b) o f)}

Yet another variant of the factorial example is defined as facM.
facM n = defM λone = lit 1 ::: Int In

defM λis0 = (==.) (lit 0) ::: Int �. Bool In
defM λfac = (\n. If (is0 n) one (n *. fac (n -. one))) In
{main = fac (lit n) ::: Int}

9 We manually moved In to the next line to comply with the maximum line length.
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5 Reuse of Embedded Functions

The embedded function definitions introduced above work fine. By choosing the
appropriate variant, we determine what we want to allow in the DSL. Whenever
desired, we extend the DSL with new operators or datatypes as well as functions
with a different number or type of arguments.

There are two drawbacks for this approach. First, it requires that the entire
DSL program is defined as a single block of code. This is fine for small programs,
but for large programs this can hamper the readability. Second, it seems to
obstruct the reuse of code. Finally, carefully designed function names are lost in
showing the function definitions.

It is possible to make reusable functions in the current framework. We make
a global function definition for each embedded definition we want to reuse. We
start by adding an argument for each other definition used. Like the one in the
function fac below. Next, we add an argument for the recursive calls of the
function itself.10 This is exactly equal to the use of a fixed-point combinator
in λ-calculus (Section 2.3). Finally, we have the arguments of the embedded
function, either as normal function arguments or as a lambda function.

The example ex4 shows how this looks for a factorial definition.

one _ = lit 1
fac one f n = If (n ==. lit 0) one (n *. f (n -. one))

ex4 = def λoneF = one oneF In
def λf = fac oneF f In f (lit 4)

This evaluates and prints like if we would have had the definitions inlined
as above. This approach enables the reuse of the functions one and fac. An
alternative approach is to define the functions as HOAS. This method and the
method before result in very complex types become more complex and all library
functions still need to be declared explicitely.

withOne f = def λone�lit 1 In f one
withFac f = withOne λone�

def λfac�(\n.If (n ==. lit 0) one (n *. fac (n -. one)))
In f fac

ex5 = withFac λfac�fac (lit 4)

5.1 Named Functions

A more radical approach uses only named definitions. These definitions have
a used-defined ID that must be unique. This ID solves the lost names’ problem
in printing and is a unique identifier to spot whether we have encountered this
definition before. The equivalent of the definitions from Section 3 becomes the
classes fun for function with an arbitrary argument and def for constant defini-
tions.
10 Technically, this is not required for non-recursive definitions like constants. For uni-

formity and simplicity, we add this argument always in our examples.
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class fun a v :: ID (a�v b) � a�v b
class term v :: ID (v b) � v b

:: ID :== String

To specify concise type class constraints, we gather all relevant type classes in
funDef. The type parameters are the view v and the argument type a in function
definitions.
class funDef v a | lit, arith, bool, comp, If v & term v & fun (v a) v

The example with the functions even and odd below shows that this allows
mutual recursion without the need to define the functions simultaneously as in
Section 4.4.
Zero :: (v Int) | lit, term v
Zero = term "zero" (lit 0) ::: Int

One :: (v Int) | lit, term v
One = term "one" (lit 1)

even :: ((v Int)�v Bool) | funDef v Int
even = fun "even" \n.If (n ==. Zero) (lit True) (odd (n -. One))

odd :: ((v Int)�v Bool) | funDef v Int
odd = fun "odd " \n.If (n ==. Zero) (lit False) (even (n -. One))

5.2 Evaluation

The evaluation is again straightforward, we just replace each definition by the
body. The ID is not needed in this view and stripped.
instance fun a E where fun i a = a
instance term E where term i a = a

The expression eval (even (lit 5)) evaluates to False.

5.3 Printing

For the printing view, we have to work a little harder. Here, we need the full
tooling introduced in Appendix B. The state contains a mapping from ID to
output of type [String]. Each time we encounter a new definition, we check this
mapping for occurrence of the ID. When we have seen the definition before, we
can just use the ID to indicate a call to this definition. When the definition is
not known, we print it like before and store the output of the writer monad at
the position of the ID in the mapping. When we are done with printing, we can
just collect all definitions from the mapping with printAll. Like in Section 3, we
can make instances for functions with a single argument as well as for tuples
containing multiple arguments.

For simplicity, we assume that functions are not nested. One can handle the
printing of nested functions for instance like their code generation by lifting
all functions to the top level (see Section 6). We reuse the class defType from
Section 4.2 for the type specific printing details. We only show the instances for
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definitions without argument, functions with a single argument and a tuple as
argument.

instance term Print where
term name f = P (printDef "term" name f >> | tell [name])

instance fun (Print a) Print where
fun name f = actArg False (P (printDef "fun" name (formArg f) >> | tell [name]))

instance fun (Print a, Print b) Print where
fun name f = actArg False (P (printDef "fun" name (formArg f) >> | tell [name]))

Both instances uses the same helper function to add a definition to the mapping
when this is needed.

printDef :: String ID a � PrintM () | defType a
printDef kind name f = gets (λs�’M’.get name s.defs)>>=λmd�case md of
?Just _ = pure () // definition found
?None = censor (λ_�[]) (listen runDefinition)>>=λ(_,def)�

modify (λs�{s & defs = ’M’.put name def s.defs})
where runDefinition = modify (λs�{s & defs = ’M’.put name [] s.defs})

>> | enter name // enter to context
>> | tell [kind," ",name," = "] >> | runPrint (formArg f)
>> | leave

To add some resilience to the system, we can add the compiler-generated name
of the current function to the ID. This yields unique names when the user of
the DSL accidentally reuses an identifier, but generates ugly function names. If
available, a template metaprogramming system such as Template Haskell [30]
can be used to generate unique identifiers for functions. Printing our example
printAll (even (lit 5)) produces:

fun even = λv0 � (If (v0==.zero) True (odd (v0-one)))
fun odd = λv1 � (If (v1==.zero) False (even (v1-one)))
term one = 1
term zero = 0
main = (even 5)

It is no silver bullet because DSL functions can be constructed on the fly
using the host language as a macro language [16]. For example, the times function
below unrolls a multiplication function in a sequence of additions by using the
host language. Using just the name, location or generated identifier per function
in the host language is not enough. This can overcome by incorporating the
arguments in the identifier, as done below.

times x = def ("times" +++ toString x) λy�foldr (+.) (lit 0) (repeatn x y)

6 Code for Nested Functions

To show that this approach is not limited to simpler views, we introduce code
generation as a new view for the example DSL. To handle nested functions, we
adjust the function definition and all applications with the lifted arguments.
This obtains the same effect as lambda lifting [11].
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The generated code is represented by the algebraic data type Instruction
containing instructions for a stack machine. There are two instructions that
contain data only used during compilation. Firstly, Marker is used to place markers
in the code, and allow easy later patching the code. Secondly, Arg contains two
data fields; the scope, and the argument number. The scope number is only used
internally to implement lambda lifting. Built-in extensible ADTs [28, §5.1.5], à
la carte style ADTs [31], or classy deep embedding [17] can be used to hide these
constructors.

:: Instruction = Push Int | Arg Int Int
| Add | Sub | Mul | Div | Le | Eq | And | Or | Not | Neg
| Lbl Int | Jmp Int | JmpF Int | Jsr Int | Ret Int | Halt
| Marker Int

6.1 Compilation

The compilation of our DSL follows the same schema as printing and uses a
reader writer state monad. The reader part is not used. The state contains
a counter for fresh identifiers, a map from function identifiers to the code of
the body, a map from function names to identifiers and a map containing the
required metadata used when calling a function. During execution of the monad,
instructions are emitted through the writer part of the monad.

:: Compile a = C (CompileM ())
:: CompileM a :== RWS () [Instruction] CompileState a
:: CompileState =
{ fresh :: Int
, functions :: Map Int [Instruction] // Maps labels to instructions
, funmap :: Map String Int // Maps names to labels
, funcalls :: Map Int [Instruction] // Maps labels to function calls
}

runCompile :: (Compile a) � CompileM ()
runCompile (C a) = a

The instances of the DSL components regarding expressions follow the pat-
tern familiar from printing them. For simplicity, we assume that there all basic
data types can be converted to an integer to keep the stack representation ho-
mogeneous. This is added as a class constraint to the lit function. Only in
the conditional expression, the state is used to generate fresh labels in order to
implement the jumps between conditional branches.

instance lit Compile where
lit a = C (tell [Push (toInt a)])

instance arith Compile where
(+.) x y = C (runCompile x >> | runCompile y >> | tell [Add])
...

instance bool Compile where ...
instance comp Compile where ...
instance If Compile where
If c t e = C (
fresh>>=λelselabel�fresh>>=λendiflabel�
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runCompile c >> | tell [JmpF elselabel] >> |
runCompile t >> | tell [Jmp endiflabel, Lbl elselabel] >> |
runCompile e >> | tell [Lbl endiflabel])

6.2 Functions

Functions are implemented in this compiler similar to the printer. We show the
fun instance for single argument functions, the implementation for other arities is
more of the same. In the body, the arity and the name of the function are passed
to compileOrRetrieveFunction. The third argument of this function is a function
that, given a label, provides a representation of the arguments to the function
definition. The compileOrRetrieveFunction produces a label used for calling the
function. If the function was already encountered, only the label is returned, if
the function is seen for the first time, the definition is generated. Using the label,
callFunction is called with the code to evaluate the arguments and the label.
instance term Compile where
term name f = fun name (λ()�f) ()

instance fun (Compile a) Compile where
fun name f =
λx�C (compileOrRetrieveFunction 1 name (λlbl�f (C (tell [Arg lbl 0])))

>>= callFunction (runCompile x))

Generating the Definition The compileOrRetrieveFunction function first checks
if the function has been encountered before by looking it up in the funMap. If this
is the case, the label is immediately be returned. Otherwise, a fresh label is
generated and stored with the name in the funMap. Then the body is executed
using the provided function f, but the output is captured using censor and listen
similarly to what was done in the printing view. The instructions are placed after
performing the lambda lifting. Finally, the context, what to execute before calling
the function and evaluating the arguments, is stored in the funcalls field. Later,
the Marker referencing this label is replaced by this sequence of instructions.
compileOrRetrieveFunction :: Int String (Int � Compile a) � CompileM Int
compileOrRetrieveFunction arity n f =
gets (λs�’M’.get n s.funmap)>>=λv�case v of
?Just i = pure i
?None = fresh // Generate a fresh label
>>=λlbl�modify (λs�{s & funmap=’M’.put n lbl s.funmap})
>> | censor (λ_�[]) (listen (runCompile (f lbl)))
>>=λ(_, def)�let la = findLiftedArguments lbl def in

modify (λs�{s & functions=
’M’.put lbl (lift arity lbl def la) s.functions})

>> | modify (λs�{s & funcalls =
’M’.put lbl [Arg lbl i \\ (_, i)�la] s.funcalls})

>> | pure lbl

Lambda lifting finds the captured arguments of nested functions and adds
them to the definition and applications. In general, lifting all functions to top-
level definitions requires an intensional analysis of the callgraph [22]. For the
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sake of simplicity and brevity, this implementation only handles simple cases,
one level deep, where an argument of an outer function is used in an inner
function. Lifted arguments are identified by having a different label than the
current function and assigned a number. Lifting them is done by replacing the
Arg instructions by Arg instructions with the label of the current function and
with a patched number.

findLiftedArguments :: Int [Instruction] � [((Int, Int), Int)]
findLiftedArguments lbl def = zip2 (sort (removeDup
[(f, i) \\ (Arg f i)�def | f ̸= lbl])) [0..]

lift :: Int Int [Instruction] [((Int, Int), Int)] � [Instruction]
lift arity lbl def la = map replaceLift def ++ [Ret (arity + length la)]
where replaceLift :: Instruction � Instruction

replaceLift a=:(Arg f i) = case lookup (f, i) la of
?None = a
?Just a = Arg lbl (arity + a)

replaceLift i = i

Calling Functions The second part of the fun implementation is generating
the code for calling the function. In case of a recursive call, it is not yet known
what data from the context, i.e. lifted arguments, need to be inserted as well.
Therefore, a marker is included that represents the context, this is later be
replaced by the code for the context. After pushing the marker, the arguments
are evaluated and a Jsr instruction is written.

callFunction :: (CompileM ()) Int � CompileM ()
callFunction args i = tell [Marker i] >> | args >> | tell [Jsr i]

6.3 Running the Compiler

Compilation is a matter of running the monad stack. This results in code for the
main expression in the writer output and the code and metadata for the functions
in the resulting state. The main expression decorated with a Halt instruction
is concatenated with functions decorated with labels. The resulting code still
contains markers, they are then replaced by the corresponding instructions to
push the lifted arguments.

compile :: (Compile a) � [Instruction]
compile (C f) = foldr replaceMarkers [] (main ++ [Halt
: flatten [[Lbl l:is] \\ (l, is)�’M’.toList st.functions]])

where
(st, main) = execRWS f ()
{ fresh=0, functions=’M’.newMap
, funmap=’M’.newMap, funcalls=’M’.newMap
}

replaceMarkers (Marker i) acc = ’M’.find i st.funcalls ++ acc
replaceMarkers i acc = [i:acc]

Using the following nested definition, llift (lit 40) evaluates to 42.



Shallowly Embedded Functions 19

llift = fun "plustwo" λx�
let local = fun "fplus" λy�y +. x
in local (lit 2)

Compiling this code produces the instructions below. Function label 0 is the
plustwo function, label 1 is the fplus function. Before jumping to fplus, Arg 1 0,
the context, is pushed, followed by the argument Push 2.

Push 40
Jsr 0
Halt

0: Arg 1 0
Push 2
Jsr 1
Ret 1

1: Arg 1 0
Arg 1 1
Add
Ret 2

7 Related Work

Hudak [9] introduce the notion of embedded modular DSLs. Pfenning and El-
liott [26] introduce, with higher order abstract syntax, a simply typed λ-calculus
enriched with products and polymorphism to express syntax trees.g This is an
extension of the second-order term language of Huet and Lang [10]. Extensions
of HOAS exist, such as parametric HOAS or PHOAS [6].g For the methods de-
scribed in this paper, basic HOAS suffices. We reuse these ideas to construct
embedded DSL terms using type classes by recursive functions, as well as tech-
niques to express sharing and recursion introduced by Oliveira and Löh [23].

The original HOAS based on ADTs suffers from problems with exotic or junk
terms [29]. The type system of the host language prevents those problems for
HOAS based on GADTs [1]. In our shallow embedding, the type system of the
host language also eliminates those undesirable terms.

Intentional analysis, like program optimization and partial evaluation, is hard
with HOAS and shallow embeddings because we cannot inspect functions. This
is solved in HOAS [1] and class based shallow embeddings [5, 13] by using an
intermediate data type. Gill [8] focusses on detecting observable sharing in a
deeply embedded DSL by using the stable names of the untyped graph represen-
tation. McDonell et al. [21] expand on this by performing it on a typed syntax
tree.

Carette et al. [5] and Kiselyov [13] use λ-calculus with a fixed-point combi-
nator instead of direct recursion. In this paper, we show that we can use also a
fixed-point combinator, but that direct recursion is more elegant and direct.

Kiselyov [14] explicates the challenges in generating safe low-level code. These
techniques should integrate with our approach.

Every class constraint needed in some view is part of the type classes con-
structing our DSL. Jones et al. [12] shows how these constraints can be moved
to the views that need them.
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Implementing named arguments by means of a record, as described in Sec-
tion 4.5 has been discussed extensively in white and grey literature. To the best
of our knowledge, it has never been used in a DSL context before.

8 Conclusion

This paper shows that it is possible to define strongly-typed functions as part
of an embedded DSL in a strongly-typed host language. Key to these checked
definitions are identifiers for functions in HOAS style, the DSL functions are
(lambda) functions in the host language. Like any other function in the host
language, such a lambda function is type checked. By checking the host lan-
guage function, the compiler checks also the DSL function. The only syntactical
overhead is the lambda for the defining identifier and a function serving as key-
word before a definition.

To allow multiple views of the DSL we use a class-based embedding. Each
view of the DSL is an instance of the classes constructing the DSL. As views we
demonstrate evaluation, pretty printing and code generation of nested functions
using lambda lifting for a first-order functional DSL.

In this paper we use various classes to define functions in the DSL. In the
first class, functions have exactly one argument that is a single value in the DSL.
In the next class, functions have a more general argument. This argument can
for instance be a tuple containing zero or more normal arguments to control the
allowed number of arguments in the DSL. In the most general case, DSL function
have an arbitrary number of arguments, just like functions in the host language.
By implementing instances of the classes, we control the type of arguments
allowed in the DSL. By defining the function body and the expression where this
is applied together, we allow recursion without needing a fixed-point combinator
in the evaluation.

By defining slightly different classes, we ensure that the user defines only top-
level functions. This makes code generation easier and can for instance statically
control the maximum size of heap nodes needed in an implementation.

We introduced various ways to facilitate reuse of function definitions in the
DSL. This enables us to make top-level libraries inside the DSL.

This paper uses Clean as host language, but the ideas can be implemented
in any modern functional programming language. All code is available Lubbers
et al. [19].

As future work we like to combine the code generation of such a DSL with
type-safe stack manipulations [15]. The automatic type-safe transformation of
embedded DSL programs brings new challenges. We plan to investigate how this
can be done. This approach is by no means restricted to the simple first-order
functional DSL we use as example. We think it is fruitful to do more case studies
for this by creating larger and more complex DSLs.
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all variables are represented by functions or function arguments. We use the
substitution mechanism of the host language to ensure type-safe and efficient
replacement of variables by the appropriate value.

eval :: (E a)�a
eval (E a) = a

:: E a = E !a

instance pure E where pure a = E a
instance Monad E where bind (E a) f = f a
instance Functor E where fmap f (E a) = E (f a)
instance <*> E where (<*>) (E f) (E a) = E (f a)

The evaluation of the basic classes not listed in Section 2.1 are listed here.
The instances for the class bool ensure that the second argument is only evaluated
when that is necessarily.

instance bool E where
(&&.) x y = x>>=λb � if b y (pure False) // for lazy evaluation
(||.) x y = x>>=λb � if b (pure True) y // for lazy evaluation

instance comp E where
(==.) x y = (==) <$> x <*> y
(<.) x y = (<) <$> x <*> y

instance If E where If c t e = c>>=λb.if b t e

B Print Tooling

The print tooling is more sophisticated than the evaluation tooling. It is based
on the reader writer state monad. The state PS is a record containing an integer
i to generate fresh variables, a context that is a stack of function IDs, a mapping
from IDs to output as a list of strings, and an indentation depth ind. Only the last
DSL versions use all these fields. The writer monad is a list of strings, [String],
to denote the output of printing. The reader PR is not used and equals void, ().

:: PS = {i :: Int, context :: [ID], defs :: Map ID [String], ind :: Int}
:: PR :== ()
:: Print a = P (PrintM ())
:: PrintM a :== RWS PR [String] PS a
:: ID :== String

We use some convenience functions for this RWS monad. They are explained in
context on their first use in this paper.

runPrint :: (Print a) � PrintM ()
runPrint (P a) = a

nl :: PrintM ()
nl = get>>=λs � tell ["\n":[" " \\ _ � [1..s.ind]]]

incr :: PrintM ()
incr = modify λs � {s & ind = s.ind + 1}

decr :: PrintM ()
decr = modify λs � {s & ind = s.ind - 1}
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fresh :: PrintM String
fresh = get>>=λs.put {s & i = s.i + 1} >> | pure ("v" + toString s.i)

printAll :: (Print a) � String
printAll (P f) = concat
(’M’.foldrWithKey (λk v a.["\n":v] ++ a) ["\n":main] st.defs)

where
(st, main) = execRWS f () {i=0, context=[], defs=’M’.newMap, ind=0}

printMain :: (Print a) � String
printMain (P f) = concat main
where
(st, main) = execRWS f () {i=0, context=[], defs=’M’.newMap, ind = 0}

prnt :: a � PrintM () | toString a
prnt s = tell [toString s]

show‘ :: (DSL a) � PrintM () | toString a
show‘ e = let (P p) = show1 e in p

The print instances for basic classes not listed in Section 2.2 are listed here.

instance bool Print where
(&&.) x y = printBin x y "&&"
(||.) x y = printBin x y "||"

instance comp Print where
(==.) x y = printBin x y "=="
(<.) x y = printBin x y "<"

instance If Print where
If c t e = P (tell ["(If "] >> | runPrint c >> | tell [" "] >> |
runPrint t >> | tell [" "] >> | runPrint e >> | tell [")"])
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