
Reconstructing Big-Step Continuation-Passing
Semantics for WebAssembly

Guannan Wei1,2, Alexander Y. Bai2, Dinghong Zhong3, and Jiatai Zhang2

1 INRIA/ENS-PSL, Paris, France guannan.wei@inria.fr
2 Tufts University, Medford, USA

{guannan.wei, alexander.bai, jiatai.zhang}@tufts.edu
3 Unaffiliated azhong.934@gmail.com

Abstract. WebAssembly is now a popular low-level intermediate rep-
resentation (IR) and compilation target. The official specification of We-
bAssembly provides a small-step reduction semantics. Unlike other com-
mon low-level IRs, WebAssembly provides structured control-flow con-
structs, whose reduction rules are complicated by additional adminis-
trative instructions in the reference semantics. This paper provides an
alternative big-step semantics in continuation-passing style (CPS) that is
concise, compositional, and tail-recursive. Using continuations from the
meta-language eliminates the need to introduce administrative instruc-
tions. We further demonstrate that the CPS semantics can be extended
to support other forms of control abstractions, such as effect handlers.

Keywords: WebAssembly · Continuation-passing style · Big-step se-
mantics.

1 Introduction

Motivation WebAssembly (Wasm) is a low-level intermediate representation
aiming to be portable, compact, and efficient for the web. Unlike similar lan-
guages (e.g. LLVM’s IR), Wasm provides structured control-flow constructs
whose behaviors are regulated by a static type system. Another notable ad-
vancement with Wasm is that its semantics has been formally specified [11] from
the outset and have evolved [32] in tandem with the language’s development.

The co-developed formal specification facilitates not only the development
of language tools and compilers, but also the design and prototyping of new
extensions for Wasm. For example, there are a number of proposals adding richer
control abstractions to Wasm, such as exception handling [28], continuations [30],
effect handlers [17], and more, all building on top of the reference semantics.

The specification of Wasm describes a small-step reduction semantics [18],
which is straightforward to implement as an interpreter. However, the reduction
semantics [11, 32] is complicated by the additional administrative instructions,
which are extensions to handle control constructs (e.g., loops and breaks) but
do not appear in source programs. These administrative instructions are in-
serted on-the-fly during the evaluation of the program, essentially serving as the

2 G. Wei et al.

representation of evaluation contexts. Another choice of the design is that the
reference semantics conflates the control stack and the value stack [27], arguably
adding cognitive overhead to understand the semantics. The redundancy also
leads to inefficiency when implementing the reference interpreter.

Moreover, the reference small-step semantics is not compositional, making it
unsuitable to apply mechanical program transformations (e.g. partial evaluation,
staging, or unfolding) to the interpreter [14], which are useful to derive other
tools or optimizations based on the semantics. The lack of compositionality adds
complication in both reasoning about the semantics and in developing tools that
adhere to a semantics-first approach.

This Work Following Reynolds’ seminal work of definitional interpreters [21],
an alternative is to leverage the control mechanisms from the meta-language
to define the semantics of the object language, rather than using first-order
representations of control. We can give meanings to the control constructs of the
object language by using continuations from the higher-order meta-language.

This paper reconstructs a continuation-passing style (CPS) semantics for
Wasm. The key contribution is a big-step, compositional, tail-recursive seman-
tics in CPS that captures the essence of Wasm’s control-flow semantics. Such a
CPS semantics is high-level and can be straightforwardly implemented in a func-
tional language. By employing CPS in the meta-language, our approach elim-
inates the need for administrative instructions, disentangles the control stack
and the operand value stack, makes the semantics more concise and streamlined
compared to the reference reduction semantics [11, 32].

Unlike a typical CPS interpreter with a single continuation, the interpreter
uses a list (or, a trail) of continuations to handle lexically induced breaks, inspired
by double-barrelled CPS [23] and the CPS semantics of dynamic continuations
[2]. We further demonstrate that the CPS semantics serves as a flexible founda-
tion that can be extended to define a wide range of control abstractions, which
are not (yet) in the current WebAssembly standard, such as high-level for-loop
[22], tail calls [29], exceptions [22, 28], and effect handlers [17, 19, 20].

Contributions This work makes the following contributions:

– We clarify WebAssembly’s control-flow semantics by developing big-step,
CPS-based definitional interpreters, marking the first compositional and tail-
recursive CPS semantics for WebAssembly.

– We extend the CPS semantics to support control abstractions such as struc-
tured loops, tail calls, try/catch, and effect handlers.

– We implement an WebAssembly interpreter based on the proposed seman-
tics, validating its consistency with the reference interpreter.

The paper is organized as follows: Section 2 introduces µWasm, a minimal lan-
guage following the essence of Wasm. Section 3 presents the core CPS semantics
for µWasm. Section 4 discusses several control extensions and their CPS seman-
tics. Section 5 describes the implementation of our CPS interpreter. Section 6
discusses related work and Section 7 concludes with remarks on future work.

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 3

2 µWasm: A Minimal Language à la WASM

In this section, we introduce a minimal language µWasm, capturing interesting
control flow constructs as a proper subset of WebAssembly. We first present the
abstract syntax, followed by an example informally explaining the control-flow
semantics.

2.1 Syntax

ℓ ∈ Label = N
x ∈ Identifier = N
t ∈ ValueType ::= i32 | i64 | . . .
ft ∈ FunctionType ::= t∗ → t∗

e ∈ Instruction ::= nop | t.const c | t.{add, sub, eq, . . . }
| local.get x | local.set x
| block ft es | loop ft es | if ft es es

| br ℓ | call x | return
es ∈ Instructions = List[Instruction]

f ∈ Function ::= func x {type : ft , locals : t∗, body : es}
m ∈ Module ::= module f∗

Fig. 1: The abstract syntax of µWasm.

Figure 1 presents the abstract syntax of µWasm. A µWasm module consists
of a sequence of function definitions. Each function defines its type, identifier, a
list of types of local variables, and a block of instructions.

WebAssembly assumes a stack-based computation model (instead of using
named registers), thus most instructions do not take explicit operands. For ex-
ample, i32.const 42 pushes the constant 42 onto the stack, and a numeric in-
struction such as i32.add consumes two values from the stack and pushes the
result back. Instructions for local variables, e.g., local.get and local.set, accesses
and updates local variables with an implicit stack too, respectively.

Control flow constructs in Wasm are structured and can be nested. For exam-
ple, block-like constructs (block, loop, if) contain sequences of instructions. They
also take a function type regulating the shape of the stack before and after the
block. Break instruction (br) takes a label, which is a numeric value referring to
the jump targets in the control flow. Block-like constructs introduce an implicit
label à la de Bruijn indices, which can be referred by br within the block.

Compared to the full-fledged Wasm langauge, we have omitted many features,
e.g., memory operations, globals, imports/exports, tables, etc. However, these

4 G. Wei et al.

features are largely orthogonal to the control flow semantics of Wasm, and can be
added back in a straightforward manner. Labels (for blocks) and identifiers (for
local variables and functions) are restricted to numerics compared to standard
Wasm, in which can be symbolics. Symbolic labels/identifiers can be mapped
to their numeric correspondences as a semantics-preserving preprocessing step.
In this work, we are interested in the dynamic semantics of Wasm, therefore we
assume the same validation semantics for µWasm as in standard WebAssembly.

2.2 Example

Although WebAssembly looks like a standard stack-based low-level language,
one of the uncommon feature of WebAssembly is that the semantics of breaks
contextually depends on the enclosing target block. For example, the following
code snippet defines a loop block containing a regular block, labeled ℓ1 and ℓ2
respectively:

loop ℓ1
...
block ℓ2

...
br ℓ2
...
br ℓ1
...

end
...
br ℓ1
...

end

There are three br instructions in the code snippet. Within the inner block, the
first br instruction jumps to the end of the block, while the second br instruction
jumps to the beginning of the enclosing loop block. Similarly, the br instruction
at the end of the loop block jumps back to the beginning of the loop block. If
there is no br back to the loop head, the loop finishes. Our CPS semantics will
capture this contextual control-flow structure.

3 A CPS Semantics for µWasm

We now present a continuation-passing semantics for µWasm. The semantics J·K
is defined as a recursive function mapping a list of instructions to functions with
continuations:

J·K : List[Inst] → (Stack× Env × Cont× Trail) → Ans

In the following, we first explain the domain definitions and notations, then
present the definition of J·K in Figure 3. We also discuss bridging the gap between
our core CPS semantics and the full Wasm language.

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 5

v ∈ Value = Z
σ ∈ Stack = List[Value]

ρ ∈ Env = List[Value]

κ ∈ Cont = Stack× Env → Ans

θ ∈ Trail = List[Cont]

Fig. 2: Semantic domains and auxiliary functions.

Evaluation function: J·K : List[Inst] → (Stack× Env × Cont× Trail) → Ans

JnilK(σ, ρ, κ, θ) = κ(σ, ρ)

Jnop :: restK(σ, ρ, κ, θ) = JrestK(σ, ρ, κ, θ)
Jt.const c :: restK(σ, ρ, κ, θ) = JrestK(c :: σ, ρ, κ, θ)
Jt.add :: restK(v1 :: v2 :: σ, ρ, κ, θ) = JrestK(v1 + v2 :: σ, ρ, κ, θ)

Jlocal.get x :: restK(σ, ρ, κ, θ) = JrestK(ρ(x) :: σ, ρ, κ, θ)
Jlocal.set x :: restK(v :: σ, ρ, κ, θ) = JrestK(σ, ρ[x 7→ v], κ, θ)

Jblock (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =

let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in

JesK(σarg , ρ, κ1, κ1 :: θ)

Jloop (tm → tn) es :: restK(σarg m++ σ, ρ, κ, θ) =

let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in

fix κ2 := λ(σ2, ρ2).JesK(⌊σ2⌋m , ρ2, κ1, κ2 :: θ) in

κ2(σarg , ρ)

Jif (tm → tn) es1 es2 :: restK(v :: σarg m++ σ, ρ, κ, θ) =

let es := if v ≡ 0 then es2 else es1 in

let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++ σ, ρ1, κ, θ) in

JesK(σarg , ρ, κ1, κ1 :: θ)

Jbr ℓ :: restK(σ, ρ, κ, θ) = θ(ℓ)(σ, ρ)

Jcall x :: restK(σarg m++ σ, ρ, κ, θ) =

let {type : tm → tn, locals : ts, body : es} := lookupFunc(x) in

let ρ1 := buildEnv(σarg , ts)

let κ1 := λ(σ1, ρ1).JrestK(⌊σ1⌋n ++σ, ρ, κ, θ) in

JesK([], ρ1, κ1, [κ1])

Jreturn :: restK(σ, ρ, κ, θ) = θ.last(σ, ρ)

Fig. 3: The continuation-passing style semantics of µWasm.

6 G. Wei et al.

3.1 Preliminaries

Domains Figure 2 shows the definitions of semantic domains. We represent
values as integers, and the stack as a list of values. An environment (i.e. frames in
Wasm reference semantics) ρ is represented as a list of values, mapping numeric-
represented local variables as indices to values. We represent continuations κ
as functions that take a stack and an environment, and return an answer. We
deliberately leave the definition of the answer type Ans abstract, as it depends
on the specific instantiation of the semantics. One possible choice is to define it
as the Stack type, representing the side effects of instructions. A trail θ is a list
(or stack) of continuations, which is used to represent lexical control structures.

Notations Before explaining the details of the semantics, we introduce some
notations used in Figure 3.

For a list θ (representing Stack, Env, or Trail), θ(ℓ) accesses the ℓ-th element
in the list θ. σ1 ++ σ2 concatenates two stacks σ1 and σ2. ρ[x 7→ v] updates the
environment ρ with x mapping to v, producing a new environment.

We write a function type tm → tn to denote that there are m argument
types, and n result types. Given a type tm and a stack σ, ⌊σ1⌋m takes the top m
elements matching the types tm from the stack σ. This is useful, e.g., to truncate
the stack only taking the necessary arguments.

To the left of the equations in Figure 3, we use a few notations to match the
program syntax and the shape of the operand stack. For example, :: is the usual
cons operator used to destruct the stack into the top element and the rest of the
stack. We also use σ1 m++ σ2 to split the stack into two parts, where the first
part σ1 has m values, and the second part σ2 contains the rest of the stack.

3.2 CPS Semantics

Figure 3 presents the CPS semantics of µWasm, which structurally recurs over
the list of instructions. The interpretation of instructions manipulating the stack
and environment is straightforward to define. For example, const pushes a con-
stant onto the stack, add pops two values from the stack, adds them, and pushes
the result back. Then, they recursively evaluate the rest of the instructions with
the new stack. Similarly, local.get and local.set access and update local variables
with the environment.

Besides storage arguments such as the stack and environment to the inter-
preter, our semantics takes additional control arguments. In WebAssembly, there
are three different ways to leave a block-like scope, namely by (1) falling through
to the immediately enclosing block, (2) breaking out of the block, and (3) return-
ing from the function. Therefore, to accommodate such control flow, J·K takes
additional control arguments:

– a continuation function κ representing the control-flow after consuming the
current list of instructions (i.e. the case for JnilK, yielding to the enclosing
block), and

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 7

– a trail of continuations θ representing the control-flow for jumping (informed
by the lexical structure of the program) or returning.

In the following, we explain how they play different roles for different control
constructs.

Block, Loop, and Break For control-flow instructions, µWasm models three
kinds of block-like structures (block, loop, and if) which introduce a labeled
scope, along with the branch instruction br. Within a block-like construct, a
break instruction br consisting of a label, which indicates the number of blocks
to skip. For example, br 0 targets the immediately enclosing block, and br 1
targets the next outer block, and so on. However, it is important to note that
brs to a loop and to a block behave differently: the former jumps back to the
beginning of the loop (as continue in C), while the latter escapes to the end of
the block (recall the illustration in Section 2.2). In other words, the meaning
of br depends on its enclosing constructs. Our semantics uses a trail θ to keep
track of the lexical control-flow structure, then labels of brs are interpreted as
the index of the trail to invoke the corresponding continuation.

Now we explain the rules defined in Figure 3. For a block instruction, we
prepare a new continuation κ1 that evaluates the rest of the instructions after
the block. This continuation is shared by falling through the block and breaking
out of the block (appended to the trail θ). Similarly, for a if instruction, we
prepare the same kind of continuation, but evaluate the inner instructions based
on the condition on the top of the stack.

However, for a loop instruction, we define two different continuations: (1) κ1

represents the fall-through continuation that evaluates the rest of the instructions
syntactically after the loop, and (2) κ2 represents the break-out continuation that
jumps back to the beginning of the loop. Note that κ2 is defined as a fixed-point,
so that it can be recursively pushed onto the trail θ within its definition. Lastly,
we initiate the evaluation of the loop body by invoking κ2.

Block-like structures are also annotated with a function type, indicating the
stack values consumed and produced by the block. In Figure 3, we use σarg m++σ
to split the input stack for the argument values, and use ⌊σ1⌋n to truncate the
output stack for the return values.

Call and Return For function calls, we use an auxiliary function lookupFunc
to find the definition (i.e., its function type, local variable types, and body) by
the function index. Our presentation omits the function environment and the
definition of lookupFunc, as it is straightforward to implement and not the focus
of this paper. Another auxiliary function buildEnv constructs a new environment
ρ1 containing the arguments and default values of local variables (Appendix A
shows its definition). The continuation κ1 evaluates the rest of the instructions
after the call, with the returned values appended with the previous stack (with-
out the arguments to the callee), the caller’s environment, continuation, trail,
and return index.

When we enter the function body es, we use an empty stack, the new envi-
ronment ρ1, and the return continuation κ1. Since a function introduces a fresh

8 G. Wei et al.

block scope too, the trail θ is a just singleton list containing the return contin-
uation κ1, discarding all other jump targets that are non-local to the function.
Within a function body, this continuation κ1 remains to be the last one in the
trail, and it is invoked when encountering a return instruction, since it is the
maximal number of blocks to skip.

Remarks The presented semantics (Figure 3) as a definitional interpreter is
compositional. We apply the J·K function only to the syntactic sub-constructs of
the current term from the left-hand side. The interpreter is also tail-recursive –
every call of J·K and the continuations are in tail position. In a meta-language with
proper tail-call optimization, the interpreter executes without stack overflow. In
Section 4.2, we discuss the extension to support tail calls in the object language
µWasm.

Notice that our evaluation function takes a list of instructions as argument.
Alternatively, we could define it as only taking a single instruction, instead a list
of instructions. In this way, we need to define an auxiliary function (e.g. foldl)
that iterates the evaluation over the list of instructions, so that the evaluation
of rest becomes part of the continuation κ of the current instruction. We choose
the former approach that works better with the low-level syntactic structure
of WebAssembly; our evaluation function can also be considered as the fused
version of the single-instruction evaluation and the iterating driver.

Scaling to Full Wasm Many features of WebAssembly, such as memory, global
variables, and tables for function references, are orthogonal to the control flow
semantics. They are omitted in our semantics but nevertheless can be added
on top of it, following the reference interpreter. Our presented semantics have
not dealt with errors, which are represented by the dedicated administrative
instruction trap in WebAssembly. In our semantics, the interpretation of trap
can be represented by errors in the host language.

4 Extensions

We have shown the CPS semantics for µWasm. Now, we discuss several control
extensions to µWasm and show that the CPS semantics can be extended to
support these extensions. Some of the simple constructs can be directly added
to the language without global changes, while others such as exception/effect
handling require additional facilities. We start from the simple constructs and
gradually move to more complex ones.

4.1 Structured Loops

We first show how to add structured for-loop in µWasm. The for-loop resembles
the behavior of similar looping constructs in other high-level languages, such as
C. This extension is inspired by one of the assignment problems in Stanford’s
CS242 course [22].

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 9

Syntax and Statics The syntax of µWasm is extended with the following
construct:

e ∈ Instruction ::= · · · | for (es init; escond; espost) es

The initialization instructions esinit run only once before the loop begins. The
condition escond produces a single boolean (represented as i32) value on the stack.
If the condition is true, then the loop body es is executed otherwise the loop
terminates. The post-instructions espost are executed (every time) after the loop
body es. As for typing, only the condition escond has type [] → [i32]; all other
constructs in the for-loop take no arguments and produce no results on the stack.

CPS Semantics We formalize the CPS semantics for for-loop, following the
same style presented in Figure 3:

Jfor (es init; escond; espost) es :: restK(σ, ρ, κ, θ) =
fix κ1 := λ(σ1, ρ1).JescondK([], ρ1, λ(v :: σ2, ρ2).

if v ≡ 0 then JrestK(σ, ρ2, κ, θ)
else JesK([], ρ2, λ(σ3, ρ3).JespostK([], ρ3, κ1, θ), θ)) in

Jes initK([], ρ, κ1, θ)

Similar to the semantics of loop-block, we use a fixed-point to define continuation
κ1 that evaluates the condition and possibly the loop body followed by the post-
instructions. This continuation κ1 is used as the continuation when recursively
applying the semantic function to espost.

Note that in the above definition, we have deliberately left for-loop no branch
semantics, i.e. a br0 instruction in the loop body would target the outer enclosing
block, not the loop itself. However, the use of continuations in our semantics
allows us to flexibly recover behaviors of br either as continue or break in C.
For example, we can append κ1 to the trail continuation θ when evaluating the
loop body es, and use it as the target for a br0. Similarly, to implement a break
behavior, we can append the evaluation of rest to the trail θ. Appendix B shows
the full semantics of the for-loop with both variants of break semantics.

4.2 Tail Calls

Standard WebAssembly’s call instruction prohibits tail-call optimization, which
is useful particularly for recursive functions since it ensures constant stack space
consumption for tail calls. A recent proposal [29] extends WebAssembly with
tail calls, and has been experimentally supported by major implementations.
Although our CPS semantics does not operationally describe every detail of a
low-level virtual machine or implementation, it can help clarify the behavior of
tail calls, especially from the perspective of continuations. Essentially, it becomes
unnecessary to create a new frame/continuation for a tail call, as we can directly
reuse the current one that returns.

10 G. Wei et al.

Syntax and Statics The proposal [29] adds several new call instructions that
are the tail version of the regular ones. For brevity, we only demonstrate the
return_call instruction with the following syntax:

e ∈ Instruction ::= · · · | return_call x

Here, return_call x represents a tail call to the function at index x. We omit the
typing, which follows the proposal [29].

CPS Semantics As its name suggested, the instruction return_call combines
the semantics of return and call, performing them in a single step. In the CPS
semantics, we do not need to return explicitly; instead, to return is to call the
last continuation in the trail. And the caller prepares a new continuation for
the callee to return. Combining these two steps into one eliminates the need to
prepare a new continuation for the callee, as shown in the following definition:

Jreturn_call x :: restK(σarg m++ σ, ρ, κ, θ) =

let {type : tm → tn, locals : ts, body : es} := lookupFunc(x) in

let ρ1 := buildEnv(σarg , ts)

JesK([], ρ1, κ, [κ])

The definition is nearly identical to the semantics of the regular function call,
except that we do not need to create a new continuation for the rest of instruc-
tions after the call. Since the tail call is the last operation inside a function, we
can directly reuse the current continuation κ for the callee.

4.3 Exceptions

In standard WebAssembly and µWasm, the jump target ℓ in a break instruction
br ℓ is entirely static and local within a function. It is not possible to jump
out of the function via br or similar break instructions. Now we demonstrate
our semantics can be extended to support exception handling, a simple form of
dynamic, non-local control flow.

There is already a work-in-progress proposal for exception handling in We-
bAssembly [28]. Without introducing heavy mechanisms (e.g. a table describing
multiple handlers as in the proposal), we choose to demonstrate a higher-level
try/catch construct, which is close to the description in one of the assignment
problems in Stanford’s CS242 course [22]. In the next section, we will further
generalize it to more flexible effect handlers.

Syntax and Statics The following shows the syntax for the new instructions:

e ∈ Instruction ::= · · · | try es1 catch es2 | throw

Instructions es1 is the body that warrants to throw an exception, and es2 is the
handler that catches the exception. As for typing their stack behavior, es1 takes

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 11

no stack argument and returns no argument. The throw instruction expects an
error code on the top of the stack, which becomes the input to es2. Unlike a
full-blown exception handling mechanism, we omit “exception tags” that can be
used to differentiate the types of exceptions.

CPS Semantics When we encounter a try-catch block, the instructions in es1
are evaluated first. If an exception is thrown during the dynamic extent of es1,
control is transferred to es2 (provided no other handler is installed within). Oth-
erwise, execution continues with the instruction following the try-catch block.
To model such a behavior, we extend the semantics J·K with an additional failure
continuation [23] (or, handler), denoted as γ argument of type Cont:

Jtry es1 catch es2 :: restK(σ, ρ, κ, θ, γ) =
let κ1 := λ(σ1, ρ1).JrestK(σ, ρ1, κ, θ, γ) in
let γ1 := λ(σ2, ρ2).Jes2K(σ2, ρ2, κ1, θ, γ) in

Jes1K([], ρ, κ1, θ, γ1)

Jthrow :: restK(v :: σ, ρ, κ, θ, γ) = γ([v], ρ)

The success continuation κ1 is prepared to evaluate the rest of the instructions
after the try-catch block. The failure continuation γ1 is prepared as the handler
for es2. When es1 is evaluated, both the success and failure continuation are
installed. If an exception is thrown, the control is transferred to the failure
continuation by invoking γ with the error code on the stack. Similar to the base
semantics of for-loop, we deliberately leave no interaction with breaks. It is also
possible to recover a normal break behavior within es1 or es2 by appending the
continuation κ1 to the trail θ.

The interpretation of other constructs retains the failure continuation γ. For
example, in contrast to local trail continuations, which are discarded for function
calls, the failure continuation is preserved across function calls, enabling non-
local control transfers. Note that the es2 does not have the ability to resume
execution at the point where the exception was thrown, which we will generalize
in the next section.

4.4 Resumable Exceptions

Effect handlers [19, 20] are known to be a generalization of exception handling,
which allows the handlers to access the (delimited) continuation at the point
where the effectful operation was invoked. In this section, we demonstrate a flavor
of effect handlers as an extension to WebAssembly, which is higher-level than
the existing WasmFX proposal [17]. Based on the development of the previous
section, we further introduce a new instruction resume, which allows the handler
to invoke the resumption. To informally explain the semantics, let us consider
the following code snippet:

12 G. Wei et al.

1 try
2 i32.const 1
3 call print
4 i32.const -1 ;; error code
5 throw
6 i32.const 2
7 call print
8 catch
9 ;; stack: [-1, resumption]

10 call print
11 resume ;; back to line 6
12 end

The program outputs 1 first, followed by a throw instruction, which transfer the
control to the catch block. When entering the catch block (i.e., the handler), the
stack contains the error code -1 and the resumption. The catch block prints the
error code -1, and then resumes the execution back into the try block (line 6),
printing 2. Therefore, the whole output of this program is 1 -1 2.

In the following, we discuss the extension and its CPS semantics under our
framework.

Syntax and Statics On top of Section 4.3, we add the new resume instruction:

e ∈ Instruction ::= · · · | try es1 catch es2 | throw | resume

The resume instruction assumes that the top element of the stack is a resumable
continuation. The full treatment of typing is omitted here, but one can follow
ideas from from WasmFX [17]. In essence, our extension is equivalent to unla-
belled effect handlers (e.g. as in [4]), where handlers only handle a single kind
of effect. One can readily read try es1 catch es2 as handle es1 with {x, k 7→ es2},
where x is the error code and k is the resumption.

CPS Semantics Following Danvy and Filinski [6], we extend our semantics
with a meta-continuation, which conceptually is the continuation of continua-
tions Cont. The notion of meta-continuations is useful to delimit the context
when evaluating the try block, since when suspended by a throw instruction only
a portion of the continuation should be captured within the try block. Below we
show the changes in the semantic domain definitions:

κ ∈ Cont = Stack× Env ×MCont → Ans

m ∈ MCont = Stack× Env → Ans

γ ∈ Handler = Stack× Env → Ans

v, r ∈ Value ::= · · · | Stack× Env × Cont×MCont → Ans

We also extend the value domain to include resumable continuation values (de-
noted by r), in the sense that they are first-class values4 that can be stored on
the stack or in local variables. The handler expects such a continuation value
4 Supporting first-class functions is already an ongoing proposal to WebAssembly [31].

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 13

Jtry es1 catch es2 :: restK(σ, ρ, κ, θ,m, γ) =

let mj := λ(σ1, ρ1).JrestK(σ, ρ1, κ, θ,m, γ) in

let κ1 := λ(σ1, ρ1,m1).m1(σ1, ρ1) in

let γ1 := λ(σ2, ρ2).Jes2K(σ2, ρ2, κ1, θ,mj , γ) in

Jes1K([], ρ, κ1, θ,mj , γ1)

Jthrow :: restK(v :: σ, ρ, κ, θ,m, γ) =

let r := λ(σ1, ρ1, κ1,m1).JrestK(σ, ρ1, κ⊕ κ1, θ,m1, γ) in

γ([v, r], ρ)

Jresume :: restK(r :: σ, ρ, κ, θ,m, γ) =

r([], ρ, λ(σ1, ρ1,m1).JrestK(σ, ρ1, κ, θ,m1, γ),m)

Fig. 4: CPS semantics (excerpt) for resumable exceptions.

on the stack. With the changes in the domain definitions, the signature of the
semantic function is the following:

J·K : List[Inst] → (Stack× Env × Cont× Trail×MCont× Handler) → Ans

Figure 4 shows the CPS semantics for resumable exceptions. When evaluat-
ing a try-catch instruction, rest along with its continuation κ serves as the join
point for both the success control flow (i.e., no exception is thrown during the
dynamic extent of es1) and the failure control flow via the handler es2. We define
a meta-continuation mj for this join point. The handler γ1 evaluates es2 with
the identity continuation κ1 and the meta-continuation mj . The identity contin-
uation essentially only composes its meta-continuation. Finally, the evaluation
of es1 is delimited by the identity continuation, under the meta-continuation
and handler.

When throwing an exception, we define the resumption value r for evaluating
rest , which is parameterized by a new continuation κ1 and meta-continuation m1.
To resume the evaluation, we compose the current continuation with the new con-
tinuation κ⊕κ1, which is defined as λ(σ1, ρ1,m).κ(σ1, ρ1, λ(σ2, ρ2).κ1(σ2, ρ2,m)).
Note that we discard the current meta-continuation m (of throw :: rest), since
once the exception is thrown, the success control flow is no longer needed. The
same handler γ is installed for the resumption of rest , reflecting the deep handler
semantics. This resumption continuation r is reified as a proper first-class value
(but opaque to the user) and pushed onto the stack, along with the error code
v. Lastly, we call the handler with that stack and the environment.

The program can choose to resume the computation to the point where the
exception was thrown via the resume instruction in the catch block 5. The resume
instruction expects that a continuation value r is also on top of the stack. To

5 Although the resumption can escape via assignments.

14 G. Wei et al.

invoke the resumption, we provide an empty stack (which is nonetheless irrele-
vant since κr will not use it), the current environment, and the continuation to
finish the handler.

Remarks Our presentation of effect handlers to µWasm is both simpler and
higher-level compared to the existing WasmFX proposal [17], albeit it only sup-
port unlabelled effects. Tags in WasmFX also allows more values to be passed
to the handler instead of an error code. The handler clauses in WasmFX are
specified by block labels instead of a block of instructions as in our extension.
WasmFX’s design combines handling and resumption, leading to a combination
of deep handler and shallow handler, in the sense that the handler is not rein-
stalled for the resumption, but an invocation of resumptions/continuations much
be wrapped within some handler. In contrast, our CPS semantics simply follows
the deep handler semantics. Different from WasmFX that is only designed for
one-shot continuations, we do not restrict the number of times a resumption can
be invoked.

Our current framework should be expressive enough to support WasmFX-like
effect handlers with slight modification. We leave this as future work.

5 Implementation & Validation

Following the core CPS semantics for µWasm (Figure 3), we have implemented a
big-step interpreter in Scala for standard WebAssembly. A textual WebAssembly
file (.wat) is parsed to a module using ANTLR, and then fed to the interpreter
for evaluation. The following code snippet shows the core definitions and the
main structure of the evaluation function:
type Stack = List[Value]
type Env = Map[Int, Value]
type Cont[A] = List[Value] ⇒ A
type Trail = List[Cont[Ans]]

def eval[Ans](insts: List[Inst], stack: Stack, env: Env,
k: Cont[Ans], trail: Trail): Ans =

insts match
case Nil ⇒ k(stack, env)
case Binary(op) ⇒
val v2 :: v1 :: newStack = stack
val result = evalBinOp(op, v1, v2)
eval(rest, result :: newStack, env, k, trail)

... // more instructions

Compared to the minimal model language µWasm, our interpreter supports
both more top-level definitions (e.g. type definitions, tables, etc.) and more
instructions (e.g. memory operations, global variables, etc.). We have also ex-
perimentally implemented the extensions discussed in Section 4.1, Section 4.2,
Section 4.4.

Although we have not yet implemented the complete set of instructions in
WebAssembly, we have validated the control-flow semantics of the core instruc-

Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly 15

tions, ensuring that they behave as same as other Wasm runtimes (e.g. Wasm-
time, Wizard). One ongoing work is to extend the interpreter with a larger set of
instructions and to validate the full semantics against the official WebAssembly
specification test suite [33].

6 Related Work

Semantics of WebAssembly The WebAssembly specification [11, 32] defines
a reference small-step reduction semantics, which has been used as the basis for
various extensions and new developments. Besides the presented work, there are
a few other works on defining big-step semantics for WebAssembly. Watt et al.
[24] develop a big-step evaluation relation used in the soundness proof for Wasm
Logic. Instead of using continuations, the big-step evaluation relation still makes
use of first-order representations for the evaluation of block and loop (e.g., a list
of labels as the evaluation context). Watt et al. [25] further develop a monadic
interpreter as the oracle for fuzzing WebAssembly programs. The monadic inter-
preter (along with an intermediate interpreter) is written in Isabelle/HOL, and
similarly uses a first-order representation of evaluation context. Following the
abstracting definitional interpreter approach [10], Brandl et al. [3] develop a big-
step abstract definitional interpreter for WebAssembly, which by using different
monads can be instantiated for different purposes, such as concrete interpreta-
tion or taint analysis. The definitional interpreter uses exceptions from the host
language (Scala, in their case) to implement breaks and return. To the best of
our knowledge, our work is the first to reconstruct a big-step, compositional,
semantics for WebAssembly using continuations.

Control Abstractions Phipps-Costin et al. [17] proposed WasmFX, an exten-
sion for WebAssembly with typed delimited continuations and effect handlers. As
an active proposal, the formal reduction semantics of WasmFX [26] is specified
in the same style as the official WebAssembly specification, both of which make
use of administrative instructions to handle control flow. In Section 4.4, we have
discussed the major design difference between our extension and WasmFX. Our
semantics of effect handlers is inspired by the CPS semantics of shift/reset [6].
Similar to our account of effect handlers, Hillerström et al. [12, 13] have study
the CPS translation of effect handlers for a fine-grained call-by-value λ-calculus.

The extensions of for-loop (Section 4.1) and non-resumable exceptions (Sec-
tion 4.3) are inspired by the Stanford CS242 course [22]. Although relatively
straightforward, we believe these examples are pedagogically valuable in demon-
strating their CPS semantics.

7 Conclusion and Future Work

We have presented a big-step, compositional, continuation-passing semantics for
WebAssembly and demonstrated its application to several control abstraction
extensions. We hope that the CPS semantics will serve as a useful reference for

16 G. Wei et al.

developing additional tools for WebAssembly, such as partial evaluators [15],
compiler optimizations [1], and various program analysis frameworks.

While we use a test suite to validate the correctness of our CPS semantics,
formally establishing its correctness or proving its equivalence to the reference
semantics remains a task for future work. One could conjecture that the refer-
ence reduction semantics might be transformed into a big-step CPS semantics
through refunctionalization [8] (and conversely, to the original form via defunc-
tionalization [9]). Additionally, it would be interesting to transform the CPS
semantics back to direct style [5, 7, 16], making use of control operators in the
meta-language. We leave these explorations for future work.

A Auxiliary Definitions

buildEnv : (Stack× List[Value]) → Env

buildEnv(σ, vs) = reverse(σ) ++ default(vs)

default : List[ValueType] → List[Value]

default([]) = []

default(t :: ts) = 0t :: default(ts)

B Recovering Break and Continue Semantics of br in
for-Loop

Section 4.1 discussed the semantics of the structured for-loop, which has no
interaction with br instructions. Here, we show how to recover the continue
and break semantics of br in the loop body. Important changes compared to
Section 4.1 are highlighted in red.

br as Continue in for-Loop:

Jfor (es init; escond; espost) es :: restK(σ, ρ, κ, θ) =
fix κ1 := λ(σ1, ρ1).JescondK([], ρ1, λ(v :: σ2, ρ2).

if v ≡ 0 then JrestK(σ, ρ2, κ, θ)
else JesK([], ρ2, λ(σ3, ρ3).JespostK([], ρ3, κ1, θ), κ1 :: θ)) in

Jes initK([], ρ, κ1, θ)

br as Break in for-Loop:

Jfor (es init; escond; espost) es :: restK(σ, ρ, κ, θ) =
let κ0 := λ(σ1, ρ1).JrestK(σ, ρ1, κ, θ) in
fix κ1 := λ(σ2, ρ2).JescondK([], ρ2, λ(v :: σ3, ρ3).

if v ≡ 0 then κ0(σ, ρ3)

else JesK([], ρ3, λ(σ4, ρ4).JespostK([], ρ4, κ1, θ), κ0 :: θ)) in

Jes initK([], ρ, κ1, θ)

Bibliography

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press
(1992)

2. Biernacki, D., Danvy, O., Millikin, K.: A dynamic continuation-passing style
for dynamic delimited continuations. ACM Trans. Program. Lang. Syst.
38(1), 2:1–2:25 (2015)

3. Brandl, K., Erdweg, S., Keidel, S., Hansen, N.: Modular abstract definitional
interpreters for webassembly. In: ECOOP, LIPIcs, vol. 263, pp. 5:1–5:28,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

4. Cong, Y., Asai, K.: Understanding algebraic effect handlers via delimited
control operators. In: TFP, Lecture Notes in Computer Science, vol. 13401,
pp. 59–79, Springer (2022)

5. Danvy, O.: Back to direct style. In: ESOP, Lecture Notes in Computer Sci-
ence, vol. 582, pp. 130–150, Springer (1992)

6. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Pro-
gramming, pp. 151–160, ACM (1990)

7. Danvy, O., Lawall, J.L.: Back to direct style II: first-class continuations. In:
LISP and Functional Programming, pp. 299–310, ACM (1992)

8. Danvy, O., Millikin, K.: Refunctionalization at work. Sci. Comput. Program.
74(8), 534–549 (2009)

9. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: PPDP, pp. 162–
174, ACM (2001)

10. Darais, D., Labich, N., Nguyen, P.C., Horn, D.V.: Abstracting definitional
interpreters (functional pearl). Proc. ACM Program. Lang. 1(ICFP), 12:1–
12:25 (2017)

11. Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L., Holman, M., Gohman,
D., Wagner, L., Zakai, A., Bastien, J.F.: Bringing the web up to speed with
webassembly. In: PLDI, pp. 185–200, ACM (2017)

12. Hillerström, D., Lindley, S., Atkey, R.: Effect handlers via generalised con-
tinuations. J. Funct. Program. 30, e5 (2020)

13. Hillerström, D., Lindley, S., Atkey, R., Sivaramakrishnan, K.C.: Continua-
tion passing style for effect handlers. In: FSCD, LIPIcs, vol. 84, pp. 18:1–
18:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

14. Jones, N.D.: What not to do when writing an interpreter for specialisation.
In: Dagstuhl Seminar on Partial Evaluation, Lecture Notes in Computer
Science, vol. 1110, pp. 216–237, Springer (1996)

15. Lawall, J.L., Danvy, O.: Continuation-based partial evaluation. In: LISP and
Functional Programming, pp. 227–238, ACM (1994)

16. Müller, M., Schuster, P., Brachthäuser, J.I., Ostermann, K.: Back to direct
style: Typed and tight. Proc. ACM Program. Lang. 7(OOPSLA1), 848–875
(2023)

17. Phipps-Costin, L., Rossberg, A., Guha, A., Leijen, D., Hillerström, D.,
Sivaramakrishnan, K.C., Pretnar, M., Lindley, S.: Continuing WebAssembly

18 G. Wei et al.

with Effect Handlers. Proc. ACM Program. Lang. 7(OOPSLA2), 460–485
(2023)

18. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Al-
gebraic Methods Program. 60-61, 17–139 (2004)

19. Plotkin, G.D., Pretnar, M.: Handlers of algebraic effects. In: ESOP, Lecture
Notes in Computer Science, vol. 5502, pp. 80–94, Springer (2009)

20. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Log. Methods Com-
put. Sci. 9(4) (2013)

21. Reynolds, J.C.: Definitional interpreters for higher-order programming lan-
guages. In: ACM Annual Conference (2), pp. 717–740, ACM (1972)

22. Stanford University: CS242: Programming Languages (Fall 2019, Will Crich-
ton) - Assignment 5 (2019), URL https://stanford-cs242.github.io/
f19/assignments/assign5/, accessed: 2024-10-28

23. Thielecke, H.: Comparing control constructs by double-barrelled CPS. High.
Order Symb. Comput. 15(2-3), 141–160 (2002)

24. Watt, C., Maksimović, P., Krishnaswami, N.R., Gardner, P.: A Program
Logic for First-Order Encapsulated WebAssembly. In: 33rd European Con-
ference on Object-Oriented Programming (ECOOP 2019), Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 134, pp. 9:1–9:30, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik (2019)

25. Watt, C., Trela, M., Lammich, P., Märkl, F.: WasmRef-Isabelle: A verified
monadic interpreter and industrial fuzzing oracle for webassembly. Proc.
ACM Program. Lang. 7(PLDI), 100–123 (2023)

26. WebAssembly Contributors: WasmFX Specification. https://wasmfx.
dev/specs/core/ (2024), accessed: 2024-11-11

27. WebAssembly Contributors: Webassembly core specification: Runtime
stack. https://webassembly.github.io/spec/core/exec/runtime.
html#stack (2024), accessed: 2024-10-17

28. WebAssembly Contributors: WebAssembly Proposal: Exceptions (2024),
URL https://github.com/WebAssembly/exception-handling/blob/
main/proposals/exception-handling/Exceptions.md, accessed: 2024-
09-25

29. WebAssembly Contributors: WebAssembly Proposal: Tail-Call (2024), URL
https://github.com/WebAssembly/tail-call, accessed: 2024-10-24

30. WebAssembly Contributors: WebAssembly Proposal: Type Contin-
uations (2024), URL https://github.com/WebAssembly/stack-
switching/blob/main/proposals/continuations/Explainer.md,
accessed: 2024-09-25

31. WebAssembly Contributors: WebAssembly Proposal: Typed Function
References (2024), URL https://github.com/WebAssembly/function-
references, accessed: 2024-10-24

32. WebAssembly Contributors: WebAssembly Specification (2024), URL
https://webassembly.github.io/spec/core/, accessed: 2024-09-25

33. WebAssembly Contributors: Webassembly specification testsuite (2024),
URL https://github.com/WebAssembly/spec/tree/main/test/core,
accessed: 2024-11-11

https://stanford-cs242.github.io/f19/assignments/assign5/
https://stanford-cs242.github.io/f19/assignments/assign5/
https://wasmfx.dev/specs/core/
https://wasmfx.dev/specs/core/
https://webassembly.github.io/spec/core/exec/runtime.html#stack
https://webassembly.github.io/spec/core/exec/runtime.html#stack
https://github.com/WebAssembly/exception-handling/blob/main/proposals/exception-handling/Exceptions.md
https://github.com/WebAssembly/exception-handling/blob/main/proposals/exception-handling/Exceptions.md
https://github.com/WebAssembly/tail-call
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/function-references
https://github.com/WebAssembly/function-references
https://webassembly.github.io/spec/core/
https://github.com/WebAssembly/spec/tree/main/test/core

	Reconstructing Big-Step Continuation-Passing Semantics for WebAssembly

