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Abstract. Noninterference properties state that data does not flow in
an undesirable manner, e.g. from a high-security to a low-security setting.
Within programming languages noninterference is often enforced through
the use of modal type systems. Proving the property often requires non-
trivial techniques, such as denotational semantics or logical relations. We
show that a simple bisimulation technique (due to Choudhury, Eades,
and Weirich) can be adapted to show noninterference for a wide variety
of modal type systems.

1 Introduction

This paper aims to showcase a simple technique for proving information flow
properties of programming languages.

Information flow is a well-studied concept in computer science at large [10].
In programming languages information flow can be readily controlled using type
systems—in particular modal type systems. Such type systems are sometimes
used to separate data into classified and unclassified; in this case, ensuring secure
information flow implies an important security property, viz. that non-classified
data cannot leak any information about classified data. Information flow prop-
erties can also be used to ensure referential transparency, e.g. in programming
calculi with effects [28].

Information flow properties are usually proven by analysing the semantics
of a language. One approach goes through using a denotational semantics that
encodes information flow [1, 21]. This entails a large amount of mathematical
overhead, but it exposes the mathematical and conceptual reasons that enforce
noninterference. A more common approach uses the technique of logical relations
[36, 31, 16]. Finally, a third approach proceeds by an adequate translation to a
parametric calculus [37], such as the simply-typed λ-calculus [33], System Fω

[6], or the Calculus of Constructions [2].
In this paper we show that a much simpler, bisimulation technique, which is

due to Choudhury, Eades, and Weirich [7], can be adapted to show noninterfer-
ence for a wide range of modal type systems. This makes it just as powerful as
denotational techniques [21] while also being simple—much simpler than both
logical relations and parametricity translations, which require tricky syntactic
lemmas. Because of its syntactic nature it is possible that this technique will
struggle to prove properties of languages that are drastically more complex, e.g.
languages that feature higher-order state [31, 16]. Still, this technique is effective
and simple, while covering all but the most complex of language features.



To substantiate this argument we prove two noninterference results for two
small programming languages with modal types, namely Moggi’s monadic met-
alanguage [28] and Clouston’s Fitch-style modal λ-calculus [8]. These two lan-
guages are very different. The former is the minimal typed λ-calculus with a
modal type constructor T (A), corresponding to a strong monad. The latter is
the simplest possible λ-calculus with a type constructor 2A, corresponding to
the minimal modal logic K under the Curry-Howard isomorphism. Categorically,
it amounts to a right adjoint. While a noninterference theorem has been shown
before for the monadic metalanguage [21], a noninterference result for the Fitch-
style λ-calculus is presented here for the first time. Remarkably, the bisimulation
technique applies to both with equal ease.

To show the power of the technique we augment both of these languages
with (equi-)recursive types. The point is that the various techniques in the liter-
ature cannot easily handle this extension. The denotational models can be made
domain-theoretic [1], but solving recursive domain equations over them appears
non-trivial. The logical relations technique is difficult to adapt to recursive types,
as it is not easy to argue that the required relation exists—due to the fact they
are no longer given by induction on types. One solution is to use Pitts’ minimal
invariants to show that necessarily relations exist [30]. Another is to use step-
indexing [4], perhaps by constructing the the logical relation within a logic with
guarded recursion Dreyer, Ahmed, and Birkedal [11]. The latter technique has
recently been used to prove a noninterference result [16]. Both of these solutions
are relatively sophisticated.

In contrast, the bisimulation technique we demonstrate here requires none
of that sophistication, and works with recursive types directly out of the box.
the simplicity of this technique means that is readily amenable to formalisa-
tion in a proof assistant, requiring neither the baggage of denotational models
nor the issues with defining logical relations. To substantiate this we provide a
formalisation of our results in Agda.

2 The Monadic Metalanguage

The programming languages that are closest to mathematics, such as Haskell,
are often called purely functional. It is difficult to precisely define what purity
is; some researchers identify it with referential transparency [35, §3.2.1], which
itself has many explications: the value of a program is determined by the value of
its parts; calling a function on the same input always produces the same output;
any term can be replaced by its value without changing the overall outcome. Of
course, most programming languages are not of this sort, as they allow effects,
such as a mutable store, nondeterminism, and exceptions.

Moggi [28] proposed that the semantics of languages with effects can be
unified using the categorical abstraction of a strong monad. It is possible to
present how this abstraction works entirely type-theoretically. Assume that we
have a special type constructor T (−). If A is a type of values, then T (A) is the
type of computations that return a value of type A. Only terms of T (−) type are



allowed to have effects. This allows us to encapsulate effects under a particular
kind of type, keeping the rest of the language pure.

In this setting it is reasonable to have a function return : A → T (A) that
maps a value a : A to a ‘pure’ computation return(a) : T (A) which performs no
effects and returns a : A immediately. However, it would be ill-advised to have
a function T (A) → A that extracts the value returned by a computation. The
reason is that this value could depend on effects, thereby causing impurity.

How can we then use the value returned by a computation M : T (A)? The
answer is that we can bind this value to a free variable x : A, but only in a
term x : A ` N : T (B) which is also of T (−) type. Thus, values produced
by a potentially side-effectful computation can only influence terms of T (−)
type, i.e. other side-effectful computations. Under these conditions we can form
a sequencing term

let x ⇐ M in N : T (B)

This program first runs the computation M , performing all its side-effects and
obtaining a value V . It then substitutes this value into N to obtain N [V /x], and
continues by running that computation. The simply-typed λ-calculus equipped
with these two primitives is known as the monadic metalanguage [28]. However,
similar techniques can also be used as a kind of design pattern that models
effectful computation within a purely functional language [5].

The discussion above has a strong flavour of information flow: the type con-
structor T (−) is a modality that isolates a region of the language. Data can flow
from the pure region into the impure region (A → T (A)), but never backwards.
We may call this the Hotel California invariant: ‘you can check out any time
you like, but you can never leave.’

However, all we have done is give some intuitions and some design criteria.
Our ultimate objective is to prove that the language with these typing rules
abides by the desired information flow restrictions. The key property in this
setting is that a term c : T (A) ` M : Bool of base type with a free compu-
tation variable c : T (A) should evalute the same v alue, irrespective of which
computation M : T (A) we might substitute for c. More rigorously, the requisite
noninterference property is that, for any closed C1, C2 : T (A), the term M [C1/x]
evaluates to the same value as the term M [C2/x].

A denotational proof of this fact was given by Kavvos [21], based on the model
of Abadi et al. [1]. In this section we will present a much simpler, bisimulation-
based proof.

2.1 Syntax and semantics

The syntax of the monadic metalanguage is given in Fig. 1. This version of
the metalanguage also includes recursive types, in the style of the fixed point
calculus FPC [17, §7.4] [18, §20]. Such an extension of the monadic metalan-
guage has been previously considered by Filinski [12], who shows that it admits
a straightforward domain-theoretic semantics.



Fig. 1: Types and terms of the monadic metalanguage.

MM/Type/Var

∆, α,∆′ ` α type

MM/Type/UnitT

∆ ` 1 type

MM/Type/Prod
∆ ` A type ∆ ` B type

∆ ` A×B type

MM/Type/Sum
∆ ` A type ∆ ` B type

∆ ` A+B type

MM/Type/Fun
∆ ` A type ∆ ` B type

∆ ` A → B type

MM/Type/Rec
∆, α ` A type

∆ ` rec α. A type

MM/Type/Monad
∆ ` A type

∆ ` TA type

MM/Ctx/Empty

` · ctx

MM/Ctx/Extend
` Γ ctx ` A type

` Γ, x : A ctx

MM/Term/Var
` Γ, x : A,Γ′ ctx

Γ, x : A,Γ′ ` x : A

MM/Term/Unit
` Γ ctx

Γ ` 〈〉 : 1

MM/Term/In
Γ ` M : Ai

Γ ` ini(M) : A1 +A2

MM/Term/Case
Γ ` M : A1 +A2 Γ, x : A1 ` P : B Γ, y : A2 ` Q : B

Γ ` case(M ;x. P ; y.Q) : B

MM/Term/Tuple
Γ ` M : A1 Γ ` N : A2

Γ ` 〈M,N〉 : A1 ×A2

MM/Term/Proj
Γ ` M : A1 ×A2

Γ ` πi(M) : Ai

MM/Term/Lam
Γ, x : A ` M : B

Γ ` λx.M : A → B

MM/Term/App
Γ ` M : A → B Γ ` N : A

Γ ` M(N) : B

MM/Term/Return
Γ ` M : A

Γ ` return(M) : TA

MM/Term/Bind
Γ ` M : TA Γ, x : A ` N : TB

Γ ` let x ⇐ M in N : TB

MM/Term/Fold
Γ ` M : A[rec α. A/α]

Γ ` fold(M) : rec α. A

MM/Term/Unfold
Γ ` M : rec α. A

Γ ` unfold(M) : A[rec α. A/α]



The rules of the calculus itself are given in Fig. 1. Types are constructed by
the typing judgement ∆ ` A type, where ∆ = α1, . . . , αn is a list of type variables.
The meaning of this judgement is that A is a type that may use the free type
variables in ∆. The available type constructors include sums, products, monadic
types, and the recursive type µα.A. The recursive type is meant to be isomorphic
to its unfolding A[µα.A/α]. A closed type is a type A such that ∆ ` A type.
Terms over a context are given using the typing judgement Γ ` M : A. Contexts
are of the form Γ = x1 : A1, . . . , xn : An, where all the Ai are limited to closed
types. The typing rules combine the usual rules for recursive types with the term
constructors for the monadic metalanguage.

The combination of products, sums, and recursive types is rather expressive.
For example, recursive types and function types suffice to define terms by re-
cursion, in the style of PCF—see loc. cit. Furthermore, we can define a type of
Booleans by defining the shorthands

Bool
def
= 1 + 1 true

def
= in1(〈〉) false

def
= in2(〈〉)

if M then P else Q
def
= case(M ;_. P ;_. Q)

where _ is any fresh variable. The ‘lazy’ natural numbers can be defined in a
similar manner [18, §20.2].

A small-step operational semantics is given in Fig. 2. This is essentially the
standard small-step semantics of recursive types [18, §20.1], extended with the
rule MM/Opsem/Bind for the primitives of the monadic metalanguage. It evi-
dently satisfies the expected progress and preservation results, and it is deter-
ministic. Letting 7−→∗ denote the reflexive transitive closure, we define

M ⇓ V
def≡ M 7−→∗ V and V val

to mean that a term M evaluates to a (necessarily unique) value V val.

2.2 Indistinguishability

We now define a typed indistinguishability relation

Γ ` M ∼ N : A

for terms of type A in context Γ. The meaning of this relation is that the terms
M and N cannot be distinguished by an unprivileged observer. The meaning of
‘privilege’ will change depending on the information flow property of interest. In
the monadic metalanguage, to be privileged is to be impure, i.e. to have access
to the values returned by effectful computations. Thus, an unprivileged observer
is one who observes only the pure regions of the calculus.

These intuitions are reflected in Fig. 3, which gives the clauses defining the
indistinguishability relation. The majority of the clauses are congruence rules,
which ensure that the relation is preserved under all constructs of the language.
The only non-trivial rule is MM/Sim/Prot which ensures that M ∼ N : TA for



Fig. 2: Small-step operational semantics for the monadic metalanguage.

MM/Val/Unit

〈〉 val

MM/Val/In
V val

ini(V ) val

MM/Val/Prod

〈M,N〉 val

MM/Val/Lam

λx.M val

MM/Val/Fold

fold(M) val

MM/Val/Ret
V val

return(V ) val

MM/Opsem/Beta

(λx.M)(N) 7−→ M [N/x]

MM/Opsem/StepApp
M 7−→ M ′

M(N) 7−→ M ′(N)

MM/Opsem/Unfold

unfold(fold(M)) 7−→ M

MM/Opsem/StepUnfold
M 7−→ M ′

unfold(M) 7−→ unfold(M ′)

MM/Opsem/Proj

πi(〈M1,M2〉) 7−→ Mi

MM/Opsem/StepProj
M 7−→ M ′

πi(M) 7−→ πi(M
′)

MM/Opsem/Case

case(ini(M);x1. P1;x2. P2) 7−→ Pi[M/xi]

MM/Opsem/StepCase
M 7−→ M ′

case(M ;x. P ; y.Q) 7−→ case(M ′;x. P ; y.Q)

MM/Opsem/Bind

let x ⇐ return(M) in N 7−→ N [M/x]

MM/Opsem/StepBind
M 7−→ M ′

let x ⇐ return(M) in N 7−→ let x ⇐ return(M ′) in N



Fig. 3: Indistinguishability relation ∼ for the monadic metalanguage.

MM/Sim/Prot
Γ ` M : TA Γ ` M ′ : TA

Γ ` M ∼ M ′ : TA

MM/Sim/Var

Γ, x : A,Γ′ ` x ∼ x : A

MM/Sim/App
Γ ` M ∼ M ′ : A → B Γ ` N ∼ N ′ : A

Γ ` M(N) ∼ M ′(N ′) : B

MM/Sim/Lam
Γ, x : A ` M ∼ M ′ : B

Γ ` λx.M ∼ λx.M ′ : A → B

MM/Sim/Unit

Γ ` 〈〉 ∼ 〈〉 : 1

MM/Sim/In
Γ ` M ∼ M ′ : Ai

Γ ` ini(M) ∼ ini(M
′) : A1 +A2

MM/Sim/Case
Γ ` M ∼ M ′ : A1 +A2 Γ, x : A1 ` P ∼ P ′ : B Γ, y : A2 ` Q ∼ Q′ : B

Γ ` case(M ;x. P ; y.Q) ∼ case(M ′;x. P ′; y.Q′) :

MM/Sim/Proj
Γ ` M ∼ M ′ : A1 ×A2

Γ ` πi(M) ∼ πi(M
′) : Ai

MM/Sim/Tuple
Γ ` M ∼ M ′ : A1 Γ ` N ∼ N ′ : A2

Γ ` 〈M,N〉 ∼ 〈M ′, N ′〉 : A1 ×A2

MM/Sim/Fold
Γ ` M ∼ M ′ : A[rec α. A/α]

Γ ` fold(M) ∼ fold(M ′) : rec α. A

MM/Sim/Unfold
Γ ` M ∼ M ′ : rec α. A

Γ ` fold(M) ∼ fold(M ′) : A[rec α. A/α]



any two terms of monadic type. Thus, an observer that cannot distinguish terms
up to ∼ sees pure terms as they are, but impure terms as opaque and cannot
be distinguished. Finally, notice that this relation does not include any clauses
relate terms up to computation (e.g. β-convertibility). It is easy to show that it
is also reflexive:

Lemma 1. If Γ ` M : A then Γ ` M ∼ M : A.

The interesting property of this relation is that it is a bisimulation [32] for
the small-step operational semantics.

Definition 1 (Bisimulation). A relation R is a bisimulation with respect to
a transition system 7−→ just if the following conditions hold:

1. If xRy and x 7−→ x′, then there exists a y′ such that y 7−→ y′ and x′Ry′.
2. If xRy and y 7−→ y′, then there exists an x′ such that x 7−→ x′ and x′Ry′.

This captures the idea that related terms must evaluate in ‘lock-step,’ with
the relation being preserved by every step of reduction. Proving that ∼ is a
bisimulation is relatively simple, but requires two additional lemmata.

Lemma 2. Γ ` t1 ∼ t2 : A implies Γ ` t1 : A and Γ ` t2 : A.

A (simultaneous) substitution is a partial function γ from variables to terms.
We write γ(x) ↓ to mean that the substitution is defined for variable x, and
M [γ] for the resulting from applying the substitution γ to M . The definition is
the usual structural one, with base case (x)[γ] ' γ(x) (if the right hand side is
defined). We write γ : ∆ → Γ whenever γ is a substitution such that

∀(x : A) ∈ Γ. γ(x) ↓ ∧ Γ ` γ(x) : A

The substitution lemma then amounts to the fact the following rule is admissible.

Γ ` M : A γ : ∆ → Γ

∆ ` M [γ] : A

We may similarly extend the definition of ∼ to substitutions:

∆ ` γ1 ∼ γ2 : Γ
def≡ ∀(x : A) ∈ Γ. γ(x) ↓ ∧ δ(x) ↓ ∧ Γ ` γ(x) ∼ δ(x) : A

We can then prove that

Lemma 3. The following rule is admissible:

∆ ` γ1 ∼ γ2 : Γ Γ ` M1 ∼ M2 : A

Γ ` M1[γ1] ∼ M2[γ2] : A

Proof. By induction on the evidence that Γ ` M1 ∼ M2 : A. Note that if
this holds via MM/Sim/Prot, then Mi[γi] will also have a type TA and so the
conclusion holds by the same rule.



We can now show that ∼ is a bisimulation for 7−→ on non-monadic types, i.e.
types that are not of the form T (−).

Theorem 1 (Bisimulation I). If A is not a monadic type, Γ ` M ∼ N : A
and M 7−→ M ′, then there exists a term Γ ` N ′ : A such that N 7−→ N ′ and
Γ ` M ′ ∼ N ′ : A.

Proof. By induction on the evidence that M 7−→ M ′. The cases for return and
bind can immediately be discharged, as any reduction involving these terms must
have monadic type. The other of β-reduction is a simple application of Lemma 3.
All other cases are simple congruences.

One subtle point is that the result does not hold over monadic types: being
unable to peer into the structure of their terms, the unprivileged observer cannot
guarantee that impure terms reduce in lockstep. As a simple example, consider
the two indistinguishable terms (λx. x)(return(M)) and return(M) for some
closed M . Clearly the left term can reduce, but we will be unable to show the
same for the right term. However, this is no skin off our backs, as this restricted
form of the lemma is all we need to prove for our main result:

Theorem 2 (Noninterference I). If x : TA ` M : Bool and ` N1, N2 : TA
then M [N1/x] ⇓ V if and only if M [N2/x] ⇓ V .

Proof. We have that ` N1 ∼ N2 : T (A) via MM/Sim/Prot. Hence, by Lemmas 1
and 3 we have that ` M [N1/x] ∼ M [N2/x] : Bool.

If M [N1/x] ⇓ V we obtain a sequence of reductions

M [N1/x] = P0 7−→ . . . 7−→ Pk = V

Applying Theorem 1 to every step of this reduction we obtain a sequence of
reductions

M [N2/x] = P ′
0 7−→ . . . 7−→ P ′

k

with ` Pi ∼ P ′
i : for every 0 ≤ i ≤ k. Hence ` V ∼ P ′

k : Bool. But the only rule of
Fig. 3 that could apply to the closed value V of Bool = 1+1 type is MM/Sim/In,
followed by MM/Sim/Unit. Hence V = ini(〈〉) = P ′

k for some i ∈ {1, 2}. Hence
M [N2/x] ⇓ V . The other direction is entirely symmetric.

3 Fitch-style λ-calculus

Another class of calculi with modal types are the Fitch-style calculi [8]. These
calculi have a type former 2A, which has its origins in the Curry-Howard iso-
morphism for modal logic.

It is informally understood that the use of these modalities enforces some
type of information flow control [21]. For modalities of 2-type the resultant
information control property says that modal data may only depend on modal
data. This invariant is especially useful in settings that model intensionality
(where source code must only depend on source code) [20, 24, 23], globality



(where globally-available data must only depend on globally-available resources)
[25], or metaprogramming (where constructed programs may only depend on
statically-available data, and not dynamically-computed data) [9, 19].

However, most of the aforementioned applications use a calculus based on the
dual-context syntax of Davies and Pfenning [9, 29, 22]. Instead, more recent work
on modal type theory increasingly relies on the Fitch-style calculus of Clouston
[8] [14, 15, 13]. While noninterference theorems have indeed been shown for
variants of the dual-context systems [27, 21], no noninterference results have
been shown for the Fitch-style calculus so far. In this section we show that the
bisimulation proof of [7] directly adapts to yield one.

3.1 Syntax and semantics

While the monadic metalanguage was a simple variation on the simply-typed
λ-calculus, the syntax of modal λ-calculi with a 2-style modality is more com-
plicated. The reason is that the monadic metalanguage models a strong monad,
which makes the T (−) type constructor pleasantly interact with the context.
This is not so for calculi with a 2 modality: expressing such modalities requires
fundamental changes to the judgemental structure of the context [34, §4.1] [13].

λ-calculi with a 2 modality have a type 2A for every type A. However,
unlike the monadic metalanguage, the information flow invariant here is more
restrictive data should not flow either into or out of a box. Thus, it must not
be possible to define neither a function of type A → 2A nor a function of type2A → A. In a sense, the 2 separates the language into two strata: the data
‘within the box,’ and the data ‘outside the box.’

To prohibit the definition of a function A → 2A we must have a way to
protect the context so that data cannot flow into a boxed type. This is achieved
by introducing a lock () on contexts. This is an operation that forbids access
to variables to its left. This limitation is encoded by the variable rule:

 /∈ ∆

Γ, x : A,∆ ` x : A

Locks enable us to introduce a term of boxed type: if we have a term Γ, ` M : A
in a locked context, then we can promote it to a term of boxed type:

Γ, ` M : A

Γ ` box(M) : 2A
It might appear that the lock prohibits access to all variables behind it. This
is not true: the elimination rule for terms of boxed type allows us to ‘unbox’ a
term of boxed type, at the price of introducing another lock in the context:1

Γ ` M : 2A
Γ,,∆ ` unbox(M) : A

1 The additional variables in ∆ are required for weakening to be admissible.



Thus, if a variable is behind a lock, it can only be used if it is of modal
type. This maintains the information flow invariant: things in the box can only
be used within the box, while the box remains sealed. Inspired by the relevant
piece of laboratory equipment, we may call this the glovebox invariant.

We can hence write like

` λf. λx. box(unbox(f)(unbox(x))) : 2(A → B) → 2A → 2B
which applies a function A → B (within the glovebox) to an argument A (within
the glovebox) to obtain a result B (within the glovebox).

The syntax of the Fitch-style λ-calculus with recursive types is given in Fig. 4.
The type judgement ∆ ` A type is similar to that of the monadic metalanguage,
but replaces T (−) with 2(−). The context judgement ` Γ ctx allows extending
the context in two ways: by binding a variable x to a closed type ` A type
(Fitch/Ctx/Extend); or by adding a new lock (Fitch/Ctx/Lock). The term
typing rules are similar to the simply-typed λ-calculus and FPC, with the excep-
tion the variable rule (Fitch/Term/App) and the modal rules that we discussed
above (Fitch/Term/Box, Fitch/Term/Unbox).

The small-step semantics is presented in Fig. 5. As before, this is the usual
small-step semantics for recursive types, with the addition of the reduction
unbox(box(M)) 7−→ M . Note that terms of the form box(M) are values (by
Fitch/Val/Prod). The usual progress and preservation theorems are satisfied.

3.2 Indistinguishability

Much like before, we define an indistinguishability relation in Fig. 6. In this
setting the observer is outside the box, and cannot see inside.

As for the metalanguage, the relation will consist almost entirely of congru-
ence rules. The exception of terms which have modal type, which will always be
related. Thus, all box(−) terms are related (Fitch/Term/Box). We do not have
a congruence rule for unbox(−), but instead have a rule that relates all well-typed
terms of the form unbox(M) with each other. Such a rule would be derivable from
Fitch/Term/Box and a congruence rule. However, this choice is inessential for
the noninterference result, but makes some of the proofs technically easier.

We can then show results analogous to Lemma 3 and Theorem 1. We say
that a closed type A is pure, denoted A pure, just if it does not contain a 2.

Lemma 4. The following rule is admissible:

 6∈ Γ A pure ∆ ` γ1 ∼ γ2 : Γ Γ ` M1 ∼ M2 : A

Γ ` M1[γ1] ∼ M2[γ2] : A

Theorem 3 (Bisimulation II). Let  6∈ Γ and A pure. If Γ ` M ∼ N : A
and M 7−→ M ′, then there exists a term Γ ` N ′ : A such that N 7−→ N ′ and
Γ ` M ′ ∼ N ′ : A.



Fig. 4: Types and terms of the Fitch calculus.

Fitch/Type/Var

∆, α,∆′ ` α type

Fitch/Type/UnitT

∆ ` 1 type

Fitch/Type/Prod
∆ ` A type ∆ ` B type

∆ ` A×B type

Fitch/Type/Sum
∆ ` A type ∆ ` B type

∆ ` A+B type

Fitch/Type/Fun
∆ ` A type ∆ ` B type

∆ ` A → B type

Fitch/Type/Rec
∆, α ` A type

∆ ` rec α. A type

Fitch/Type/Box
∆ ` A type

∆ ` 2A type

Fitch/Ctx/Empty

` · ctx

Fitch/Ctx/Extend
` Γ ctx ` A type

` Γ, x : A ctx

Fitch/Ctx/Lock
` Γ ctx

` Γ, ctx

Fitch/Term/Var
` Γ, x : A,Γ′ ctx  /∈ Γ′

Γ, x : A,Γ′ ` x : A

Fitch/Term/Unit
` Γ ctx

Γ ` 〈〉 : 1

Fitch/Term/In
Γ ` M : Ai

Γ ` ini(M) : A1 +A2

Fitch/Term/Case
Γ ` M : A1 +A2 Γ, x : A1 ` P : B Γ, y : A2 ` Q, y : A2 : B

Γ ` case(M ;x. P ; y.Q) : B

Fitch/Term/Tuple
Γ ` M : A1 Γ ` N : A2

Γ ` 〈M,N〉 : A1 ×A2

Fitch/Term/Proj
Γ ` M : A1 ×A2

Γ ` πi(M) : Ai

Fitch/Term/Lam
Γ, x : A ` M : B

Γ ` λx.M : A → B

Fitch/Term/App
Γ ` M : A → B Γ ` N : A

Γ ` M(N) : B

Fitch/Term/Box
Γ, ` M : A

Γ ` box(M) : 2A

Fitch/Term/Unbox
Γ ` M : 2A

Γ,,∆ ` unbox(M) : A

Fitch/Term/Fold
Γ ` M : A[rec α. A/α]

Γ ` fold(M) : rec α. A

Fitch/Term/Unfold
Γ ` M : rec α. A

Γ ` unfold(M) : A[rec α. A/α]



Fig. 5: Small-step operational semantics for the Fitch-style calculus.

Fitch/Val/Unit

〈〉 val

Fitch/Val/In
V val

ini(V ) val

Fitch/Val/Prod

〈M,N〉 val

Fitch/Val/Lam

λx.M val

Fitch/Val/Fold

fold(M) val

Fitch/Val/Box

box(M) val

Fitch/Opsem/Beta

(λx.M)(N) 7−→ M [N/x]

Fitch/Opsem/StepApp
M 7−→ M ′

M(N) 7−→ M ′(N)

Fitch/Opsem/Unfold

unfold(fold(M)) 7−→ M

Fitch/Opsem/StepUnfold
M 7−→ M ′

unfold(M) 7−→ unfold(M ′)

Fitch/Opsem/Proj

πi(〈M1,M2〉) 7−→ Mi

Fitch/Opsem/StepProj
M 7−→ M ′

πi(M) 7−→ πi(M
′)

Fitch/Opsem/Case

case(ini(M);x1. P1;x2. P2) 7−→ Pi[M/xi]

Fitch/Opsem/StepCase
M 7−→ M ′

case(M ;x. P ; y.Q) 7−→ case(M ′;x. P ; y.Q)

Fitch/Opsem/Unbox

unbox(box(M)) 7−→ M

Fitch/Opsem/StepUnbox
M 7−→ M ′

unbox(M) 7−→ unbox(M ′)



Fig. 6: Indistinguishability relation ∼ for the Fitch calculus.

Fitch/Sim/Prot

Γ ` M ∼ M ′ : 2A

Fitch/Sim/Unbox
Γ ` M : 2A Γ ` M ′ : 2A

Γ,,∆ ` unbox(M) ∼ unbox(M ′) : A

Fitch/Sim/Var
 /∈ Γ′

Γ, x : A,Γ′ ` x ∼ x : A

Fitch/Sim/App
Γ ` M ∼ M ′ : A → B Γ ` N ∼ N ′ : A

Γ ` M(N) ∼ M ′(N ′) : B

Fitch/Sim/Lam
Γ, x : A ` M ∼ M ′ : B

Γ ` λx.M ∼ λx.M ′ : A → B

Fitch/Sim/Unit

Γ ` 〈〉 ∼ 〈〉 : 1

Fitch/Sim/In
Γ ` M ∼ M ′ : Ai

Γ ` ini(M) ∼ ini(M
′) : A1 +A2

Fitch/Sim/Case
Γ ` M ∼ M ′ : A1 +A2 Γ, x : A1 ` P ∼ P ′ : B Γ, y : A2 ` Q ∼ Q′ : B

Γ ` case(M ;x. P ; y.Q) ∼ case(M ′;x. P ′; y.Q′) : B

Fitch/Sim/Proj
Γ ` M ∼ M ′ : A1 ×A2

Γ ` πi(M) ∼ πi(M
′) : Ai

Fitch/Sim/Tuple
Γ ` M ∼ M ′ : A1 Γ ` N ∼ N ′ : A2

Γ ` 〈M,N〉 ∼ 〈M ′, N ′〉 : A1 ×A2

Fitch/Sim/Fold
Γ ` M ∼ M ′ : A[rec α. A/α]

Γ ` fold(M) ∼ fold(M ′) : rec α. A

Fitch/Sim/Unfold
Γ ` M ∼ M ′ : rec α. A

Γ ` unfold(M) ∼ unfold(M ′) : A[rec α. A/α]



The reason for restricting this result to contexts without a lock is similar to
the restriction to non-monadic types in Theorem 1. As all unbox(−) terms are
related we may have a term unbox((λx. x)(M)), which may take a reduction step.
However, this term is related to unbox(M), which may not be able to a match
this reduction for an appropriate M . However, this situation can only occur in
locked contexts, which we ultimately do not need to prove non-interference.

The main theorem is then proved in the same manner as Theorem 2.

Theorem 4 (Noninterference II). If x : 2A ` M : Bool and ` N1, N2 : 2A
then M [N1/x] ⇓ V if and only if M [N2/x] ⇓ V .

4 Agda formalisation

We have argued that the technique above is simple and adaptable, and hence
can be used in the setting of a proof assistant. To substantiate that we have
formalised them in Agda. In this section we give a brief overview of the formal-
isation of the monadic metalanguage. The full code can be found at

https://github.com/april-pl/modal-agda

To encode the terms of the monadic metalanguage we use an intrinsically-
typed deep embedding, with terms are indexed by both contexts and types [3].
For the monadic metalanguage this definition is given in Fig. 7, and looks essen-
tially identical to our typing rules. The only deviation is that we parameterise
the unfold constructor, which constructs a term of type B when given a proof
of equality B ≡ A ⁅ Rec A ⁆. We do this to avoid an instance of the green slime,
a unification problem which arises when the type of a constructor mentions a
defined function (in our case: substitution on types) [26, Principle 1].

We can then directly encode the transition relation (Fig. 8), as well as its
indistinguishability relation. As terms are intrinsically typed, the relation must
also be indexed by the type and context of the terms it relates; this allows us
to project individual terms out of a proof of relation. It is then possible to show
that the relation is a bisimulation:

bisim : (t₁ t₂ : Γ ⊢ A)
→ pure A
→ Γ ⊢ t₁ ~ t₂ ∶ A
→ t₁ ↝ t₁′
→ Σ[ t₂′ ∈ Γ ⊢ A ] ((t₂ ↝ t₂′) ×′ (Γ ⊢ t₁′ ~ t₂′ ∶ A))

bisim⋆ : pure A
→ Γ ⊢ t₁ ~ t₂ ∶ A
→ t₁ ↝⋆ t₁′
→ Σ[ t₂′ ∈ Γ ⊢ A ] ((t₂ ↝⋆ t₂′) ×′ (Γ ⊢ t₁′ ~ t₂′ ∶ A))

We may now prove Theorem 2:

https://github.com/april-pl/modal-agda


Fig. 7: Agda contexts, types and terms for the monadic metalanguage.

data TyContext : Set where
none : TyContext
new : TyContext → TyContext

data TypeIn : TyContext → Set where
TyVar : α∈ θ → TypeIn θ
Unit : TypeIn θ
T : TypeIn θ → TypeIn θ
_⇒_ : TypeIn θ → TypeIn θ → TypeIn θ
_×_ : TypeIn θ → TypeIn θ → TypeIn θ
_+_ : TypeIn θ → TypeIn θ → TypeIn θ
Rec : TypeIn (new θ) → TypeIn θ

Type : Set
Type = TypeIn none

Bool : Type
Bool = Unit + Unit

data Context : Set where
∅ : Context
_,_ : Context → Type → Context

data _⊢_ : Context → Type → Set where
⋆ : Γ ⊢ Unit

var : A ∈ Γ → Γ ⊢ A
η_ : Γ ⊢ A → Γ ⊢ T A
ƛ_ : Γ , A ⊢ B → Γ ⊢ A ⇒ B

_∙_ : Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B

bind_of_ : Γ ⊢ T A → Γ , A ⊢ T B → Γ ⊢ T B

case_of_,_ : Γ ⊢ A + B → Γ , A ⊢ C → Γ , B ⊢ C → Γ ⊢ C
inl : Γ ⊢ A → Γ ⊢ A + B
inr : Γ ⊢ B → Γ ⊢ A + B

⟨_,_⟩ : Γ ⊢ A → Γ ⊢ B → Γ ⊢ A × B
π₁ : Γ ⊢ A × B → Γ ⊢ A
π₂ : Γ ⊢ A × B → Γ ⊢ B

fold : (A : TypeIn (new none)) → Γ ⊢ (A ⁅ Rec A ⁆) → Γ ⊢ Rec A
unfold : (A : TypeIn (new none)) → (B ≡ A ⁅ Rec A ⁆) → Γ ⊢ Rec A → Γ ⊢ B



Fig. 8: Agda transition relation for the monadic metalanguage.

data _↝_ : Γ ⊢ A → Γ ⊢ A → Set where
βbind : bind (η t) of u ↝ u [ t ]
βƛ : (ƛ t) ∙ r ↝ t [ r ]

βinl : case (inl t) of l , r ↝ l [ t ]
βinr : case (inr t) of l , r ↝ r [ t ]

βπ₁ : π₁ ⟨ t , u ⟩ ↝ t
βπ₂ : π₂ ⟨ t , u ⟩ ↝ u

βunfold : { B : TypeIn (new none)}
→ { t : Γ ⊢ B ⁅ Rec B ⁆ }
→ _↝_ { A = B ⁅ Rec B ⁆ } (unfold B refl (fold B t)) t

ξbind : t ↝ t′ → bind t of u ↝ bind t′ of u
ξappl : l ↝ l′ → l ∙ r ↝ l′ ∙ r

ξcase : t ↝ t′ → case t of l , r ↝ case t′ of l , r

ξπ₁ : t ↝ t′ → π₁ t ↝ π₁ t′
ξπ₂ : t ↝ t′ → π₂ t ↝ π₂ t′

ξunfold : { B : TypeIn (new none)}
→ { t t′ : Γ ⊢ Rec B }
→ t ↝ t′
→ (p : C ≡ B ⁅ Rec B ⁆)
→ _↝_ { A = C } (unfold B p t) (unfold B p t′)

data _↝⋆_ : Γ ⊢ A → Γ ⊢ A → Set where
⋆refl : t ↝⋆ t
⋆step : t ↝ u → t ↝⋆ u



non-interference : (v : ∅ ⊢ Bool)
→ (M : ∅ , T A ⊢ Bool)
→ (t : ∅ ⊢ T A)
→ (u : ∅ ⊢ T A)
→ M [ t ] ⇓ v
→ M [ u ] ⇓ v

Fig. 9: Agda contexts and terms for the Fitch-style λ-calculus.

data Context : Set where
∅ : Context
_,_ : Context → Type → Context
_■ : Context → Context

data _⊢_ : Context → Type → Set where
⋆ : Γ ⊢ Unit
var : A ∈ Γ → Γ ⊢ A

ƛ_ : Γ , A ⊢ B → Γ ⊢ A ⇒ B
box : Γ ■ ⊢ A → Γ ⊢ □ A
unbox : {ext : Γ is Γ₁ ■ ∷ Γ₂} → Γ₁ ⊢ □ A → Γ ⊢ A

_∙_ : Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B

case_of_,_ : Γ ⊢ A + B → Γ , A ⊢ C → Γ , B ⊢ C → Γ ⊢ C
inl : Γ ⊢ A → Γ ⊢ A + B
inr : Γ ⊢ B → Γ ⊢ A + B

⟨_,_⟩ : Γ ⊢ A → Γ ⊢ B → Γ ⊢ A × B
π₁ : Γ ⊢ A × B → Γ ⊢ A
π₂ : Γ ⊢ A × B → Γ ⊢ B

fold : (A : TypeIn (new none)) → Γ ⊢ (A ⁅ Rec A ⁆) → Γ ⊢ Rec A
unfold : (A : TypeIn (new none)) → (B ≡ A ⁅ Rec A ⁆) → Γ ⊢ Rec A → Γ ⊢ B

The formalisation of the Fitch-style calculus proceeds in a similar manner.
The terms are given in Fig. 9. Note that the term constructor unbox builds in
weakening by taking an (implicit) proof of type Γ is Γ₁ ■ ∷ Γ₂, which intuitively
means that Γ is of the form Γ1,,Γ2 where  /∈ Γ2. This trick, as well as our



definition of substitution at unbox, is due to Valliappan, Ruch, and Tomé Cortiñas
[38].2

After embedding the language inside Agda, the proof statement and proof
terms themselves are essentially identical to the ones given for monadic metalan-
guage; the main difference is that in some cases we carry around an extra proof
term showing that the context is free of locks; we can use this to immediately
discharge any case including the unbox constructor.
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