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Abstract. Since their introduction, copatterns have promised to extend
functional languages — with their familiar pattern matching facilities —
to synthesize and work with infinite objects through a finite set of ob-
servations. Thus far, their adoption in practice has been limited and
primarily associated with specific tools like proof assistants. With that
in mind, we aim to make copattern matching usable for ordinary func-
tional programmers by implementing them as macros in the Scheme and
Racket programming languages. Our approach focuses on composable
copatterns, which can be combined in multiple directions and offer a
new solution to the expression problem through novel forms of exten-
sibility. To check the correctness of the implementation and to reason
equationally about copattern-matching code, we describe an equational
theory for copatterns with a sound, selective translation into �-calculus.

Keywords: Codata · Copatterns · Scheme · Macros · Composition ·
Expression Problem.

1 Introduction

For decades, functional programmers have had a reliable and versatile method
for representing tree-shaped structures: inductive data types. These can model
data of any size — for example, lists of an arbitrary length — but each instance
must be finite. Infinite information — like a stream of input that can go on
forever — does not fit into an inductive type, so the programmer must use some
other representation to model potentially infinite objects.

Fortunately, the inductive data types used by functional programmers every
day have a polar opposite: coinductive codata types. The coinductive descriptor
signals that values of the type may contain infinite information. Haskell pro-
grammers are already well-versed in coinductive styles of types since non-strict
languages blur the line between induction and coinduction. For example, con-
sider the usual example of the infinite list of Fibonacci numbers in Haskell:

fibs = 0 : 1 : zipWith (+) fib (tail fib)

fibs cannot be fully evaluated because it has no base case — it would eventu-
ally expand out to 0 : 1 : 1 : 2 : 3 : 5 : 8 : ... forever — but this is no
problem in a non-strict language that only evaluates as much as needed.
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In contrast, codata describes types defined by primitive destructors that use
values of the codata type, as opposed to the primitive constructors that define
how to build values of a data type. For example, the usual Stream a codata
type of infinite a’s is defined by two destructors: Head : Stream a -> a extracts
the first element and Tail : Stream a -> Stream a discards the first element
and returns the rest. To define new streams, we can describe how they react to
different combinations of Head and Tail destructions using copatterns [2]. The
copattern-based definition of the same fibs function above is:

fibs : Stream Nat
Head fibs = 0
Head (Tail fibs) = 1
Tail (Tail fibs) = zipWith _+_ fibs (Tail fibs)

Unfortunately, if we want to actually produce working code in this style, our
choices are limited. Agda gives the most full-fledged implementation of copat-
terns in a real system [5]. However, Agda is primarily a proof assistant rather
than a general-purpose programming language, and as such, has different con-
cerns than an ordinary functional programmer. In particular, Agda currently
does not understand if fibs is well-founded — it is — and so fibs is rejected by
the termination checker. There is also some support for copatterns in OCaml [14],
but as an unofficial extension that has not been merged into the main compiler.

We want to be able to write this kind of copattern-based code and have it
fully integrated into a real, general-purpose programming language. The easiest
way to do so is to start with a programmable programming language [9] — we
focus in particular on Scheme and Racket — which offers a robust macro system
for seamlessly implementing new language features. We show a new method for
implementing copatterns as a collection of macros in order to program with
copatterns in Scheme-like languages.

Rather than just recapping the previous macro-definition of copatterns [14],
we focus on providing new methods of extensibility not available before. In par-
ticular, code defined by our copattern macros can be composed in a variety of
ways, offering a new solution to the expression problem [19]. Not only do co-
patterns allow us to easily define code using equational reasoning in Scheme,
but these new dimensions of composition also allow us to capture some “design
patterns” used by functional programmers as first-class abstractions.

Our primary contributions are organized as follows:

– Section 2 shows examples of programming with copattern equations in Scheme-
like languages, including new forms of program composition — vertical and
horizontal — that allows us to solve familiar examples of the expression
problem [19] through a fusion of functional and object-oriented techniques.

– Section 3 presents a theory for how to translate copatterns into a small core
target language — untyped �-calculus with recursion and patterns — with
a local double-barrel transformation reminiscent of selective continuation-
passing style transformation. Importantly, only the new language constructs
are transformed, while existing ones in the target language are unchanged.
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– Section 4 explains how to implement the high-level translation above in real
code, and specifically how the implementation differs between Racket and a
standard R6RS-compliant Scheme.

– Section 5 demonstrates correctness in terms of an equational theory for rea-
soning about copattern-matching code in the source language, which is a
conservative extension of the target language, and we prove that it is sound
with respect to translation.

2 Programming with Composable Copatterns in Scheme

Let us consider some examples of programming by equational reasoning to
get familiar with copatterns and how we can use them in Scheme. For ex-
ample, even in a dynamically-typed language like Scheme, linked lists can be
thought of as an inductively-defined type combining two constructed forms:
List a = null | (cons a (List a)). Similarly, infinite streams can be under-
stood as a procedure that exhibits two different behaviors at the same time:
Stream a = 'head -> a & 'tail -> Stream a. In other words, any Stream a is a
procedure that takes one argument, and its response depends on the exact value:
given 'head an a is returned, and given 'tail another Stream a is returned.

In order to define new coinductive processes, one of the main entry points is
the top-level, multi-line define* macro. This macro enables us to declare codata
objects through a list of equations between a copattern on the left-hand side
and an expression on the right-hand side. At the root of every copattern is a
name for the object itself, which can be inside any number of applications — the
applications may just list parameter names or more specific patterns narrowing
down the concrete arguments that match. The simplest of a stream is all zeroes
— whose 'head is 0 and whose 'tail is more zeroes — which can be defined as:

(define* [(zeroes 'head) = 0]
[(zeroes 'tail) = zeroes])

Streams like zeroes are black boxes that can only be observed by passing 'head
or 'tail as arguments to get their response. Still, this is enough for many useful
operations, like taking the first n elements, which can be define*d as:

(define* [(takes s 0) = '()]
[(takes s n) = (cons (s 'head) (takes (s 'tail) (- n 1)))])

A constant stream is not particularly useful; more interesting streams will change
over time. For example, imagine a “stuttering” stream (0, 0, 1, 1, 2, 2, 3, 3, . . . )
that repeats numbers twice before moving on. This stream can be defined by
copattern matching equations:

(define* [ ((stutter n) 'head) = n]
[(((stutter n) 'tail) 'head) = n]
[(((stutter n) 'tail) 'tail) = (stutter (+ n 1))])
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So that (takes (stutter 1) 10) = '(1 1 2 2 3 3 4 4 5 5),1 because the first
and second elements — ((stutter n) 'head) and (((stutter n) 'tail) 'head)
respectively — return the same n before incrementing.

But why is stutter well-defined, and how can we understand its meaning? As
in many functional languages, the = in code really implies equality between the
two sides, and this equality still holds when we plug in real values for placeholder
variables like n. So to determine the first 'head element, of (stutter 1), we match
the left-hand side and replace it with the right to get ((stutter 1) 'head) = 1.
Similarly, the second element is (((stutter 1) 'tail) 'head) = 1 as well. The
third element is accessed by two 'tail projections and then a 'head as the nested
applications ((((stutter 1) 'tail) 'tail) 'head), which doesn’t exactly match
any left-hand side. However, equality holds in any context, and the inner appli-
cation (((stutter 1) 'tail) 'tail) does match the third equation. Thus, we
can apply a few steps of equational reasoning to derive the expected answer 2:

((((stutter 1) 'tail) 'tail) 'head) = ((stutter (+ 1 1)) 'tail) ; line 3
= ((stutter 2) 'head) ; +
= 2 ; line 1

So these three examples work, but is every case really covered? The Stream Nat
interface that stutter’s output follows allows for any number of 'tail projections
followed by a final application to 'head that returns a natural number. stutter
works its way through these projections in groups of two, eliminating a pair
of 'tail projections at a time until it gets to the end case, which is either a
'head (if the total number of 'tails is even) or a 'tail followed by 'head (if the
total number of 'tails is odd). So stutter behavior is defined no matter what is
asked of it. Even with other observations like takes, which passes around partial
applications of stutter as a first-class value, internally stutter only “sees” the
'head and 'tail applications from takes, and is dormant otherwise.

However, definitions by copatterns are useful for more programming tasks
than just streams and other infinite objects. For example, consider the usual
definition of a simple arithmetic expression evaluator in typed functional lan-
guages like Haskell and OCaml (we use Haskell syntax here):

data Expr = Num Int | Add Expr Expr

eval :: Expr -> Int
eval (Num n) = n
eval (Add l r) = eval l + eval r

While Scheme does not have algebraic data types, we can encode them as a list
starting with the constructor name as a quoted symbol and the arguments as the
remainder of the list. So Num 5 would be represented as the quoted list '(num 5),
and Add l r would be represented as the quasiquote �(add ,l ,r) which plugs
in the values bound to variables l and r as the second and third elements of the
1 Try it! The code provided in the supplemental materials implements define* and

related macros. All examples shown here are executable Scheme and Racket code.



CoScheme: Compositional Copatterns in Scheme 5

list (denoted by the “unquote” comma , before the variable names). We can then
use the facilities of define* to write almost identical code in Scheme like so:

(define* [(eval �(num ,n)) = n]
[(eval �(add ,l ,r)) = (+ (eval l) (eval r))])

Fantastic, it works! Both the Scheme and Haskell code have the same structure.
And on the surface, they both share the same strengths and weaknesses. From
the lens of the expression problem [19], it is easy to add new operations to existing
expressions — such as listing the numeric literals in an expression

(define* [(list-nums �(num ,n)) = (list n)]
[(list-nums �(add ,l ,r)) = (append (list-nums l) (list-nums r))])

— but adding new classes of expressions is hard. For example, if we wanted
to support multiplication, we could add a Mult constructor to the Expr data
type, but this would require modifying all existing operations and case-splitting
expressions over Expr values. Even worse, if we wanted to support both expression
languages — with or without multiplication — we would have to copy the code
and maintain both versions.

Thankfully, our implementation of copattern matching in Scheme includes
new facilities for composing code snippets compared to current functional (or
object-oriented) languages. However, to avoid unwanted surprises, the program-
mer does have to ask for them. This is a small request, and can be done by
replacing define* with define-object, such as:

(define-object
[(list-nums* �(num ,n)) = (list n)]
[(list-nums* �(add ,l ,r)) = (append (list-nums* l) (list-nums* r))])

The list-nums* object behaves exactly like list-nums in all the same contexts it
works in, but in addition, it implicitly inherits additional functionality for compo-
sition defined elsewhere. This new composition lets us break existing multi-line
definitions into individual parts, and recompose them later. For example, the
evaluator can be composed in terms of separate objects for each line like so:

(define-object [(eval-num �(num ,n)) = n])
(define-object [(eval-add �(add ,l ,r)) = (+ (eval-add l) (eval-add r))])
(define eval* (eval-num 'compose eval-add))

So (eval expr) is the same as (eval* expr) for any well-formed expression ar-
gument. Why program in this way? Now, if we want to extend the functionality
of existing operations — like evaluation and listing literals — to support a new
class of expression, we can define the new special cases separately as a patch and
then compose them with the existing code as-is like so:

(define-object [(eval-mul �(mul ,l ,r)) = (* (eval-mul l) (eval-mul r))])
(define-object [(list-mul �(mul ,l ,r)) = (append (list-mul l) (list-mul r))])

(define eval-arith (eval* 'compose eval-mul))
(define list-nums-arith (list-nums* 'compose list-mul))
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So for an expression (define expr1 '(add (mul (num 2) (num 3)) (num 4))), the
extended code successfully yields the correct answers (eval-arith expr1) = 10
and (list-nums-arith expr1) = '(2 3 4) whereas the original code fails at the
'mul case.2 Note that this composition automatically generates new functions
and leaves the original code intact, which can still be used for the smaller ex-
pression language with only numbers and addition.

This example emphasizes our guiding principle: composition. We call combi-
nations like (eval-num 'compose eval-add eval-mul) vertical composition since
they behave as if we simply stacked their internal cases vertically, like in the
original definition of eval.

Not all types of language extensions are this simple, though. Consider what
happens if we want to support algebraic expressions which might have variables
in them. To evaluate a variable, we need a given environment — mapping names
to numbers — which we can use to look up the variable’s value.
(define-object [(eval-var env �(var ,x)) = (lookup env x)])

However, it is wrong to just vertically compose this variable evaluator with the
previous code because the arithmetic evaluator only takes a single expression
as an argument, whereas the variable evaluator needs both an environment and
an expression. The manual way to perform this extension is routine for func-
tional programmers: in addition to adding a new case, we have to add an extra
parameter to each case, which gets passed along on all recursive calls.

It would be highly disappointing to have to rewrite our existing code in-place
to do this extension. Fortunately, our copattern language allows for another
type of composition — horizontal composition — which allows us to combine
sequences of steps, one after another, and automatically fall through to the next
case if something fails. For this example, we can define a general procedure
with-environment to perform the above transformation, taking any extensible
evaluator object expecting just an expression and threading an environment
along each recursive call. This lets us patch our existing arithmetic evaluator
with an environment and then compose it with variable evaluation like so:
(define (with-environment eval-ext)

(object [(self env expr)
(with-self (override-lambda* self

[(_ sub-expr) = (self env sub-expr)])
(try-apply-forget eval-ext expr))]))

(define eval-alg ((with-environment (eval-arith 'unplug)) 'compose eval-var))

The with-environment function is the most complex code we have seen so far,
but it just spells out the usual steps a functional programmer uses to modify
existing code with an environment.
2 The astute reader might notice that for this to work, the recursive calls to eval-mul

cannot be specifically tied to this definition because it only says what to do with
multiplication and fails to handle the other cases. Instead, recursive calls to eval-mul
must also open to invoking the other code associated with eval-num and eval-add
even though it not known to be associated with them yet.
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– Given the evaluator eval-ext, it returns a new first-class object (which is
the same as define-object without assigning a name) that expects both an
environment and expression to process.

– This new object then invokes eval-ext by passing just the expression, except
that if eval-ext ever tries to recurse on itself with a sub-expression, the
calls (self sub-expr) gets replaced with (self env sub-expr) just like the
template transformation.

– This transformation of the evaluator’s notion of self is done by the with-self
operation, which can override the original recursive self.

– Finally, if none of the clauses of eval-ext succeed, then this updated evalua-
tor also falls through as before, forgetting the application had ever happened
via try-apply-forget.

The complete algebraic evaluator can then be made from an open-ended, exten-
sible version of the arithmetic evaluator — retrieved from (eval-arith 'unplug)
— horizontally composed to take an environment and vertically composed with
the single-line eval-var. It can now successfully evaluate algebraic expressions,
such as (define expr2 '(add (var x) (mul (num 3) (var y)))), so that running
(eval-arith '((x . 10) (y . 20)) expr) returns 70 because the environment
maps x to 10 and y to 20.

Another possible way to evaluate expressions with variables is constant fold-
ing, a common optimization where operations are simplified unless they are
blocked by variables whose values are unknown. In other words, the evaluator
might return a blocked expression if it cannot fully calculate the final number.
Ideally, we would like to extend our existing evaluator as-is, with the additional
cases when blocked expressions are encountered. However, as written, the equa-
tion handling (eval �(add ,l ,r)) already commits to a real numeric addition,
even if evaluating l or r does not give a numeric result.

To avoid over-committing before we know whether evaluation will successfully
calculate a final number or not, we can — for the first time — rewrite the basic
clauses of evaluation in a more defensive style. Essentially, this splits evaluation
into two separate steps: (1) check which operation we are supposed to do and
evaluate the two sub-expressions, (2) combine the two expressions according to
that operation. For example, the two steps for addition look like:

(define-object eval-add-safe
[(self 'eval ('add l r))
= (self 'add (self 'eval l) (self 'eval r))]
[(self 'add x y) (try-if (and (number? x) (number? y)))
= (+ x y)])

Here, the evaluation step is explicated by a 'eval tag, to help distinguish from
the other operation 'add for adding the left and right results. Note that in this
code, the 'add clause only performs a numeric addition + if it knows for sure
that both of the arguments are actually numbers, check by the try-if guards.
We can now compose the original base-case for evaluating numbers with this
“safer” version of addition that fails to match cases where sub-expressions don’t
evaluate to numbers (multiplication could be added as well in a similar style):
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(define eval-arith-safe (eval-num 'compose eval-add-safe))

So (eval-arith-safe expr1) still evaluates to 70, but (eval-arith-safe expr2)
fails when it finds a variable sub-expression.

If it finds a variable, constant folding will just leave it alone and return an
unevaluated expression rather than a final number. Because the 'eval operation
might return a (partially) unevaluated expression, we now need to handle cases
where the left or right (or both) sub-expressions do not evaluate to numbers. In
each of those cases, we must reform the addition expression out of what we find,
converting numbers n into a syntax tree of the form �(num ,n).

(define-object [(leave-variables 'eval ('var x)) = (list 'var x)])

(define-object reform-addition
[(reform 'add l r) (try-if (number? l)) = (reform 'add �(num ,l) r)]
[(reform 'add l r) (try-if (number? r)) = (reform 'add l �(num ,r))]
[(reform 'add l r) = (list 'add l r)])

The final constant-folding algorithm can be composed from this “safe” version
of evaluation, along with the cases for leaving variables alone and reforming
partially-evaluated additions:

(define constant-fold
(eval-arith-safe 'compose leave-variables reform-addition))

So now (constant-fold 'eval expr2) successfully returns expr2 itself (because
there are no operations to perform without knowing the values of variables x
and y). And running (constant-fold 'eval expr3) on the expression

(define expr3 '(add (add (num 1) (num 1))
(mul (var x)

(mul (num 2) (add (num 2) (num 3))))))

simplifies it down to '(add (num 2) (mul (var x) (num 10))). To add other op-
erations, like multiplication, we can easily define similar eval-mul-safe and
reform-multiplication, and 'compose them with constant-fold without having
to rewrite any code. All examples shown here are in the supplemental materials.

3 Translating Composable Copatterns

3.1 Challenges

Even though the behavior of small examples may be straightforward to under-
stand, there are several challenges to correctly implementing copatterns in the
general case. Some of these challenges are specific to Scheme — a dynamically-
typed, call-by-value language — which forces us to carefully resolve the timing
of when and which copatterns are matched. Other challenges are specific to our
extensions to copatterns — the ability to compose copattern matching in two
different directions — which also brings in the notion of the recursive “self.”
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Timing and the order of copattern matching Because we cannot gain
any information from a static type system, we must interpret the programmer’s
code as it is written. This means we have to deal with copatterns that may have
ambiguous cases where two different overlapping copattern equations match the
same application. For example, this function moves a number by 1 away from 0
— positives are incremented and negatives are decremented:

(define* [(away-from0 x) (try-if (>= x 0)) = (+ x 1)]
[(away-from0 x) (try-if (<= x 0)) = (- x 1)])

The two different equations overlap for 0 itself: either one matches the call
(away-from0 0). To disambiguate overlapping copatterns, the listed equations
are always tried top-down, and the first full match “wins,” as is typical in func-
tional languages. In this case, the first line wins, so (away-from0 0) is 1. Fur-
thermore, guards like try-if and try-match are run left-to-right with shortcir-
cuiting — the moment a copattern or a guard fails, everything to the right
is skipped. This makes it possible to protect potentially-erroneous guards with
another safety guard to its left, such as (try-if (not (= y 0))) followed by
(try-if (> (/ x y) z)).

However, there are more timing issues besides these usual choices for dis-
ambiguation and short-circuiting. First of all, since we are in a call-by-value
language, we have to handle cases where an object is used in a context that
doesn’t fully match a copattern yet, but could in the future — and possibly
multiple different times. This can happen for instances like curried functions
that take arguments in multiple different calls. Just like with ordinary curried
functions, using such an object in a calling context passing only the first list of
arguments — but not the second — builds a value which closes over the param-
eters so far. For example, consider this simple counter object that can add or
get its current internal state.

(define* [((counter x) 'add y) = (counter (+ x y))]
[((counter x) 'get) = x])

The call ((counter 4) 'get) matches the second equation, which is 4, but (counter 4)
on its own is not enough information to definitively match either copattern, so
it is just a value remembering that x = 4 and waiting for another call. Similarly,
the call (counter (+ x y)) on the right-hand side is also incomplete in the same
sense, so it, too, is a value. This definition gives us an object with the following
behavior:

> (define c0 (counter 4))
> (define c1 (c0 'add 1))
> ((c1 'add 2) 'get)
7
> (c1 'get)
5

So far, what we have seen so far seems similar to pattern-matching functions
in languages that are curried-by-default. One way in which copatterns generalize
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curried functions is that each equation can take a different number of arguments.
For example, consider this reordering of the stutter stream from section 2:

(define* [(((stutter n) 'tail) 'tail) = (stutter (+ n 1))]
[(((stutter n) 'tail) 'head) = n]
[ ((stutter n) 'head) = n])

Since none of the copatterns overlap, its behavior is exactly the same as be-
fore. But notice the extra complication here: calling ((stutter 10) 'head) with
two arguments (10 and 'head) should immediately return 10. However, the first
equation is waiting for three arguments (an n and two 'tails passed separately).
That means the underlying code implementing stutter cannot ask for three
arguments in three different calls and then check that the last two are 'tail.
Instead, it has to eagerly match the arguments its given against the patterns
and try each of the guards to see if the current line fails — and only after that
all succeed, it may ask for more arguments and continue the copattern match.

Composition and the dimensions of extensibility The second set of chal-
lenges is due to the new notions of object composition that we develop here. In
particular, we want to be able to combine objects in two different directions:

– vertical composition is an “either or” combination of two or more objects, such
as (o1 'compose o2 ...) that acts like o1 or o2, etc, depending on which
one knows how to respond to the context. Textually, vertical composition of
(object line-a1 ...) and (object line-b1 ...) behaves as if we copied all
each line of copattern-matching equations internally used to define the two
objects and pasted them vertically into the newly-composed object as:
(object line-a1 ...

line-b1 ...)
– horizontal composition is an “and then” combination of objects in a copattern-

matching line, such as [(self 'method1) (try-object o1)] defining a 'method1
that continues to act like o1 when o1 knows how to respond to the surround-
ing context, and otherwise tries the next line. Textually, the vertical compo-
sition of a 'method1 followed by trying another object with its own copattern-
matching contexts Q1 Q2 ... acts as if the two copatterns are combined, and
the inner object is inlined into the outer one like so:
(object [(self 'method1) (try-object (object [Q1 = response1]

[Q2 = response2]
...))]

...)
=
(object [(self 'method1) (comatch Q1) = response1]

[(self 'method1) (comatch Q2) = response2]
...)

Even though we can visually understand the two directions of composition
by the textual manipulations above, in reality, both of these compositions are
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done at run-time (i.e., with arbitrary procedural values), as opposed to “compile-
time” transformation (i.e., macro-expansion time manipulations of code). This
means we need an extensible representation of run-time object values that allows
for automatically switching from one object to another in the case of copattern-
match failure, as well as correctly keeping track of what to try next.

The basic idea of this representation can be understood as an extension of
an idiom in ordinary functional programming. In order to define an open-ended,
pattern-matching function, we can give the cases we know how to handle now
by matching on the arguments and include a default “catch-all” case at the end
for the other behavior. In Haskell, this might look like

f next PatA1 PatA2 ... = expr1
f next PatB1 PatB2 ... = expr2
...
f next x1 x2 ... = next x1 x2 ...

For example, consider the single-line eval-add evaluator object from section 2.
In order to compose eval-add with another evaluator handling a different case,
like eval-add, its internal extensible code takes an extra hidden argument saying
what to try next if its line does not match, analogous to:

(define (eval-add-ext1 next)
(lambda* [(self 'eval �(add ,l ,r)) = (+ (self 'eval l) (self 'eval r))]

[ self = (next self)]))

Note that, unlike the Haskell code above, the hidden next parameter also takes
another hidden parameter: self. Why? Because if the next set of equations
needs to recurse, it cannot actually jump to itself directly — that would skip the
eval-add code entirely — but needs to jump back to the very first equation to
try. This self parameter holds the value of the whole object after all composi-
tions have been done, as it appeared in the original call site. Thus, the internal
extensible code eval-add-ext also takes this second self parameter for the same
reason: it may be the second component of a composition, and can be further
expanded into built-in Racket primitives like so:

(define ((eval-add-ext2 next) self)
(match-lambda* [(list 'eval �(add ,l ,r)) (+ (self 'eval l) (self 'eval r))]

[args ((next self) args)]))

3.2 Double-barrel translation

To explain the correctness and behavior of composable copattern matching, we
give a high-level translation into a conventional �-calculus with recursion and
pattern matching (given in fig. 1). Our pattern language is modeled after a
small common core found among various implementations of Scheme, which
includes normal variable wildcards x that can match anything, quoted symbols
’x, and lists of the form null or (consP P 0). Note that we assume all bound
variables x in a pattern are distinct. As shorthand, we write a list of patterns
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Term 3M,N ::= x | M N | �x.M | K | matchM with {P ! N... } | recx = M

Pattern 3 P ::= x | ’x | null | consP P
0

Fig. 1. Target language: pure �-calculus with pattern-matching and recursion.

P1 P2 . . . Pn for (consP1 (consP2 . . . (consPn null))). To model the patterns
found in typed functional languages like ML and Haskell, such as constructor
applications K P..., we can represent the constructor as a quoted symbol ’K
and the application as a list ’K P.... The patterns’ specifics are surprisingly not
essential to the main copattern translation and could be extended with other
features found in more specific implementations.

For simplicity, this translation begins from a small source language with
copatterns (given in fig. 2) separated into three main syntactic categories:

(M,N) Terms represent ordinary first-class values as well as applications. The new
forms of terms are �⇤B, which gives a self-referential copattern-matching
object, along with templateB and extensionO which include the other
two syntactic categories as first-class values.

(B) Templates represent self-referential code without a fixed self. Instead, the
“self” placeholder remains unbound for now, and it can be instantiated later
as templateB V (where the “self” of the template is bound to V ) or �⇤B
(where the “self” of the template is recursively bound to �⇤B).

(O) Extensions represent extensible code that can be composed together both
vertically and horizontally. Instead of failing on an unsuccessful match, will
try an as-of-yet unspecified “next” option. To support recursion, the “self”
placeholder is also unbound for now — just like with templates — and can
be bound later when the whole object is finished being composed. The “next”
thing to try can be given by the vertical composition with another extension
O;O0 or a base-case template O;B. Arbitrary first-class values can passed
in as the next option (V ) and the self object (W ) as extensionO V W .

The remaining new syntax gives ways to define and combine copattern-
matching expressions. Copatterns Q[x] themselves are a subset of contexts, Q,
surrounding an object internally named x. Two lines separated by a semicolon
(O;O0) is vertical composition that tries either O or O0, and prefixing with a
copattern-matching expression (Q[x]O) is horizontal composition that tries Q[x]
and then O. The " represents an empty extension with respect to vertical compo-
sition: it immediately refers to the next option. Smaller special cases of matching
include pattern lambdas (�P.O) that try to match a new argument against P ,
and pattern guards (matchP  M O) that try to match a given expression M
against P ; both of which continue as O if they succeed.

Finally, we have the terminators for ending a sequence of matching. A tem-
plate can end in the empty " (which just fails, because there is no code to handle
the case) or a continuex!M which serves as the default “catch-all” case. The
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Term 3M,N ::= · · · | �⇤B | templateB | extensionO

Template 3 B ::= " | O;B | continuex!M

Extension 3 O ::= " | O;O0 | Q[x] O | �P. O | matchP  M O | try x! B

Copattern 3 Q ::= ⇤ | Q P

Pattern 3 P ::= x | ’x | null | consP P
0

Syntactic sugar:

elseM = continue_!M (= M) = doM = try_! elseM

if M O = matchTrue M O (letx = M O) = matchx M O

Fig. 2. Source language: target extended with nested copatterns, self-referential ob-
jects, recursion templates, and composable extensions.

parameter x bound by continuex!M is another way to introduce a name for
the recursive reference to the object itself at the end of a template and allows
for M to restart from the top and continue the computation. The familiar syn-
tactic sugar elseM covers the common case where M give an answer without
recursively continuing. Similarly, an extension can end with try x ! B. This
gives a “catch-all” case that runs some other (non-extensible) template B. The
parameter x bound by try x ! B gives a name to the next option that would
have been tried after this one and allows B to explicitly move on to the next
option if it needs to. The syntactic sugar doM covers the most common case of
try which definitively commits to a particular term M to return as the result
without trying any further options. To write examples in a similar style to ML-
family languages, we also use the syntactic sugar (= M) with the same meaning,
which looks odd out of context but expresses the equational nature of copattern
matching when used in examples.

Thus, the full translation from the source (fig. 2) to target (fig. 1) is given
in fig. 3. This translation shares many similarities to continuation-passing style
(CPS) translations. However, we explicitly avoid converting the entire program
to CPS. Notably, every syntactic form for the source language is unchanged;
for example, JM NK = JMK JNK. Instead, the only time we need to introduce
an extra parameter is for the two new syntactic categories. All templates are
translated to functions that take a value for the whole object itself to a new
version of that object. Similarly, all extensions are translated to functions that
take both a template as the “base case” to try next and a value for the whole
object itself. Even though this is dynamically-typed, we can view the type of
templates as object transformers and extensions as template transformers:

Object = some type of function
Template = Object! Object0

Extension = Template! Template0 = Template! Object! Object0
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Translating new terms:

J�⇤BK = (rec self = T JBK (�x.self x)) =⌘ (rec self = T JBK self )

JtemplateBK = T JBK
JextensionOK = EJOK

JMK = by induction (otherwise)

Translating templates:

T J"K = �s.fail s =⌘ fail

T JO;BK = �s.EJOK T JBK s =⌘ EJOK T JBK
T Jcontinuex!MK = �x.JMK

Translating copattern-matching and pattern-matching functions:

EJ(Q[x] P ) OK = EJQ[x] (�P.O)K
EJx OK = �b.�x.EJOK b x

EJ�P.OK = EJ�x.matchP  x OK (if P /2 Variable)

Translating other extensions:

EJ"K = �b.�s.b s =⌘ �b.b

EJO;O0K = �b.�s.EJOK (EJO0K b) s =⌘ EJOK � EJO0K
EJ�x.OK = �b.�s.(�x.EJOK (�s0.b s

0
x) s)

EJmatchP  M OK = �b.�s.match JMK with {P ! EJOK b s;_! b s }
EJtry x! BK = �x.T JBK

Fig. 3. Translating copattern-based source code to the target language.

The interesting cases for translating terms are the new forms. templateB
and extensionO are just translated to their given forms as transformation func-
tions. With �⇤B, we need to recursively plug its translation in for its self pa-
rameter. Note the one detail that the recursive self is ⌘-expanded to in this
application. This ensures that �x.self x is treated as a value in a real implemen-
tation, and is always safe assuming that B describes a function (non-functional
cases of �⇤B are undefined user error).

For templates and extensions, the terminators continue and try are trans-
lated to plain �-abstractions that allow the programmer direct access to their
implicit parameters. Complex copatterns (x P1...Pn O) are reduced down to a
simpler sequence of pattern lambdas (x �P1. . . .�Pn. O), and pattern lambdas
(�P.O) are reduced down to a simpler non-matching lambda followed by an
explicit match guard (�x.matchP  x O).

This leaves just the base cases of simple extension forms. Each time an ex-
tension (of form �b.�s. . . . ) “fails,” it calls the given next template with the given
self object (b s). A match guard JmatchP  M OK will try to match the trans-
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lation of M against the pattern P ; the success case continues as EJOK with the
same next template and self. A non-matching lambda J�x.OK always succeeds
(for now), but note that the next template to try on failure has to be changed to
include the given argument. Why? Because the lambda has already consumed
the next argument from its context, it would be gone if, later on, the following
operations fail and move on to the next option. So instead of invoking the given
b directly as b s0 (for a potentially different future s0), they need to invoke b
applied to this argument x as b s0 x.

In this translation, we also give the ⌘-reduced forms on the right-hand side
when available. This shows that the empty extension " is just the identity func-
tion (given the next thing b to try, " does nothing and immediately moves on to
b), and horizontal composition O;O0 is just ordinary function composition.

4 Macro Definition

The real implementation of copattern matching in the Scheme macro system is
quite similar to the high-level translation given in fig. 3 However, there are some
important differences which have to do with integrating the new feature with
the rest of the language, as well as practical implementation details. For exam-
ple, note the definition of J�⇤BK in particular. While the ⌘-equality simplifying
�x.self x to just self is theoretically sound, it does not work in practice: when
a Scheme interpreter tries to evaluate the right-hand side (T JBK self ) of the
recursive binding, it first tries to lookup the value bound to self which has not
been defined yet, leading to an error. This one level of ⌘-expansion delays the
evaluation step so that �x.self x returns a closure around the location where
self will be placed, which is passed to T JBK whose result is bound to self .

Happily, instead of a single big recursive macro, first-class templates and ex-
tensions make it possible to implement the various parts of copattern matching
as many independent macros that can be used separately and composed by the
programmer. For example, �P.O, if M O, matchP  M O, etc. are all imple-
mented as self-contained macros that create new extension values around other
extensions. These forms need to be macros because they either bind variables
around an expression (like �P or match) or do not evaluate a sub-expression in
some cases (like if). Other simpler forms, like the empty object or the composi-
tion O;O0, are just ordinary procedural values and not defined as macros. The
macro for copattern matching, Q[x] O, is the only main recursive step, which
decomposes a copattern into a sequence of more basic matching �s.

Additionally, the source language, as implemented, is more flexible than pre-
sented in fig. 2, in the sense that there are not as many syntactic categories.
So the O in forms like �P.O or if M O can be any host language expression as
long as it evaluates to a procedure following the calling convention of extensions
(otherwise a run-time error may be encountered). The implementation also sup-
ports other standard Scheme expressions, including functions of multiple argu-
ments (corresponding to (lambda (P ...) O) or the copattern (self P ...)) and
variable numbers of arguments (corresponding to (lambda (P ... . rest) O)
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or the copatterns (self P ... . rest) or (apply self P ... rest)). The main
points where the syntactic restrictions are used are in the macros implementing
extensionO or templateB. For example, the extension macro definition is:

(define-syntax-rule
(extension [copat step ...] ...)
(merge [chain (comatch copat) step ...] ...))

where merge is the regular definition of first-class function composition, comatch
is the macro for the copattern matching form Q[self ] O, and chain is a macro
for right-associating any chain of operations to avoid overly-nested parentheses,
with special support for unparenthesized terminators:

(define-syntax chain
(syntax-rules (= try)

[(chain ext) ext]
[(chain (op ...) step ... ext) (op ... (chain step ... ext))]
[(chain = expr) (always-do expr)]
[(chain try ext) ext]))

One concern for a real implementation is to consider what kind of pattern-
matching facilities the host language already provides. Unfortunately, the answer
is not standard across different languages in the Scheme family. For example, the
R6RS standard does not require any built-in support for pattern matching to
be fully compliant, but specific languages like Racket may include a library for
pattern matching by default. Thus, we provide two different implementations to
illustrate how copatterns may be implemented depending on their host language:

– A Racket implementation that uses its standard pattern-matching constructs
match and match-lambda*. Thus, the match from the target language in
fig. 1 is interpreted as Racket’s match, and the translation of EJ�P.OK is
implemented directly as match-lambda* instead of separating the � from the
pattern as in fig. 3. This choice ensures the pattern language implemented is
exactly the same as the pattern language already used in Racket programs.

– A general implementation intended for any R6RS-compliant Scheme,3 which
internally implements its own pattern-matching macro, try-match, by ex-
panding into other primitives like if and comparison predicates. Of note,
due to only having to handle a single line of pattern-matching at a time,
this implementation is 75 lines of Scheme and supports quasiquoting forms
of patterns. This gives a sufficiently expressive intersection between Racket’s
pattern-matching syntax and the manually implemented R6RS version.

5 Correctness

We already used the translation to a core �-calculus as a specification for imple-
menting compositional copatterns, but the translation is also useful for another
3 We have explicitly tested this implementation against Chez Scheme.
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Value 3 V,W ::= x | �x.M | null | consV W | ’x
EvalCxt 3 E ::= ⇤ | E M | V E | matchEwith {P ! N... } | recx = E

(�) (�x.M) V = M [V/x]

(match)
matchV with { P ! N ;

P
0 ! N

0
... }

= N [W.../x...] (if P [W.../x...] = V )

(apart)
matchV with { P ! N ;

P
0 ! N

0
... }

=
matchV with

{P 0 ! N
0
... }

(if P # V )

(rec) (recx = V ) = V [(recx = V )/x]

Apartness between patterns and values (P # V ):

V /2 Variable [ { ’x }
’x # V

V /2 Variable [ { null }
null # V

V /2 Variable [ { consW W
0 | W,W

0 2 Value }
consP P

0 # V

P # W

consP P
0 # consW W

0
P

0 # W
0

consP P
0 # consW W

0

Fig. 4. Untyped equational axioms of the target language.

purpose: checking the expected meaning of copattern-matching code. With that
in mind, we now look for some laws that let us equationally reason about some
programs to make sure they behave as expected.

First, the core target language — a standard call-by-value �-calculus ex-
tended with pattern-matching and recursion — has the equational theory shown
in fig. 4, which is the reflexive, symmetric, transitive, and compatible (i.e., equal-
ities can be applied in any context) closure of the listed rules. It has the usual
� axiom (restricted to substituting value arguments), two axioms for handling
pattern-match success (match) and failure (apart), and an axiom for unrolling
recursive values (rec). Values (V,W ) include the usual ones for call-by-value �-
calculus (x and �x.M) as well as lists (null and consV W ) and symbolic literals
(’x). Matching a value V against a pattern P will succeed if the variables (x...)
in the pattern can be replaced by other values (W...) to generate exactly that V :
P [W.../x...] = V . In contrast, matching fails if the two are known to be apart,
written P # V and defined in fig. 4, which implies that all possible substitu-
tions of P will never generate V . Note that while matching and apartness are
mutually exclusive, there are some values that are neither matching nor apart
from some patterns. For example, compare the value x against the pattern null;
x may indeed stand for null or another value like �y.M .
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ExtensionFunc 3 F ::= Q[x P ] O | �P.O
Value 3 V ::= · · · | �⇤(F ;B) | templateB | extensionO

Identity, associativity, and annihilation laws of composition:

";O = O (O1;O2);O3 = O1; (O2;O3) doM ;O = doM

";B = B (O1;O2);B = O1; (O2;B) doM ;B = elseM

Pattern and copattern matching:

matchP  V O = O[W.../x...] (if P [W.../x...] = V )

matchP  V O = " (if P # V )

(template (�P.doM);B) V 0
V = M [W.../x...] (if P [W.../x...] = V )

(template (�P.O);B) V 0
V = (templateB) V 0

V (if P # V )

C[(template (Q[y] = M);B) V ] = M [V/y][W.../x...] (if Q[W.../x...] = C)

C[(template (Q[y] O);B) V ] = C[(templateB) V ] (if Q # C)

C[�⇤(Q[y] = M);B] = M [(�⇤(Q[y] = M);B)/y]

[W.../x...]

(if Q[W.../x...] = C)

C[�⇤(Q[y] O); elseM ] = C[M ] (if Q # C)

Apartness between copatterns and contexts (Q # C):

Q[W.../x...] = C P # V

Q P # C V

Q # C

Q P # C

Q # C

Q # C V

Fig. 5. Some equalities of copattern extensions.

The first usual property is that the translation specified in fig. 3 is a conser-
vative extension: any two terms that are equal by the target equational theory
are still equal after translation. Because the translation is hygienic and compo-
sitional by definition, we can follow the proof strategy in [8].

Proposition 1 (Conservative Extension). If M = N in the equational
theory of the target (fig. 4), then so too does JMK = JNK.

To reason about the new features in the source language — introduced by
�⇤, template, and extension — we introduce additional axioms given in fig. 5,
so that the source equational theory is the reflexive, symmetric, transitive, and
compatible closure of these rules in both figs. 4 and 5. The purpose of these new
equalities is to perform some reasoning about programs using copatterns, and in
particular, to check that the syntactic use of = really means equality. For example,
a special case is Q[�⇤(Q[y] = M);B] = M [�⇤(Q[y] = M);B/y], which says a �⇤

appearing in exactly the same context as the left-hand side of an equation will
unroll (recursively) to the right-hand side. Other equations describe algebraic
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laws of copattern alternatives and how to fill in templates and extensions when
applied. This source equational theory is sound with respect to translation.

Proposition 2 (Soundness). The translation is sound w.r.t. the source and
target equational theories (e.g., M = N in fig. 5 implies JMK = JNK in fig. 4).

6 Related Work and Conclusion

Previously, copatterns have been developed exclusively from the perspective of
statically-typed languages. Much of the work has been for dependently typed
languages like Agda [5], which use a type-driven approach to elaborate copat-
terns [16,17]. The closest related work is the implementation of copatterns as an
OCaml macro [14], but this, too, is concerned with type system ramifications.
Here, we show how to implement copatterns with no typing information and
focus instead on composition and equational reasoning.

The translation in fig. 3 is reminiscent of “double-barrelled CPS” [18] used to
define control effects like delimited control [7] and exceptions [13]. In our case,
rather than a “successful return path” continuation, there is a “resume recursion”
continuation. Expressions that return successfully just return as normal, similar
to a selective CPS [15], which makes the it possible to implement as a macro
expansion. A “next case” continuation — to handle copattern-matching failure
— is introduced to make each line of a copattern-based definition a separate first-
class value. From that point, the “recursive self” must be a parameter because
no one sliver of a definition suffices to describe the whole.

Theories of object-oriented languages [1,6] also model the “self” keyword as a
parameter later instantiated by recursion; either as an explicit recursive binding,
or encoded as self-application. This is done to handle the implicit composition
of code from inheritance, whereas here, we need to handle explicit composition
of first-class extensible objects. The full connection between copatterns — as
we describe here — and object-oriented languages remains to be seen. In terms
of the lisp family of languages, the approach here seems closest to a first-class
generalization of mixins [3,10] with a simple dispatch mechanism (matching), in
contrast to class-based frameworks focused on complex dispatch [11,12,4].

We have shown here how to implement a more extensible, compositional
version of copatterns as a macro in standard Scheme as well as Racket. Our
major focus involves new ways to compose (co)pattern matching code in multi-
ple directions — vertically and horizontally — which can be used to solve the
expression problem since it can encode certain functional and object-oriented
design patterns. Despite the more general forms of program composition, we
still support straightforward equational reasoning to understand code behavior,
even when that code is assembled from multiple parts of the program. This
equational reasoning is formalized in terms of an extended �-calculus, which is
soundly translated into a common core calculus familiar to functional program-
mers; we leave the equation of a complete and minimal equational theory for
copatterns as future work.
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Our work here does not include static types, inherited from Scheme’s nature
as a dynamically typed language. As future work, we intend to develop a type
system for the copattern language described here; specific challenges include
correctly specifying type types of (de)composed code as well as coverage analysis
that ensures every case is handled after the composition is finished. The second
direction of future work is to incorporate effects into copattern definitions and
their equational reasoning, for example, subsuming (delimited) control operators
into the copattern language as a way of expressing compositional effect handlers.
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