
Synthesizing accumulative functions via program
transformation

Junyu Lin1 and Akimasa Morihata2

1 The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, Japan
lin-junyu108@g.ecc.u-tokyo.ac.jp

2 The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, Japan
morihata@graco.c.u-tokyo.ac.jp

Abstract. Accumulative functions, such as tail-recursive functions, em-
ploy accumulation parameters to carry and update the intermediate re-
sults. Despite their ubiquity and importance for efficient implementa-
tions, the automatic synthesis of accumulative functions remains chal-
lenging. The presence of accumulative parameters not only expands the
search space but also unfastens the input-output examples from the
traces of recursive calls, leading existing program synthesis methods to
either fail in generating nontrivial accumulative functions or rely on pre-
provided skeletons of recursive calls with accumulations. In this paper,
we investigate an alternative approach to synthesizing accumulative func-
tions. Our strategy integrates an off-the-shelf synthesizer, which may not
inherently produce accumulative functions, and a program transforma-
tion that derives accumulative functions from non-accumulative ones.
We specifically focus on the transformation introduced by Kühnemann
et al. (RTA 2001), which effectively derives accumulative functions if the
non-accumulative ones consist of substitution operators. By guiding the
synthesizer to use substitution operators, we aim to obtain functions suit-
able for the transformation. We demonstrate the ability of our approach
with examples from existing benchmarks.

Keywords: Program synthesis · Accumulative function · Program trans-
formation.

1 Introduction

Accumulative functions refer to a type of function that uses an accumulator to
keep track of and update the intermediate results as part of a computation. A
typical example is the tail-recursive function. The following tail_reverse serves
as a tail-recursive, linear-time variant of the non-accumulative quadratic-time
reverse function, using the list concatenation function append .

2 J. Lin et al.

reverse [] = []

reverse (x :: xs) = append (reverse xs) (x :: [])

append [] y = y

append (x :: xs) y = x :: append xs y

tail_reverse x = tail_reverse1 x []

tail_reverse1 [] y = y

tail_reverse1 (x :: xs) y = tail_reverse1 xs (x :: y)

In recent years, recursive function synthesis has become a significant research
area [1,6,8,11,13–16,21]. Some methods leverage the programming-by-example
(PBE) paradigm due to the simplicity and accessibility of input-output examples
for specifying program behavior. These methods generally depend on recursive
traces, and some of them [1,16] even require trace-complete examples, consisting
of all recursive calls’ input-output pairs. For example, consider a set of input-
output examples for the reverse function, {[1, 2] → [2, 1], [2] → [2], [] → []},
where x → y denotes inputting x to the function must result in y. This is
trace-complete, as it contains all recursive calls’ information of reverse [1, 2].
Trace-complete examples allow candidate expressions to be searched directly.
For instance, from the input-output examples above, we can immediately know
reverse [] = []; moreover, we can easily guess that the right-hand side for
reverse [1, 2] is an expression to calculate [2, 1] from 1 and [2], since the sub-
computation, reverse [2] results in [2]. Others [13, 21] attempt to reconstruct
complete traces during synthesis.

However, accumulative function synthesis remains challenging. For example,
the tail_reverse function involves the auxiliary recursive function, tail_reverse1,
whose synthesis may necessitate its trace-complete examples with the accumula-
tor y, say {([1, 2], []) → [2, 1], ([2], [1]) → [2, 1], ([], [2, 1]) → [2, 1]}, as well as the
initial accumulator value. However, such input-output examples for the auxiliary
function are not natural to prepare. It is desirable to synthesize accumulative
functions from the input-output examples for the top-level function, namely
tail_reverse.

Some synthesizers [6, 8, 14] can produce accumulative functions with a user-
provide recursion pattern, which is either a recursion skeleton [6], or a partial
implementation with holes, called program sketching [8,14]. For example, we can
synthesize tail_reverse with the following sketch in which the shadow parts are
holes.

tail_reverse x = tail_reverse1 x

tail_reverse1 [] y =

tail_reverse1 (x :: xs) y = tail_reverse1 xs

However, preparing an appropriate sketch is in general non-trivial. A sketch with
a too-large hole will fail in the synthesis, whereas one specifying a too-detailed

Synthesizing accumulative functions via program transformation 3

computation structure is less satisfactory. We can hardly know in advance what
level of detail is necessary for a successful synthesis.

In this paper, we address the synthesis of accumulative functions, considering
an alternate approach via program transformation. We focus on the method by
Kühnemann et al. [12], which can derive an accumulative function by eliminating
a special kind of operator, named substitution operator. We begin the synthe-
sis process with preparing a set of substitution operators. Next, we instruct
the synthesizer to construct a non-accumulative recursive function consisting
of the substitution operator. Finally, we transform the obtained function into
accumulative versions. In our approach, the synthesizer avoids the complexity
of introducing an accumulator and does not rely on a pre-provided program
skeleton.

To evaluate the promise of our approach, we collected benchmark examples
from a state-of-the-art synthesis approach PARA [8] and conducted an exper-
iment. We employed TRIO [13], which is a state-of-the-art PBE-based synthe-
sizer, as the underlying synthesizer. Our approach could synthesize 8 out of 10
accumulative versions of the benchmark functions that can be optimized by ac-
cumulation with 10 pairs of input-output examples. The existing sketching-based
synthesizer, SMYTH [14], was less successful. It succeeded in only 2. Even with a
sketch containing an appropriate base-case expression and initial accumulation
value, it could synthesize only 6. The experiments show that our approach is
promising in accumulative function synthesis.

In summary, our paper makes the following contributions.

– We investigate an approach that synthesizes an accumulative function via
program transformation. The approach consists of a synthesis of a non-
accumulative program and a transformation into an accumulative one.

– We take examples from existing benchmark programs to demonstrate the
ability of our approach. The result shows our approach can synthesize natural
accumulative functions for several examples.

2 Background

2.1 Modular Tree Transducer

Kühnemann et al. introduced a transformation method based on modular tree
transducers (ModT) [5]. Modular tree transducer is an extension of macro tree
transducer (MTT) [4]. A macro tree transducer can be considered as a recursive
first-order functional program over trees. We can define an MTT as below. We
assume that f is a function name, c is a tree constructor, xi, yi are variables and
r is the right-hand side. We only consider total deterministic MTTs.

prog := decl · · · decl
decl := f (c x1 · · ·xn) y1 · · · ym = r

r := xi | yi | c r · · · r | f xi r · · · r

4 J. Lin et al.

An n-modular tree transducer (n-ModT) is a hierarchy (m1, . . . ,mn) of mod-
ules. Each module mi (i ≤ n) forms an MTT except that its function may call
functions defined in the modules mi+1, . . . ,mn as if they are constructors.

From the definition, 1-ModT is an MTT, and reverse is a 2-ModT since it
contains 2 modules: reverse and append . And tail_reserve is an MTT because
it consists of only the tail_reserve module.

2.2 Substitution function and Yield function

A substitution module consists of substitution functions and provides a mecha-
nism for substituting accumulation parameters with some leaves. Let π1, . . . , πn

be a series of distinct constructors. Given i, j ∈ N and j ≤ i ≤ n, subi is a sub-
stitution function defined below, where c is a constructor other than π1, . . . , πi.

subi πj y1 · · · yi = yj (1)
subi(c x1 · · · xk) y1 · · · yi =

c (subi x1 y1 · · · yi) · · · (subi xk y1 · · · yi) (2)

For example, recall the append module defined below.

append [] y = y

append (x :: xs) y = x :: append xs y

It forms a substitution module, where append = sub1 and π1 = []3.
A Yield module translates an expression in which the tree substitution op-

erations are symbolically represented, into the tree it denotes. The following is
the definition of each function, Yieldn (n ∈ N), in a Yield module. We use subi
to denote the symbolic representation of the substitution as well so as to make
its connection to substitution functions obvious.

Yieldn πi yi · · · yn = yi (3)
Yieldn (c x1 · · ·xk) y1 · · · yn =

c (Yieldn x1 y1 · · · yn) · · · (Yieldn xk y1 · · · yn) (4)
Yieldn (subm x y1 · · · ym) y′1 · · · y′n =

Yieldm x (Yieldn y1 y′1 · · · y′n) · · · (Yieldn ym y′1 · · · y′n) (5)

2.3 Transformation Algorithm

Based on the definitions above, the transformation by Kühnemann et al. com-
poses the two modules of a 2-ModT (m1,m2) to an MTT if m2 is a substitution

3 Strictly speaking, we must regard (x ::) as a constructor; otherwise append must
traverse x as well, which looks like containing a type error. We disregard this kind
of minor adjustment between ModTs and functional programs.

Synthesizing accumulative functions via program transformation 5

module and m1 is non-accumulative. We will take reverse defined below as an
example to explain their approach.

reverse [] = []

reverse (x :: xs) = append (reverse xs) (x :: [])

Freezing The first step is preparing a new function f ′ (here, reverse ′) by sub-
stituting the substitution functions (here, append) with new constructors sub1.
We call this step freezing and the new constructors frozen functions.

reverse ′ [] = []

reverse ′ (x :: xs) = sub1 (reverse ′ xs) (x :: [])

Introducing Yield module After freezing, reverse ′ becomes an MTT but sub1
does not perform the “append” operation. To recover the original computation,
we introduce the Yield module defined as follows.

Yield0 [] = []

Yield0 (sub1 xs y) = Yield1 xs y

Yield1 [] y = y

Yield1 (sub1 xs y) y′ = Yield1 xs (Yield1 y y′)

Note reverse xs = Yield0 (reverse ′ xs) holds from the construction of reverse ′.

Deforestation Yield0 (reverse ′ xs) is still inefficient because the Yield module
recursively traverses and reconstructs the tree generated by reverse ′. We elimi-
nate this inefficiency by applying deforestation [20] that eliminates intermediate
lists and trees.

For example, we compose the second line of reverse ′ and Yield i functions
via the unfolding-folding approach [3]. Assume composing reverse ′ and Yield i is
reversei.

reverse1 (x :: xs) y = Yield1 (reverse ′ (x :: xs) y)

= Yield1 (sub1 (reverse ′ xs) (x :: [])) y

= Yield1 (reverse ′ xs) (Yield1 (x :: []) y)

= reverse1 xs (x :: y)

Other parts are obtained similarly. Eventually, we get the following accumu-
lative function.

reverse0 [] = []

reverse0 (x :: xs) = reverse1 xs (x :: [])

reverse1 [] y = y

reverse1(x :: xs) y = reverse1 xs (x :: y)

6 J. Lin et al.

Compared with the original function, this function has a linear time complexity.
Hence, we successfully derive an efficient accumulative variant of reverse.

3 Accumulative function synthesis via transformation

3.1 Experiment setup

We implemented our approach as follows. We first inputted the definitions of
substitution operators and input-output examples (10 pairs) to TRIO [13] to
obtain a non-accumulative recursive function. Then, we manually applied the
transformation described in Section 2 if possible.

For comparison, we select SMYTH [14], which is one of the most famous
template-based synthesizers. It can generate accumulative programs if an accu-
mulative partial program (sketch) is given. We inputted the same substitution
operators and input-output examples as the case of TRIO. At this step, we only
inputted the top definition of the function and initialization of the accumulator
as the program sketch for SMYTH. If SMYTH failed to generate functions with
this sketch, we modified the sketch by adding base-case expressions.

In either case, the synthesis is regarded as a failure when the synthesizer ex-
ecutes time out (max 300 seconds) or outputs wrong answers. In our approach,
outputting a non-accumulative function for which the transformation is inappli-
cable is also a failure.

3.2 Benchmark examples

We exhaustively picked up examples for which accumulative implementations are
natural and efficient from the benchmark used in the state-of-the-art study [8]
and obtained 10 functions. They can be divided into three categories: three nat-
ural number functions (nat_mul, nat_exp, and nat_factorial), two list func-
tions (list_sum and list_reverse), and five tree functions (tree_preorder,
tree_inorder, tree_postorder, tree_count_leaves, and tree_count_nodes).

3.3 Experimental results

Table 1 summarizes the results of our experiments. "operator" means the sub-
stitution operators we inputted. ✓ denotes the method successfully synthesizes
an accumulative version of the target function. ✗ denotes the failure of synthesis
which is time-out or outputting the wrong answer. ✔✗ means the method fails
to synthesize with the original setup but succeeds after the modification of the
condition.

Our approach could synthesize 8 out of 10 benchmark functions but was time-
out in nat_exp and nat_factorial with the original setup. SMYTH successfully
generated 6 benchmark functions when the base-case pattern was determined
and only succeeded 2 functions without the undetermined base-case pattern.

In what follows, we pick one example for each category and analyze it in
detail. For better readability, we avoid showing cryptic programs obtained from
the synthesizers and omit the input-output examples.

Synthesizing accumulative functions via program transformation 7

Table 1. Result of experiments

function (operator) our approach SMYTH SMYTH
(base-case) (no base-case)

nat_mul (add) ✓ ✓ ✗

nat_exp (add, mul) ✗ ✗ ✗

nat_factorial (add, mul) ✔✗ ✗ ✗

list_sum (add) ✓ ✓ ✓

list_reverse (append) ✓ ✓ ✓

tree_preorder (append) ✓ ✓ ✗

tree_inorder (append) ✓ ✓ ✗

tree_postorder (append) ✓ ✓ ✗

tree_count_leaves (add) ✓ ✗ ✗

tree_count_nodes (add) ✓ ✗ ✗

Natural number functions Here we pick nat_mul, whose objective is to mul-
tiply two natural numbers The substitution operator add below is supplied to
the synthesizers.

let rec add m n =
match m with
| Z -> n
| S m1 -> S (add m1 n)

TRIO could generate the following program.

let rec f x y =
match x with
| Z -> y
| S x1 -> add (f x1 y) y

Then eliminating add makes it accumulative. In this function, a is the accu-
mulator, increasing y in every recursive call.

let rec f0 x y =
match x with

| Z -> x
| S n -> f1 n y y

and f1 x y a =
match x with

| Z -> a
| S n -> f1 n y (add y a)

SMYTH could synthesize the accumulative nat_mul from the following sketch,
in which ?? denotes the hole. Note that SMYTH failed if the whole body of f1
is abstracted to a hole.

let f0 x y =
let rec f1 x y a =

8 J. Lin et al.

match x with
| Z ->

a
| S n -> ??

(* f1 n y (add y a) *)
in f1 x Z

List functions To synthesize the list_reverse function, we specified append
as a substitution operator.

let rec append l1 l2 =
match l1 with
| [] -> l2
| Cons (h,t) -> Cons(h, append t l2)

Then TRIO outputted the non-accumulative list_reverse.

let rec f x =
match x with
| [] -> x
| Cons (x, xs) -> append (f xs) (Cons(x, []))

After applying the transformation, we obtain the accumulative version of
list_reverse.

let rec f0 x =
match x with

| [] -> []
| Cons (x, xs) -> f1 xs (Cons(x, []))

and
f1 x y =

match x with
| [] -> y
| Cons (x, xs) -> f1 xs (Cons(x, y))

An accumulative list_reverse can be synthesized by SMYTH from the
following sketch, which contains the initial accumulation value but does not the
base-case expression.

let f0 x =
let rec f1 x y = ??

(* match x with
* | [] -> y
* | Cons (x, xs) -> f1 xs (Cons(z, y)) *)

in f1 x []

Tree functions We take tree_preorder function as an example on tree func-
tions. We inputted the specification with a substitution operator append as the
same as the case of reverse.

Synthesizing accumulative functions via program transformation 9

TRIO outputted the following program.

let rec f x =
match x with
| Leaf -> []
| Node(l, v, r) -> append (Cons(v, (f l))) (f r)

Then, we eliminate append to obtain accumulative tree_preorder.

let rec f0 x =
match x with
| Leaf -> []
| Node(l, v, r) -> Cons (v, (f1 l (f0 r)))

and f1 x y =
match x with
| Leaf -> y
| Node(l, v, r) -> Cons (v, (f1 l (f1 r y)))

SMYTH can fill the hole when the sketch contains the base-case expression in
addition to the initial accumulation value.

let f0 x =
let rec f1 x y =

match x with
| Leaf -> y
| Node(l, v, r)-> ??

(* Cons (v, (f1 l (f1 r y))) *)
in f1 x []

3.4 Discussions

SMYTH failed in most examples if the sketch did not contain the base-case
expression. This fact indicates that preparing an appropriate sketch is generally
nontrivial. For example, the base-case expressions for count_tree_nodes and
count_tree_leaves are different. In contrast, substitution operators are shared
in most of our benchmark examples, being only three in total.

We can obtain accumulative functions by supplying the synthesizer with
higher-order functions that specify the recursion pattern. In fact, supplying fold
(a.k.a., fold_left or foldl) enables TRIO or SMYTH to synthesize list_sum
and list_reverse. However, there are many such higher-order functions, in-
cluding those for left-to-right, right-to-left, top-down, etc., and specifying one of
them is, roughly speaking, at least more informative than specifying the sketch.
Therefore, this higher-order-function-based approach inherits the difficulty of
preparing an appropriate sketch.

The nat_exp and nat_factorial functions rely on the multiplication opera-
tor, mul. Unfortunately, mul is not the substitution operator on natural numbers
because mul x (S y) ̸= S (mul x y). Hence, naively applying the transforma-
tion eliminates only add, which is the subcomputation of mul, and makes only

10 J. Lin et al.

mul, i.e., neither nat_exp nor nat_factorial, accumulative. To synthesize ac-
cumulative nat_exp and nat_factorial, we must regard mul as a substitution
operator. In fact we can, as mul satisfies the following equations.

mul (S Z) z = z

mul (add x y) z = add (mul x z) (mul y z)

That is, mul is a substitution operator if add and S Z are the constructors. This
observation reminds us of the study by Voigtländer [18]. He proposed a method
of eliminating reverse and map in addition to append. Further study, includ-
ing characterization of eliminatable operators and integration to the program
synthesis, is a future work.

4 Related work

4.1 Recursive program synthesis

Recently, many approaches for recursive program synthesis have been proposed.
TRIO [13] proposes two techniques for synthesizing recursive programs. The
block-based pruning enables us to reject imperfect candidates of the recursive
program by checking consistency with blocks (non-recursive expressions). The
library sampling accelerates synthesis using library functions (i.e. user-provided
external operators) by sampling their behaviors. SYRUP [21] uses recursion
traces to build a trace-indexed version space algebra and select candidates by
trace-based ranking function. BURST [15] firstly uses angelic semantics to en-
able bottom-up synthesis of recursive functions. Despite these impressive de-
velopments, they cannot synthesize accumulative recursive functions unless an
accumulative recursion pattern is explicitly specified.

Among others, we selected TRIO as the underlying synthesizer of our ap-
proach mainly because of its excellent capability of user-defined external opera-
tors, which our approach must instruct the synthesizer to use. TRIO naturally
accepts even complicated external operators, including those defined as recursive
functions, as a part of the specification of the synthesis. Moreover, its library-
sampling approach may reduce the cost of dealing with complex external opera-
tors. In addition, we anticipate that search-based synthesizers (including TRIO)
might be preferable to constraint-solving-based ones. In the former, defining an
appropriate search precedence may enable us to prioritize the use of substitution
operators. In contrast, in the latter, the synthesis process is usually hidden be-
hind the constraint solver, making it more difficult to control. We leave detailed
analysis and experiments on this issue as future work.

Nevertheless, our approach is not specialized in TRIO and can use BURST
and SYRUP, for example. However, adopting SYRUP is not very straightforward
because SYRUP requires defining the external operator as a logical formula
understandable by the underlying SMT solver.

CYPRESS [11] synthesizes recursive programs by cyclic program synthe-
sis approach, which can discover recursive auxiliaries based on cyclic proofs.

Synthesizing accumulative functions via program transformation 11

Auxiliaries, such as tail_reverse1 for tail_reverse, are often essential for
developing accumulative programs. However, because the main specification of
CYPRESS limits auxiliary recursive procedures without extra parameters, CY-
PRESS is unable to synthesize programs with accumulator parameters.

SYNDUCE [6] synthesizes a recursive function from a reference implementa-
tion that works on different data types. SYNDUCE uses a recursion template to
limit the recursion strategy. It can generate accumulative functions by supplying
an appropriate template. SMYTH [14] is also a template-based program synthe-
sizer. Given a partial program with holes, i.e. a template, it finds the program
fragment to fill the holes with iterative forward-backward abstract interpreta-
tion obtained by computing possible output (input) with corresponding input
(output). It can generate accumulative programs if an accumulative template is
given.

PARA [8] is another sketch-based synthesizer that uses paramorphisms.
Paramorphism is a recursive pattern that allows you to not only fold a data
structure but also access the rest of the original data structure during the re-
cursion. Similar to SMYTH, it finds program fragments to fill holes in the pre-
provided template. Paramorphisms and accumulation appear to be orthogonal:
the former enables extracting information from remaining unprocessed elements,
whereas the latter focuses on maintaining additional information about elements
already processed. Detailed comparison and cooperation is future work.

4.2 Accumulation

Transformational developments of accumulative functions, called accumulation,
have been studied for a long time. They may be categorized into two approaches.

One approach [9, 17] aims at manually (or semi-automatically) driving non-
trivial programs and algorithms, including the pioneering work by Bird [2]. This
approach is generally difficult to coordinate with program synthesizers because
it provides less feedback on what kind of programs the accumulation is more
likely to succeed.

The other approach, sometimes called deforestation [20], eliminates interme-
diate data structures passed between functions. It is known that deforestation
concerning some kinds of functions, the list concatenation operator in particular,
leads to accumulative programs [7, 10, 19]. The transformation by Kühnemann
et al. [12], which we have employed, generalizes the observation to arbitrary sub-
stitution operators. It is better suited for cooperation with program synthesizers
because prioritizing substitution operators will likely lead to successful accumu-
lation. It is worth noting that we can use a further generalization developed by
Voigtländer [18], which can eliminate the reverse and map functions in addition
to the substitution operators.

5 Conclusion and future works

In this paper, we present an alternative approach to synthesizing accumulative
recursive programs using the transformation developed by Kühnemann et al.

12 J. Lin et al.

Our method avoids the complexities inherent in directly synthesizing accumula-
tive programs. The experiment shows that our approach can be an alternative
approach to obtain accumulative functions.

Currently, we have little considered how to guide the synthesizer to gener-
ate the function that is suitable for transformation (for example, prioritize the
use of substitution operators). We plan to investigate a system for supporting
integration of program synthesis and transformations.

References

1. Albarghouthi, A., Gulwani, S., Kincaid, Z.: Recursive Program Synthesis. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification. pp. 934–950. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013)

2. Bird, R.S.: The Promotion and Accumulation Strategies in Transforma-
tional Programming. ACM Trans. Program. Lang. Syst. 6(4), 487–504 (1984).
https://doi.org/10.1145/1780.1781

3. Burstall, R.M., Darlington, J.: A Transformation System for Develop-
ing Recursive Programs. Journal of the ACM 24(1), 44–67 (jan 1977).
https://doi.org/10.1145/321992.321996

4. Engelfriet, J., Vogler, H.: Macro Tree Transducers. Journal of Computer and Sys-
tem Sciences 31(1), 71–146 (1985). https://doi.org/10.1016/0022-0000(85)90066-2

5. Engelfriet, J., Vogler, H.: Modular Tree Transducers. Theoretical Computer Science
78(2), 267–303 (1991). https://doi.org/10.1016/0304-3975(91)90353-4

6. Farzan, A., Nicolet, V.: Counterexample-guided Partial Bounding for Recur-
sive Function Synthesis. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided
Verification, vol. 12759, pp. 832–855. Springer International Publishing, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8_39, series Title: Lecture Notes
in Computer Science

7. Gill, A.J.: Cheap deforestation for non-strict functional languages. Ph.D. thesis,
University of Glasgow (1996)

8. Hong, Q., Aiken, A.: Recursive Program Synthesis using Paramorphisms. Proc.
ACM Program. Lang. 8(PLDI) (Jun 2024). https://doi.org/10.1145/3656381

9. Hu, Z., Iwasaki, H., Takeichi, M.: Calculating Accumulations. New Gener. Comput.
17(2), 153–173 (1999). https://doi.org/10.1007/BF03037434

10. Hughes, R.J.M.: A Novel Representation of Lists and its Application
to the Function "reverse". Inf. Process. Lett. 22(3), 141–144 (1986).
https://doi.org/10.1016/0020-0190(86)90059-1

11. Itzhaky, S., Peleg, H., Polikarpova, N., Rowe, R.N.S., Sergey, I.: Cyclic Pro-
gram Synthesis. In: Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation. p. 944–959.
PLDI 2021, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3453483.3454087

12. Kühnemann, A., Glück, R., Kakehi, K.: Relating Accumulative and Non-
accumulative Functional Programs. In: Goos, G., Hartmanis, J., Van Leeuwen,
J., Middeldorp, A. (eds.) Rewriting Techniques and Applications, vol. 2051,
pp. 154–168. Springer Berlin Heidelberg, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-45127-7_13, series Title: Lecture Notes in Com-
puter Science

Synthesizing accumulative functions via program transformation 13

13. Lee, W., Cho, H.: Inductive Synthesis of Structurally Recursive Functional Pro-
grams from Non-recursive Expressions. Proc. ACM Program. Lang. 7(POPL) (Jan
2023). https://doi.org/10.1145/3571263

14. Lubin, J., Collins, N., Omar, C., Chugh, R.: Program Sketching with Live Bidirec-
tional Evaluation. Proceedings of the ACM on Programming Languages 4(ICFP),
1–29 (Aug 2020). https://doi.org/10.1145/3408991, arXiv:1911.00583 [cs]

15. Miltner, A., Nuñez, A.T., Brendel, A., Chaudhuri, S., Dillig, I.: Bottom-up
Synthesis of Recursive Functional Programs using Angelic Execution. Proceed-
ings of the ACM on Programming Languages 6(POPL), 1–29 (Jan 2022).
https://doi.org/10.1145/3498682

16. Osera, P.M., Zdancewic, S.: Type-and-example-directed program synthesis. In:
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation. p. 619–630. PLDI ’15, Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2737924.2738007

17. Pettorossi, A., Proietti, M.: Rules and Strategies for Transforming Func-
tional and Logic Programs. ACM Comput. Surv. 28(2), 360–414 (1996).
https://doi.org/10.1145/234528.234529

18. Voigtländer, J.: Concatenate, reverse and map vanish for free. In: Wand, M., Jones,
S.L.P. (eds.) Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October
4-6, 2002. pp. 14–25. ACM (2002). https://doi.org/10.1145/581478.581481

19. Wadler, P.: The Concatenate Vanishes. Dept of Computer Science, Glasgow Uni-
versity (1987)

20. Wadler, P.: Deforestation: Transforming Programs to Eliminate Trees. Theor. Com-
put. Sci. 73(2), 231–248 (1990). https://doi.org/10.1016/0304-3975(90)90147-A

21. Yuan, Y., Radhakrishna, A., Samanta, R.: Trace-guided Inductive Synthesis of Re-
cursive Functional Programs. Proceedings of the ACM on Programming Languages
7(PLDI), 860–883 (Jun 2023). https://doi.org/10.1145/3591255

