
R7RS Large: Bringing Schemers (Back) Together
for Scheme’s Fiftieth Birthday

Daphne Preston-Kendal

Proposal for Trends in Functional Programming 2025
Not intended for publication in proceedings

The Revised7 Report on the Algorithmic Language Scheme is the latest revision
of the Scheme reports, the de facto standard specification for the full-funarg,
lexically scoped dialect of Lisp – ‘an interpreter for extended applicative order
lambda calculus’ – first invented by Gerald J. Sussman and Guy L. Steele in 1975.
The community of Scheme programmers has been internally divided for much of
the last twenty years, and as the chair of the working group responsible for its
completion, my hope is that the new report will become part of a trend towards
healing this division. This paper will explain the social and political factors
behind the division, the technical and other challenges which face reunification
of the community, and finally look at the new features which will bring standard
Scheme up to the expectations of programmers in the 2020s.

1 Historical background
The history of the split in the Scheme community over the future of the language
after the R5RS (1998) is well known, but I will rehearse it here briefly for
the benefit of those who are not familiar with the recent history of Scheme
standardization.

Scheme reports up to and including the R5RS were conservative in nature.
This reflected the workings of the committees which designed them, which
required unanimity of all sixteen or more members before any change or addition
could be made. At the Scheme Workshops held in 2002 and 2003, participants
voted to establish a Steering Committee to oversee all future standardization
efforts and a panel of editors to develop what would become R6RS. In contrast
to previous committees, the R6RS editors were only five in number and made
decisions by majority vote, rather than by unanimous consensus.

The R6RS was completed and ratified in 2007. However, warning signs about
its future appeared almost immediately: two months after ratification, Marc
Feeley surveyed maintainers of many implementations of Scheme about their
intentions regarding R6RS; most respondents said they had no intention of taking
any action to support it. While some of those implementations did eventually add
support, hostility towards R6RS in some quarters did not subside quickly. This
failure of R6RS to achieve universal acceptance disheartened even its editors and
advocates: Scheme 48, the implementation maintained by R6RS editor Michael
Sperber, never added support; PLT Scheme (now Racket), maintained by editor

1



Matthew Flatt, significantly reduced the usefulness of its R6RS mode with version
4 in 2008, which made the pair/list type in its default mode immutable, impeding
transparent interoperability between R6RS libraries and other Racket code.

In 2009 new Steering Committee elections were held, and the result was a
landslide of candidates who had voted against or abstained on the ratification of
the R6RS. The new Steering Committee resolved to split the Scheme language
in two, appointing two new working groups to produce, respectively, a ‘small’
language intended to be useful for education, research, and embedded environ-
ments, and a ‘large’ language compatibly extended from it which would be more
suitable for the needs of mainstream software development.

The R7RS small language was completed in 2013 and has proven a success:
all R5RS implementations which had refused to support R6RS have adopted
R7RS small. The R7RS large language has had a considerably more difficult
gestation, but completion may finally be appearing on the horizon.

2 Ongoing divisions
Both the Scheme language and the Scheme community remain divided over
R6RS and R7RS small, however.

Neither R7RS working group was directed to maintain any form of R6RS
compatibility. Despite this, the language developed by the R7RS small working
group was remarkably close to being a compatibly-extended subset of R6RS.

Unfortunately, some differences remain. While both reports tried to up-
date Scheme for a Unicode world where there is no longer 1:1 correspondence
between bytes and characters, the R6RS editors devised a new lexical syntax for
bytevectors and a completely new set of I/O procedures; R7RS small adopted
an older lexical syntax already supported by many R5RS implementations, and
compatibly extended the R5RS I/O library.1

Another difference is the library systems. R5RS provided no practical means
of namespacing: before R6RS, every implementation devised its own approach.
R6RS provided a simple library form with import and exports. The R7RS small
committee decided that the library system should have some of the properties
of a build configuration system with conditional compilation, and named their
version define-library. Some Scheme implementations support one form, some
the other, and few support both: it is still tricky to write a library that works
seamlessly on both an R6RS-only implementation and an R7RS small-only im-
plementation.

Besides technical issues such as these, there are also still political tensions
between advocates of the R5RS/R7RS small languages and advocates of R6RS.
Time has healed these wounds somewhat: as mentioned, some implementations
which initially expressed reservations about supporting R6RS have added support,
and some R6RS implementations support R7RS small. The Steering Committee
has responded positively to recent decisions by the large language working group
which have set the goal of transparent R6RS/R7RS interoperation by providing
enough low-level primitives in R7RS to implement all the features of R6RS.
Nonetheless, feelings still run high in some quarters, and engagement with some

1The R6RS kept the R5RS provisions around for backward compatibility, but did not fully
upgrade them for both Unicode and binary I/O as R7RS small later did.

2



implementations’ communities and developers has been difficult due to residual
sentiment against one or another version of the report.

3 R7RS large im Wandel der Zeiten
Upon completion of the R7RS small specification in 2013, work on the large
specification began in early 2014. John Cowan was the first chair. At this point,
membership of the working group was also opened so that anyone interested in
Scheme could join.

Work initially focussed on providing a portable standard library of data
structures and similar basic extensions to the small language through the SRFI
(Scheme Requests for Implementation) process,2 and for a while it looked like
this might in fact be what R7RS large would be: a collection of SRFIs. In all,
three ballots of working group members (any interested Schemers) were held
in 2016, 2019, and 2022. These mostly adopted proposals for portable libraries,
although some decisions affecting the core semantics were also met, such as
a requirement that R7RS large implementations would have to support the
full tower of numeric data types. Most notably, the last ballot in 2022 led to
the adoption of the syntax-case procedural macro system from R6RS, which
opened the door to the possibility that R7RS large might be, in some form,
compatible with R6RS.

This discussion merged with several other long-standing concerns of some
working group members that the semantic issues of the small language, which
made it unsuitable for the purposes the large language was intended for, were
greater than John Cowan seemed to appreciate. The small language report
specifies almost all error cases, including out-of-bounds array accesses and many
others with safety implications, as undefined behaviour (in the C sense). The
working group agreed to resolve these issues by defining a new superset of
the small language with better safety guarantees, to be called the R7RS large
Foundations and published as the first volume of the eventual report. Other work
on standard libraries would go into a Batteries volume3 for portable libraries,
and an Environments volume specifying additional non-portable features, mainly
those requiring operating system support.

Arguments in the working group, mainly centred around the extent of R6RS
compatibility in the Foundations and in the R7RS large language as a whole,
became increasingly heated. It was against the background of this heated discus-
sion that John Cowan, the working group’s first chair, resigned in August 2023.
The steering committee installed me as his successor the next month.4

My first decision as chair was to postpone discussion of the most controversial
issues and begin immediate work on the specification for the Foundations using

2The SRFI system is similar to Python Enhancement Proposals (PEPs) in the Python
community, Java Specification Requests (JSRs) for Java, Swift Evolution documents (SEs)
for Swift, etc.; it is considerably more open than these processes, but also less binding. Any
Schemer may submit a proposal for a library or semantic change in Scheme; but finalization of
a proposal simply means the community agrees that it has reached a state of maturity, without
in itself imposing any requirement on implementations to support the proposal.

3The reference is to Python’s ‘batteries included’ slogan; the final volume is likely to be
called something more prosaic.

4I was the only one crazy enough to volunteer for the job, although John Cowan did some
not-so-subtle persuading, both to get me to volunteer and to get the steering committee to
accept me.

3



the consensus we already had. I also developed a roadmap that would ensure
discussion at any one time remained focussed on one particular area.

Overall, my (ambitious) aim as chair is to reunify the Scheme community,
not only to reunify the R6RS and R7RS small languages with one another. It is
still not yet decided exactly to what extent R6RS will become a ‘part’ of R7RS,
but as mentioned above, interoperability and the ability to implement R6RS in
terms of R7RS are the current consensus for minimum baseline goals. As we
work through the roadmap, our decisions on these and many other issues will
come more into focus.

The roadmap also significantly cut down the scope of potential new features.
The proposals list maintained by John Cowan had 139 proposed but not yet
accepted features, almost all of which would have had to be codified into one
(or more) SRFIs. The SRFI process officially takes between 60 and 90 days per
proposal, and often much longer; furthermore, there were in practice very few
people working on turning these proposals into SRFIs.

The new roadmap needs only 14 SRFIs to be written and finalized for
the Foundations volume, and in practice that volume could likely become a
satisfactory specification of a core language without most of those. The Batteries
have also been reduced so that only 20 SRFIs are currently requested; we could
likewise do without many of those and still have a perfectly serviceable set of
portable standard libraries. The Environments will require considerably more
creativity to be useful, which is partly why no possible completion date for that
volume can yet be announced.

The original target completion date for the Foundations was December 2025,
in time for the fiftieth anniversary of the first Scheme report. This was an
ambitious target when I set it in 2023, and Hofstadter’s law was bound to
intervene, as it did in 2024 with administrative and other delays, scuppering
hope of realistically meeting this target. It might be feasible to have the whole
R7RS large report – Foundations, Batteries, and Environments – completed by
2028, the anniversary of Steele and Sussman’s Revised Report on Scheme.

4 Scheme revival and community reunification
The split over R6RS and R7RS was so severe that it could perhaps have spelled
a slow death for Scheme: Racket’s decision to break RnRS compatibility in its
core language could have set a precedent which other larger implementations
might have followed.

Happily, R7RS large is arriving just as a new generation of hackers discovers
Scheme and breathes new life into the community. To name one significant
project, the Spritely Institute is developing a new toolkit for creating distributed
applications in Scheme. Since 2021, they have mainly been working in Guile,
which is notable as one of the implementations which supports both R6RS and
R7RS small with a high level of interoperation. Application developers who
use Spritely’s tools can therefore freely use a mix of libraries written for either
report’s version of the language, as well as Guile’s own implementation-specific
libraries. The success of Spritely and Guile is an encouraging sign that R7RS
large’s approach of reunifying the two languages with the goal of creating a
reunited Scheme community might work. Other exciting developments include
Spritely’s Hoot project, which adds a WebAssembly backend to Guile and may

4



prove to be the first WebAssembly compiler for any garbage-collected language
whose closure sizes are small enough to be practical for use in in-browser web
applications. Notably, Spritely aimed first for R7RS small support in Hoot before
trying to support more of Guile’s standard library.

There are other developments in reuniting the two versions of the language.
Scheme does not yet have a universally accepted package registry like Hackage in
Haskell, but the Akku package registry and package manager by Gwen Weinholt is
well-positioned to become one. It supports a dozen Scheme implementations, with
some support for installing packages written for R7RS on R6RS implementations
by rewriting define-library to library declarations at installation time. It
also indexes packages from the older Snow repository which Alex Shinn, chair of
the R7RS small working group, created for R7RS small packages.

As mentioned, there are still some in the R6RS and R5RS/R7RS small
camps who seem somewhat implacably opposed to one or the other version of
the language. Time will tell if they can be persuaded by the success of projects
which point towards a reunification of the community, such as Spritely, Akku,
and hopefully the R7RS large specification.

5 R7RS large changes and additions
In contrast to previous status updates on R7RS large, this report has focussed
less on technical features and more on the social and political aspects of a
programming language community. To conclude, I will provide a brief overview
of some things that may appear in R7RS large which were not in any previous
Scheme report.

5.1 Macro features
The first fascicle of the Foundations specification was released as a first public
draft in October 2024. Besides cleaning up and unifying the R6RS and R7RS
small provisions for macros, it includes two significant new features: syntax
parameters and identifier properties.

Syntax parameters allow dynamically adjusting the macro transformer asso-
ciated with a binding within an entire lexical block of code. This means some
seemingly unhygienic macros, which re-introduce the same unhygienic identifier
binding each time, can be implemented by merely ‘bending’ hygiene. They are
already supported by Racket, Chibi Scheme, Guile, Gerbil, and Chez Scheme.

Identifier properties allow programmers to write macros which add context-
specific new semantics to existing bound identifiers. For example, my pattern
matching proposal (section 5.6) uses identifier properties to determine the
meaning of a ‘constructor’ identifier which appears on the left-hand side of
a pattern matching clause. It would also be possible, for example, to extend
Scheme’s set! to work like a hygienic version of Common Lisp’s setf using
identifier properties, or to provide an expand-time mechanism for finding the
relationships between the procedures which belong to a record type. They were
first introduced in Chez Scheme and, as of writing, are still only supported by
Chez and by the R7RS expander Unsyntax.

5



5.2 Storage control
Weak references and finalization are important primitives which, among other
things, provide a flexible means of extending the functionality of built-in Scheme
types without memory leaks. Under John Cowan’s chairship, ephemerons were
adopted as the primitive weak referencing system, which is semantically beneficial
since all other known weak reference types can be implemented in terms of
ephemerons, but not vice versa. Ephemerons are fully supported by Chez Scheme
(and by extension in Racket, which uses the same storage manager) and MIT
Scheme; slightly buggy implementations are provided by Chibi Scheme and
Gambit (and by extension Gerbil, whose relationship to Gambit mirrors that of
Racket to Chez).

We will probably adopt guardians as a finalization mechanism. Unlike classical
finalizers, guardians queue objects for finalization but require explicit action
to de-queue them and run any finalization code. The mechanism is generation-
friendly, and it is always clear when and in which dynamic environment and
thread finalization code will run, which is not always the case with classical
finalizers. Guardians are supported by Chez Scheme and by Guile.

5.3 Tagged procedures or applicable records
R4RS defined the behaviour of Scheme’s built-in polymorphic equivalence pre-
dicates when applied to first-class procedure values. This is sometimes useful,
but requiring lambda to return a newly-created procedure on each evaluation
inhibits many compiler optimizations, such as lifting. R6RS therefore removed
this feature of the R4RS and left unspecified whether these equivalence predicates
would return true or false when given procedures as arguments. Upon request
of Gerald J. Sussman and several over voters on the ratification, R7RS small
restored a variant of the R4RS semantics at the eleventh hour.

R7RS large is a compatible superset of R7RS small, so its definition of
procedure equivalence remains. It is being clarified, though, in a way which does
not hinder any known optimizations of lambda expressions. In parallel, we are
probably going to provide some variant of lambda which does guarantee that
every evaluation will create a first-class procedure object which is distinguishable
from every other object.

There are several potential approaches here. One is simply as described above:
a constructor for procedures which may not be lifted, eta-converted, or have any
other optimizations applied to it which would prevent its identity from being
useful. Another is a form of tagged procedure, which contains an additional
box whose value can be accessed without calling the procedure. Many Scheme
implementations already support this kind of tagged procedure, but they are
not strictly type-safe as one can easily pull the value out of one procedure’s box
and put it in another’s, even if the other procedure does not have the behaviour
that would normally be implied by that value being in its box. So a type-safe
variant may be developed; or, in the most ambitious proposal, record types may
be extended to add the ability for a type to define what happens when one of its
instances is applied like a procedure.

6



5.4 Delimited control operators
Scheme’s call/cc is possibly its most distinctive feature. It is very powerful, but
unsafe. Calls for its removal have grown ever louder in the last quarter-century,
since newer primitive control operators have been developed which are just as
powerful but which enable derived control features to compose better with one
another. Many Scheme implementations already include some delimited control
system: it is thus a matter of standardizing a common interface.

Racket has integrated call/cc seamlessly into its system of delimited control
operators by adding an additional, optional prompt argument, alongside a
‘composable continuation’ variant. This seems a good model for standard Scheme
to follow, and SRFI 226 proposes adopting Racket’s delimited control operators.
SRFI 226 is a maximalist and somewhat un-approachable proposal, though, and
includes provisions for some things that may not be practical to standardize at
all, such as threading. We will likely develop a reduced version.

5.5 Data structures
Moving from the Foundations to the Batteries, we aim to include a selection
of data structures which satisfies the expectations of functional programmers
today. R6RS standardized a library for classical, mutation-based hash tables,
but functional programmers now expect efficient persistent mapping types of
some kind. Both sorting- and hash-based persistent mappings will be included
in the Batteries. Classical hash tables will also be provided, but likely with a
twist: they will probably be required to remember the order in which items were
added, since implementation techniques have been demonstrated by which a
hash table with this property can be implemented with less memory usage than
one which does not maintain insertion order.

Finger trees and Clojure-style persistent growable vectors are two other
significant developments in data structures since the R6RS. Since finger trees
depend on laziness for good asymptotic performance, and Scheme runtimes are
optimized for eager evaluation, it is not clear whether they would be practical if
included in R7RS large’s Batteries. We will likely opt for one or the other.

Mutation-based dynamically-sized vectors are also useful in some situations
and have been proposed. We are not yet sure whether their utility over persistent
growable vectors and/or finger trees is great enough to warrant inclusion.

While proposals have been made for more specialized data structures, such
as radix trees for persistent integer-keyed maps, the working group has not yet
decided whether these should be included in the Batteries or left as install-
able packages.

5.6 Pattern matching
Programmers of other functional languages have complained about Scheme’s lack
of pattern matching facilities for almost as long as Scheme has existed. In the
1990s a de facto standard third-party library emerged in the form of an unhygienic
macro written by Bruce Duba and Andrew K. Wright; this was subsequently
ported to hygienic syntax-rules by Alex Shinn. Many Scheme implementations
included the ‘Wright’ pattern matcher or Alex Shinn’s re-implementation of it.

7



Alas, an attempt to standardize Wright-style pattern matching in SRFI 204
foundered, in part because of the SRFI author’s self-admitted inexperience,
but also because of subtle semantic disagreements between Wright’s original
implementation, Shinn’s re-implementation, and other re-implementations, which
could not be usefully resolved. Duba and Wright also made the unfortunate
decision that the syntax for deconstructing values should be based on the lexical
syntax of datum types, rather being named by the procedural forms used to
construct values. This makes it tricky to adapt to match other types such as
hash tables or the other data structures mentioned above, which do not have a
lexical syntax.

I am proposing an alternative pattern matching construct which does not have
these issues. This pattern matcher can be taught about new types of patterns
using Scheme’s familiar macro system, so writing patterns for new types of data
structure is easy, and new patterns have comparable efficiency at run time to the
ones for Scheme’s built-in data structures. The proposal is based on a pattern
matching library developed by Sam Tobin-Hochstadt for Racket, which has also
been used as a model for pattern matching macros in Emacs Lisp and Common
Lisp.

Pattern matching ought to be more widely used in Scheme. Unfortunately
it is unlikely that it will become a standard idiom for some time yet, but
incorporating a pattern matching construct into the R7RS Batteries would set a
positive example. Wright’s pattern matcher is well-known but has the syntactic
and semantic weaknesses mentioned; my pattern matcher, while based on solid
precedents, is new to Scheme, depends on the likewise-new identifier properties,
and does not have much acceptance yet.

6 Conclusion
In the year of Scheme’s fiftieth birthday, it may be possible to hope that the
divisions which have plagued the Scheme community for the last twenty years
might soon be resolved.

One unique challenge faced by Scheme standardization is the sheer number
of different implementations, the variety of platforms and environments they run
in, and the variety of approaches to implementing the language. The fact that all
of these implementations are maintained by volunteers, so any new requirement
in the specification adds more to the to-do lists of dozens of people working in
their free time, only exacerbates this issue. As working group members we are
trying to mitigate this problem by actively engaging with implementers, and
by submitting patches to implementations ourselves adding support for R7RS
features. Through this work, we can see that most implementers, including those
who rejected one or the other previous version of the language, are open to
supporting efforts to bring the two versions together.

Furthermore, as implementations, third-party packages, and the R7RS spe-
cification develop, it is becoming more and more practical to write Scheme
libraries portable between implementations without significant porting effort.
This would be a new milestone in the development of Scheme and, empowered
by the growing new community of Schemers, set us up to be a lively and relevant
language for the next fifty years.

8



Partial Bibliography
This partial bibliography should provide good starting points for the interested
reader to find more information about any particular point raised above.

1. Alex Shinn, John Cowan, & Arthur A. Gleckler (eds.) Revised7 Report
on the Algorithmic Language Scheme (small language), 2013. https://
standards.scheme.org/official/r7rs.pdf Includes brief history of the
language with references to all prior Scheme reports and standards.

2. ‘R6RS Ratification Vote’, 2007. https://www.r6rs.org/ratification/
results.html Lists the rationales of all voters against the ratification of
R6RS, and many of those who voted in favour.

3. Marc Feeley, ‘Implementors’ intentions concerning R6RS’, posting on r6rs-
discuss@r6rs.org, 27 October 2007. https://www.r6rs.org/r6rs-discuss/
3298.html

4. Arthur A. Gleckler, ‘Scheme Requests for Implementation Status Report’,
presentation at the 2022 ICFP Scheme Workshop. https://www.youtube.
com/watch?v=xzZfdPtHvOk

5. John Cowan, reports on the Red, Tangerine, and Yellow editions of R7RS
large, 2016–22. Archived at https://codeberg.org/scheme/r7rs/src/
branch/main/ballot-results/jcowan/edition

6. John Cowan, ‘ColorDockets.md’ (2014–22) https://github.com/johnwcowan/
r7rs-work/blob/master/ColorDockets.md

7. Christine Lemmer-Webber, Randy Farmer, & Juliana Sims ‘The Heart
of Spritely: Distributed Objects and Capability Security’ (draft white
paper, last updated 2024) https://files.spritely.institute/papers/
spritely-core.html

8. Gwen Weinholt, ‘Akku: Package management made easy’ https://akkuscm.
org

9. Daphne Preston-Kendal (ed.) ‘The Revised7 Report on the Algorithmic
Language Scheme: Foundations Fascicle I: The Macrological Fascicle’ (pub-
lic draft 1), 2024. https://r7rs.org/large/fascicles/macro/1/

10. Central repository for development of the R7RS Large specification of
the Scheme programming language, https://codeberg.org/scheme/r7rs
The files FOUNDATIONS.txt and FOUNDATIONSTOC.txt, BATTERIES.txt,
and ENVIRONMENTS.txt contain current complete agendas for all features
that might possibly be in the language. The wiki page ‘Needed SRFIs’
contains a list of proposals for which no existing SRFI-level specification
yet exists and will need to be developed.

11. John Cowan, ‘Ephemerons’, Scheme Request for Implementation 124.
https://srfi.schemers.org/srfi-124/srfi-124.html Includes refer-
ences to papers on the design and implementation of ephemerons.

9

https://standards.scheme.org/official/r7rs.pdf
https://standards.scheme.org/official/r7rs.pdf
https://www.r6rs.org/ratification/results.html
https://www.r6rs.org/ratification/results.html
https://www.r6rs.org/r6rs-discuss/3298.html
https://www.r6rs.org/r6rs-discuss/3298.html
https://www.youtube.com/watch?v=xzZfdPtHvOk
https://www.youtube.com/watch?v=xzZfdPtHvOk
https://codeberg.org/scheme/r7rs/src/branch/main/ballot-results/jcowan/edition
https://codeberg.org/scheme/r7rs/src/branch/main/ballot-results/jcowan/edition
https://github.com/johnwcowan/r7rs-work/blob/master/ColorDockets.md
https://github.com/johnwcowan/r7rs-work/blob/master/ColorDockets.md
https://files.spritely.institute/papers/spritely-core.html
https://files.spritely.institute/papers/spritely-core.html
https://akkuscm.org
https://akkuscm.org
https://r7rs.org/large/fascicles/macro/1/
https://codeberg.org/scheme/r7rs
https://srfi.schemers.org/srfi-124/srfi-124.html


12. R. Kent Dybvig, David Eby, & Carl Bruggeman, ‘Guardians in a generation-
based collector’ in ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation 207–16, 1993.

13. Oleg Kiselyov, ‘An argument against call/cc’ (last updated 2012) https://
okmij.org/ftp/continuations/against-callcc.html Includes extens-
ive references to articles on alternative control operators.

14. Daphne Preston-Kendal, ‘Pre-SRFI for an extensible pattern matcher’.
https://codeberg.org/dpk/extensible-match Includes extensive his-
tory of pattern matching with a focus on its use in Scheme, with exhaustive
bibliography on the topic.

10

https://okmij.org/ftp/continuations/against-callcc.html
https://okmij.org/ftp/continuations/against-callcc.html
https://codeberg.org/dpk/extensible-match

	Historical background
	Ongoing divisions
	R7RS large im Wandel der Zeiten
	Scheme revival and community reunification
	R7RS large changes and additions
	Macro features
	Storage control
	Tagged procedures or applicable records
	Delimited control operators
	Data structures
	Pattern matching

	Conclusion

