Formal Specification and Functional Programming
Implementation of Distributed Lazy Group
Membership Protocol

Jianhao Li and Viktéria Zsok!

Eo6tvos Lorand University, Faculty of Informatics
Department of Programming Languages and Compilers
H-1117 Budapest, Pazméany Péter sétany 1/C., Hungary

lijianhao@inf.elte.hu, zsv@inf.elte.hu

Abstract. In distributed systems, nodes typically collaborate to accom-
plish tasks. Many distributed systems adopt groups or clusters as archi-
tectural units to enhance the management and coordination of nodes. The
group membership protocol serves a crucial role in ensuring a consistent
understanding of member status across all nodes in the group. Group mem-
bership protocols are essential in various real-world distributed systems,
such as IoT sensor networks, smart agriculture, environmental monitoring,
satellite communications, remote infrastructure monitoring, smart build-
ings, industrial automation, intelligent transportation systems, and medical
monitoring systems. Group membership protocols are traditionally catego-
rized as heartbeat-based or gossip-based. Both protocol categories require
frequent heartbeat or ping messages, facing challenges in energy efficiency,
especially in systems with low failure rates and high energy consumption re-
quirements. This paper introduces a novel group membership protocol with
two main algorithms that eliminate the need for periodic ping or heartbeat
messages. This protocol is designed for Symmetric P2P Systems using the
actor model and ensures strong consistency. We provide formal specifications
and verifications using TLA+ to ensure the correctness of our algorithms.
The safety and liveness properties of the specifications are verified with the
TLC model checker. Additionally, the protocol implementation in functional
programming language is provided and evaluated.

Keywords: Distributed systems - Group membership protocol - Formal
specification - Actor model - Concurrent functional programming.

1 Introduction

Group membership protocols [I9] play a crucial role in many real-world distributed
systems. In IoT sensor networks, for example, group membership protocols are es-
sential. In smart agriculture, sensors need to be dynamically added or removed
to meet changing agricultural demands, which indicates the need for a protocol
to manage these nodes. Similarly, environmental monitoring systems must dynam-
ically adjust sensor deployments as monitoring regions and parameters change.

2 J. Li, V. Zsok

Satellite communication systems require group membership protocols to maintain
coordination, especially when new satellites are launched or old ones are decommis-
sioned. Remote infrastructure monitoring systems, such as those for power grids or
oil pipelines, rely on group membership protocols to manage the addition of new
monitoring nodes and the replacement of failed nodes. Smart building systems, like
Building Management Systems (BMS) [23], need to manage the dynamic addition
and maintenance of devices and sensors. Industrial automation systems, including
factory automation and monitoring systems, frequently change and upgrade pro-
duction equipment and monitoring nodes, requiring a protocol to ensure system co-
ordination. Intelligent transportation systems (ITS) [4] need to dynamically adjust
and expand traffic monitoring devices to accommodate changing traffic patterns.
In medical monitoring systems, such as remote patient monitoring, devices are dy-
namically added, removed, and replaced, necessitating a reliable group membership
protocol to maintain system coordination.

However, the nodes in these systems typically experience very low failure rates
but have high energy consumption requirements. For instance, sensors in smart
agriculture are usually battery-powered and seldom fail due to rigorous environ-
mental testing. Environmental monitoring system [20] sensors are often installed in
fixed positions, requiring high energy efficiency and experiencing rare failures due
to stable environments. Satellites in satellite communication systems need highly
energy-efficient communication and operation systems, but node (satellite) failures
are rare due to high design and manufacturing standards. Sensor networks monitor-
ing power lines and substations require long-term stable operation with high energy
demands but low equipment failure rates. Sensors deployed along oil pipelines for
leak and pressure detection are designed with strict energy requirements and low
failure rates due to the difficulty of maintenance. Sensors and control nodes in smart
buildings, such as HVAC (heating, ventilation, and air conditioning) systems [25],
lighting, and security, are designed for energy efficiency and have low failure rates
due to stable environments. Sensors and actuators in industrial automation systems,
used for monitoring and controlling factory production lines, face low failure rates
due to stable environments and robust design but require strict energy efficiency to
reduce operational costs. Traffic monitoring sensors for intelligent transportation
systems, deployed in fixed positions like roads and bridges, require low energy con-
sumption to extend device lifespan and experience low failure rates due to stable
environments. Wearable devices and sensors in medical monitoring systems need
long-term low-power operation with very low failure rates due to rigorous testing
and certification.

The group membership protocol in distributed systems involves ensuring that
all members in the group maintain an up-to-date and consistent group member list
of active members [0].

The current group membership protocols can be categorized into two types: the
heartbeat-based group membership protocol and the gossip-based group member-
ship protocol.

The heart-beating group membership protocol is the traditional type. However,
implementations of the heart beating suffer from scalability limitations, which im-

Title Suppressed Due to Excessive Length 3

pose network loads that grow quadratically with group size, compromise response
times, or false positive frequency [7].

Gossip-based group membership protocol is created to provide greater scalability
than the heartbeat-based group membership protocol. Each node forwards messages
to a small set of "gossip partners" chosen randomly from the entire group members
in a gossip-based group membership protocol [2].

However, taking the well-known SWIM algorithm [7] as an example, the gossip-
based protocol still needs each node to periodically send ping messages to a random
number of other nodes in the local table and to initiate a failure confirmation
based on the acknowledgment timeout, requesting assistance from several other
nodes to verify the failure. SWIM uses an infection-style dissemination mechanism
because hardware and IP multicasts are infrequently enabled on most networks
and operating systems due to administrative reasons. These are also the reasons
why the basic SWIM protocol can only utilize a costly broadcast or an inefficient
point-to-point messaging scheme [7].

In systems where node failures are rare and energy efficiency is critical, tradi-
tional group membership protocols with periodic messages are unsustainable. Even
reducing the frequency of heartbeat messages still results in unnecessary periodic
communications, consuming significant network bandwidth. Moreover, many sensor
networks use a duty cycling strategy to save energy by periodically switching sensors
between active and sleep states. Protocols like SWIM, gossip-based protocols, and
Chord [21] rely on periodic messages, which can conflict with duty cycling strategies.
Periodic messages require nodes to wake up regularly for communication, increas-
ing energy consumption and negating the benefits of duty cycling. Alternatively,
prioritizing duty cycling can lead to message transmission delays and communica-
tion failures, reducing the effectiveness and consistency of the group membership
protocol.

To address the above issues, we have designed a novel group membership proto-
col with two key components: a group list consistency algorithm and a lazy failure
detection algorithm.

Our lazy failure detection algorithm significantly reduces communication over-
head by avoiding periodic ping or heartbeat messages. When no tasks are present,
communication overhead is nearly nonexistent. In the lazy failure detection al-
gorithm, the ping messages are not sent based on time intervals. Only when a
task-related message transmission fails does the sending node become suspicious
of the receiving node’s potential failure. Ping messages are only used when a node
suspects another node’s failure and seeks other nodes’ assistance for confirmation
during the failure confirmation phase.

Weak or eventual consistency algorithms might not provide sufficient guarantees
for group list consistency in the absence of periodic messages since those algorithms
allow some nodes to be temporarily unaware of the existence of new nodes. There-
fore, a strong consistency algorithm design is necessary to ensure that all group
members are aware of group list updates after a complete system operation.

In Symmetric P2P Systems [12], all nodes have peer-to-peer status, no central
control point or master-slave relationship, and all nodes have the same roles and

4 J. Li, V. Zsok

rights. Symmetric P2P systems are more suitable for the above sensor systems
because the decentralized architecture can avoid single points of failure and improve
the scalability and fault tolerance of the system. The P2P system can easily add or
remove nodes to adapt to dynamic changes in the system. So, our algorithm design
is for Symmetric P2P Systems.

Our protocol leverages the actor model [I], where each actor is an indepen-
dent computational entity with its state and behavior. Actors communicate asyn-
chronously through message passing instead of directly accessing shared resources,
which is well-suited for handling concurrent communication tasks efficiently.

This design adheres to the non-Byzantine model [I4], where nodes fail by stop-
ping operations without sending false or malicious messages.

The challenge in designing this group list consistency algorithm is that we need
to consider the possibility of node failure and messages being received unordered.
In addition, under the architecture requirements of symmetry P2P and the actor
model, as few messages as possible are used to achieve strong consistency in the
group list.

Existing distributed algorithms do not fully align with the assumptions and re-
quirements of our target scenario. Distributed mutual-exclusion algorithm [13] does
not account for node failures and assumes ordered message reception. At the same
time, the commit protocols (like two-phase commit protocol [5], three-phase commit
protocol [5] and Paxos commit algorithm [8]) and the consensus algorithms (like
Paxos [14] and Raft [I7]) do not meet the assumptions of symmetric P2P systems.
Therefore, we have developed a new group list consistency algorithm tailored to
these needs. Detailed related work can be found in

We define the specification of the two algorithms of the group membership proto-
col using TLA+ [1524], which enables us to express the algorithm designs precisely.
Moreover, formal verification with TLA+ provides us with more information about
the correctness of the algorithms since TLA-+ is a formal specification language,
functioning as a high-level language for modeling distributed programs and sys-
tems. The specification contains specific safety and liveness properties that ensure
the group list consistency (described in [subsection 2.1)), and the fail is eventually
confirmed (described in [subsection 3.1)).

Although some research uses TLA+ for formal verification of distributed sys-
tems, TLA+ specifications specifically targeting algorithms of group membership
protocol are relatively less. Existing TLA+ applications are more concentrated in
distributed databases, consensus algorithms (such as Paxos and Raft), and other
fields. We hope our work can be seen as one more step towards formalizing and
proofing distributed algorithms and providing other software architects with prac-
tical experience in formal specification.

In summary, this paper introduces a novel group membership protocol contain-
ing two algorithms. It also provides formal specifications, verifications and imple-
mentations for these two algorithms.

In the following sections, first, the design of two algorithms is introduced with
the problem, methodology, algorithm description, formal specification, and mes-

sage complexity in and in respectively; next, the specification

Title Suppressed Due to Excessive Length 5

verification is presented in afterward, the functional programming imple-
mentation is described and evaluated in next, the algorithms’ features,
limitations and future work are discussed in [section 6} next, related work is analyzed

in [section 7} finally, the conclusion is summarized in [section §

2 Group list consistency algorithm

In this section, the group list consistency algorithm is introduced. The algorithm
description in natural language is easier to understand than in formal specifica-
tions. However, it is easier to produce ambiguity. Therefore, it is suggested that the
implementation be constructed according to the specifications.

2.1 Problem

The problem is how to achieve the group list consistency following the actor model
and the symmetric P2P architecture. Sustainability and scalability should also be
considered during the design phase.

The group list consistency algorithm specification assumes that:

(A1) The receiver will eventually receive the message as long as it is active.
This assumption is fulfilled by the underlying communication method.

(A2) Nodes may experience non-byzantine failures [3]. The nodes that have not
failed will send responses in a certain amount of time for the message they have
to respond to. The failed node loses all the information. (The nodes do not have
stable storage that can survive failure and restart).

Considering the existence of the environment without stable storage and the
high cost of stable storage, we do not assume all the nodes in the system has stable
storage that can survive failure and restart. Therefore, the restarted node needs to
rejoin the group.

The requirements of the algorithm specification:

(R1) Single introducer constraint: Only at most one node in the group is in the
introducer state, which can send the group structure to the new group member and
inform the existing group members about the new member.

This requirement prevents the group list inconsistency caused by synchronous
group joining. Suppose two new group members join the group simultaneously; if
two nodes are processing their joining requests separately and simultaneously, the
group structure sent back to the new group members may not contain another new
group member.

(R2) Idle group consistency: If all the group members are idle (which means no
changing is happening; there can be changes before or after), then their group list
is consistent (for every member u, the group list of u equals the set of all members
excluding u).

(R3) FEventually group idle: Eventually, for all n in the set of members, the
node state of n will become idle. The R2 and R3 imply the eventual consistency of
the group lists among the group members.

6 J. Li, V. Zsok

(R4) Reliability: the design considers the non-byzantine failure of a node and
message delays. The specification contains the action that lets the node fail. The
nodes’ failure does not block the system before they recover.

(R5) Decentralization, symmetry, independence of nodes, and adherence to the
actor model.

Symmetry is a property of P2P systems that declares that all nodes do not have
unique capabilities that distinguish them from the rest of the nodes [12]. There is
no static centralized manager role of the algorithm. The new member can send the
join request to any existing group member. Each existing member in the group has
the same role and can temporarily become the introducer after receiving the join
request. There is no need for a particular node to be more powerful. Additionally,
we do not use shared resources (shared variable, shared database) and do not use
one node or several nodes to maintain the group structure specifically. All the
group nodes keep their own local group structure list. It is also for the scalability
consideration (no central bottleneck) and for reliability consideration (inherently
free of a single point of failure).

This requirement also demands specifying the system following the actor model.
Firstly, each node performs computations and sends messages based solely on its
local states without using shared variables. Secondly, since the actor model assumes
distributed systems are composed of distributed components that can interact with
each other asynchronously [I], it is necessary to specify the mailbox of nodes and
the asynchronous communication among the nodes.

(R6) Sustainability: the system decreases the number of messages and the hops
of each message. The amount of messages should be as low as possible when the
new members join the group.

2.2 Methodology

The algorithm is designed to coordinate the nodes through message passing, like
most of the existing distributed algorithms. Under the requirements of the actor
model and symmetric P2P architecture (nodes have equal roles, no shared resources,
and unordered messages), the algorithm achieves group list consistency considering
possible node failures. Unnecessary features, such as aborts and event ordering,
are excluded. We minimize the number of messages and communication rounds in
different design versions to enhance energy efficiency. Additionally, scalability is
addressed by implementing the forwarding and batch processing mechanism of join
requests.

2.3 Algorithm description

Initially, a node outside the group begins as a joiner and sends a joining request to
any existing group member B to start the joining process with a joining timeout. If
the joiner receives a group structure message from any existing group member, it
joins the group successfully, updates its local group list according to the information
it receives, and becomes an idle group member. If the joiner receives a join fail

Title Suppressed Due to Excessive Length 7

message, it knows it failed to join the group. Suppose the group structure message
does not arrive within the joining timeout. In that case, the joiner will check if B has
failed (information provided by the lazy failure detection algorithm). If B fails, the
joiner knows it failed to join the group; if B does not fail, reset the joining timeout.
Once the join request has been forwarded to other group members, the joiner will
receive a handler update message and update the related local information.

When a failure is detected, the idle members update their deletion informing
list. Nodes intending to leave voluntarily add themselves to the deletion informing
list.

If an idle node finds out its group list except the deletion informing list is an
empty set (which means it is the only member in the group), it updates its group
list without sending any message.

After receiving a joining request or its delete inform list is not empty, the group
node in idle state becomes waitingInformAck and sends informing messages to all
the group members except the nodes in its deletion informing list. Then, it waits for
the inform acknowledgments with an inform timeout. If It receives all the inform
acknowledgments from all the not-failed nodes of the group list except the deletion
informing list, it enters the introducer state.

For scalability, the node in introducer state can still receive joining requests from
other new members or existing group members and detect failed nodes. The node
in introducer state can also carry out the update operation by sending operation
messages (ask the group members to deal with the group list update operation) to
all the group members except the delete inform list. It also sends a group structure
message to the joiner and updates its own local group list.

After the inform timeout of the node B in waitingInformAck state is exceeded, if
B has not yet received lock acknowledgments from more than half of the not-failed
nodes of its group list except the deletion informing list and it has received a lock
request message from another node in the state waitingInformAck C with larger
node ID, then will give up becoming introducer by sending:

— finish messages to all the nodes of its group list,
— fail joining message to the related joiner,
— inform acknowledgment message to the node C.

The node ID can be changed to other comparable unique values of nodes.

After receiving an inform message, the group members in state idle change to
state informed with an informed timeout and send back the inform acknowledgment
message.

For every group member D in the state informed: it changes to state idle after
receiving a finish message; it forwards the join request to the node informed D
after receiving a join request from a new group member; it includes the new group
members to the local group list, sends back the operation acknowledgment message
and change to state idle after receiving the operation message; if the node informed
the node D failed and the informed timeout is elapsed, it changes to state idle.

The details of local information, such as the informld, are eliminated from this
description.

8 J. Li, V. Zsok

2.4 Formal specification

As shown in[Figure 1| SingleIntroducerConstraint formally specifies the safety prop-
erty R1 in [gection 2]

SingleIntroducerConstraint = Cardinality({m € members :
locallnfos[m|[“nodeState” | = “introducer"}) <1

Fig. 1. The SingleIntroducerConstraint invariant of the group list consistency algorithm

As shown in IdleGroup Consistency formally specifies the safety prop-
erty R2 in

SingleIntroducerConstraint = Cardinality({m € members :
locallnfos|m||"nodeState” | = “introducer”}) <1

Fig. 2. The IdleGroupConsistency invariant of the group list consistency algorithm

As shown in EventuallyGroupldle specifies the liveness property R3
in Isection 2i

EventuallyGroupldle = (Y n € members : locallnfos[n]["nodeState" | = “idle”)

Fig. 3. The EventuallyGroupldle property of the group list consistency algorithm

As shown in after receiving the inform message, the group member
nodes in the idle state are informed by the inform message sender, and they send
a inform acknowledgment back.

2.5 Message complexity

The most significant energy consumption arises from CPU operations and network
communication in many low-power devices [I6]. In the group list consistency al-
gorithm, we assume that the transmission distance of all communications is the
same and only consider the impact of the number of messages on sustainability. In
requirement (R5), we mentioned that this algorithm should have a low number of
messages under the ideal situation (new members join the group in order with some
intervals).

Title Suppressed Due to Excessive Length 9

Recvlnform(n) =

A locallnfos|n][“nodeState” | = “idle”
A3Ji € 1.. Len(mailbozes[n]) :
LET

Msg = mailbozes [n][7]

InID = Msg|"informld”|

TAck [type — “informack”,
informld — InID, sender — n]

e [l

IN
A Msg|“type” | = “inform”
A locallnfos’ = [locallnfos EXCEPT
![n]["nodeState” | = “informed"”, ![n]["“informld"| = InID]
A mailboxes’ = [mailbores EXCEPT
'[InID|["intro"]] = Append(Q, IAck),
'[n] = RemoveBylIndex(Q, i)]
A UNCHANGED {(members)

Fig. 4. The RecvInform action of the group list consistency algorithm

Within the context of the distributed transaction commit problem, transaction
managers [8] are responsible for orchestrating the various steps involved in commit-
ting a transaction, managing resource locks, and handling any potential conflicts or
failures that may arise during the process. Suppose N is the number of transaction
managers (for the distributed transaction commit problem) and the number of ex-
isting group members (for the group joining problem). The number of messages in
the ideal situation can be calculated: there is one joining request, N — 1 of inform
messages, N — 1 of inform acknowledgments, N of operation and group structure
messages, and N of operation and group structure acknowledgments. There are
4 % N — 1 messages in total. Accordingly, there are five message delays [g].

For comparison, we use two distributed asynchronous algorithms dealing with
the distributed consistency problem: the two-phase commit protocol [5] and the
Paxos commit algorithm [§]. The differences are discussed in detail in
The two-phase commit protocol requires four message delays and uses about 3 x N
messages for larger values of N [8]. The Paxos commit algorithm requires five
message delays and uses about 4 * N messages for larger values of N [§].

Two-Phase Commit|Paxos Commit|Actor group joining
Message delays 4 5 5
Messages 3*N -1 4*N 4*N-1
Table 1. Message complexity comparison

10 J. Li, V. Zsok
3 Lazy failure detection algorithm

This algorithm can provide the fail information needed in the group list consistency
algorithm.

Under sustainable consideration, in an actor model system, an actor does not
need to be concerned by another node’s failure status if there are no message in-
teractions. Therefore, this algorithm achieves the lazy characteristic by not using
a heartbeat and gossip mechanisms. The failure detection process is initiated only
after the acknowledgment timeout of task-related messages rather than being per-
formed periodically.

To provide the node failure-related information of the lazy failure detection
algorithm to the group list consistency algorithm, we can set some messages in
the group list consistency algorithm as task-related messages or send additional
task-related messages when failure information is required.

3.1 Problem

The problem with designing the lazy failure detection algorithm is how to ensure
specific safety and liveness properties without periodic messages.

The lazy failure detection algorithm shares the same assumptions as the group
list consistency algorithm.

3.2 Methodology

This algorithm employs a timeout mechanism but replaces the conventional heart-
beat mechanism with task-related message timeouts for failure detection. A consen-
sus mechanism reduces false positives caused by transient network issues. The lazy
failure detection algorithm is specialized. It utilizes a timeout-based failure detector
within an asynchronous model, where no upper bounds on message delivery delays
and processing times are assumed. Consequently, the timeout-based failure detector
may incorrectly suspect failures due to message delays and processing times, thus
not meeting the accuracy properties of conventional failure detectors.

Furthermore, eliminating periodic messages means it cannot satisfy the com-
pleteness properties typical of standard failure detection algorithms. Specifically,
when there are no task-related messages, the algorithm cannot ensure that every
failed node will eventually be permanently suspected by all (or some) running nodes.
Therefore, unique properties need to be designed for this algorithm.

3.3 Algorithm description

When a node fails to receive the acknowledgment of a task-related message, it
starts the failure detection process by sending assist requests to a fixed number
of nodes that are randomly chosen from the group nodes (except itself, the task-
related message receiver, and the confirmed failed nodes). After receiving the assist

Title Suppressed Due to Excessive Length 11

requests, the group member nodes send detection messages to the task-related mes-
sage receiver and send the detection results to the task-related message sender. The
task-related message receiver sends detection responses once it receives detection
messages.

3.4 Formal specification

As shown in NoFalseFailureDetection specifies a liveness property: for
every group node, if aways no messages are sent to the node, it will not be confirmed
to failed.

NoFalseFailureDetection =
Vn € GroupNodes :
(O(=3i € 1.. Len(mailbozes[n]) :
mailboxes|n][i][“type"] = “CMsg")
= n ¢ confirmedFailedNodes)

Fig. 5. The NoFalseFailureDetection property of the lazy failure detection algorithm

As shown in [Figure 6] this algorithm has one more liveness property: for all the
nodes, if a node A failed, and there is another node B that tried to send a message
M to this failed node A and the detect process of this message M is completed,
then eventually the node A will be confirmed failed.

EventualFailure Confirmation =
Vn € GroupNodes : (((3i € 1.. Len(mailbozes|n]) :

A mailbozes|n][i][“type”] = “CMsg”
A mailbozes|n][i]["cMsgld"| € detectRecords)
A locallnfos[n][“nodeState” | = “Fail”)

~ (n € confirmedFailedNodes))

Fig. 6. The FventualFailureConfirmation property of the lazy failure detection algorithm

3.5 Message complexity

Assuming one actor (or node) will query other A nodes once it fails to receive the
acknowledgment, the lazy failure detection algorithm needs 4 * A messages for the
failure detection.

12 J. Li, V. Zsok

Assuming ¢ is the time and N is a function of node number, N (¢) is the number
of nodes present in the system at time ¢. Similarly, M, (¢) is the number of the task-
related message at time ¢, and Py(t) is the the probability that failed to receive
acknowledgment in time for a task-related message at time t. Then, the M; equals
the number of messages of the lazy failure detection algorithm in the time slot
[t1, ta].

ta
M, = (44) - N(t)- M;(t)- Ps(t) dt
t1

In comparison, assume the algorithms (or protocols) with heartbeat or ping
messages have constants for the frequency of the heartbeat or ping message M,
and the number of nodes to which a node should send periodic messages, B. The
constants M, and B usually need to be configured according to the system, and
the coverage rate and the number of messages need to be balanced. Then, the My
stands for the number of messages of the algorithms (or protocols) with periodic
messages in the time slot [t, t2].

ta
My=M, B- N(t)dt
ty

As we can see from the formulae, the lazy failure detection has a sustainability
advantage when the M;(t)- Pf(t) is smaller. In other words, this algorithm enhances
system sustainability when the task-related messages are fewer or the probability
that failed to receive an acknowledgment for a task-related message within the
timeout is small. However, the task-related messages among all the group members
with reasonable frequency can reduce the cases where failed nodes are not con-
firmed for a long time. Therefore, this algorithm suits systems with rare failures
and reasonably configured timeouts.

4 Formal verification

This section presents the formal verification of the specifications of the algorithms.
The TLC model checker is a type of formal verifier that can analyze the possible
behaviors of the algorithms. TLC model checker enumerates all the possible behav-
iors of the systems or algorithm. It contains the combination within which there are
many actions between the message-sending action and the message-receiving action,
representing the message delay scenario. In that scenario, even if a message arrives
early, it may be received (or processed) much later when multiple sub-actions are
enabled simultaneously.

All the instances of model checking in this section passed the TLC model check-
ing process, which indicates the specified safety properties are true in every reach-
able state and the liveness properties hold for every possible behavior of the algo-
rithms.

The machine used for model checking has the following specifications: AMD
Ryzen 7 7T840HS processor with Radeon 780M Graphics 3.80 GHz, 32 GB of RAM,
and Windows 11 as operating system.

Title Suppressed Due to Excessive Length 13

4.1 Group list consistency algorithm

Before the model checking, we include the formulae TypeOK, SingleIntroducerCon-
straint and IdleGroupConsistency as invariants of the model and include the for-
mula FventuallyGroupldle as properties of the model. When we run the test, the
TLC will check if those formulas are true in every reachable state (invariant) or for
every possible behavior (properties). For the additional TLC options: we set the
number of worker threads to 16; set the fraction of physical memory allocated to
TCL to 90%; turned off the profiling feature; and checked the option of verifying
temporal properties upon termination only.

To run the TLC model checker, we need to provide the value of the constants.

When we provide the {2,3,4} and {2,8} for the constants Nodes and InitMem-
bers, the TLC model checker console shows that no error was found when the model
checking was completed. 113440090 states were generated, and 71160463 distinct
states were found. The fingerprint collision probability is optimistically calculated
as 1.6E-4. The depth of the complete state graph search is 58. The model-checking
process finished in 332015 milliseconds.

When we provide the {2,8,/} and {2} for the constants Nodes and InitMembers,
the TLC model checker console shows that no error was found when the model
checking was completed. 188905223 states were generated, and 118734590 distinct
states were found. The fingerprint collision probability is optimistically calculated
as 4.5E-4. The depth of the complete state graph search is 63. The model-checking
process finished in 616768 milliseconds.

All the results we show below have been confirmed by the TLC that the model
checking was completed, and no error has been found. The states increase as the
number of initial members decreases for the same number of nodes. It is reasonable
because more nodes and fewer initial members result in more possible behaviors.

4.2 Lazy failure detection algorithm

The algorithm has passed the TLC model checking, including checks for the conven-
tional invariant TypeOK, liveness property NoFalseFailureDetection and Eventual-
FailureConfirmation. Below are the values of the declared constants of the model:
{2,3,4} (GroupNodes), 1 (AssistNum), and 1 (MazCMsgCount).

The TLC model checker console shows that no error was found when the model
checking was completed. 137905831 states were generated, and 30968036 distinct
states were found. The fingerprint collision probability is optimistically calculated
as 1.8E-4. The depth of the complete state graph search is 30. The model-checking
process finished in 2732687 milliseconds.

5 Implementation

Using Haskell to implement a TLA+ specification offers several advantages. Haskell
is a purely functional programming language. Reducing the impure code ensures
that the software is solid [I8]. Additionally, the functional nature of TLA+ closely

14 J. Li, V. Zsok

matches functional programming paradigms, making Haskell an ideal choice for
translating specifications into code. This matching facilitates a more direct and
intuitive mapping from mathematical models to executable code. It helps maintain
the rigor and correctness of the original TLA+ definitions in the implementation
process.

Haskell has the advantage of providing a large number of reliable and robust
packages. For instance, the Data.Serialize module from the Cereal package [10]
enable us to facilitate straightforward encoding and decoding of various messages;
the Data.Set module from the containers package [11]| offers an efficient im-
plementation of sets, making the transition from TLA+ specifications to Haskell
implementations smoother; and the SecureUDP package [9] ensures message deliv-
ery through mechanisms like resending and timeouts while preserving the asyn-
chronous, out-of-order nature of communication, which also fulfills the assumption
A1 in [subsection 2.1

The shows the implementation of the node state and the messages.
The default generic implementations of the put and get functions can be included by
making the Message type deriving Generic type class and declaring a Serialize
instance for Message without any function definition when the DeriveGeneric and
DefaultSignatures language extensions are enabled.

data NodeState = Idle | Informed | WaitingInformAck | Introducer | Fail 1
| NotInGroup | Joining | FailedJoin | Leave deriving (Show, Eq) 2

3

type NodeId = Wordilé 4
type InformID = (NodeId, Word32) 5
6

data Message 7
= Inform {informId :: InformID} 8

| Finish {informId :: InformID} 9

| Gsack {sender :: NodeId} 10

| Joinreq {sender :: NodeId} 11

| Joinfail {sender :: NodeId} 12

| Handlerupdate { 13

new :: Nodeld 14

, sender :: NodeId} 15

| Groupstruct { 16
currentMembers :: Set.Set Nodeld 17

, intro :: NodeId} 18

| Informack { 19
informId :: InformID 20

, sender :: NodeId} 21

| Operation { 22
informId :: InformID 23

, newMembers :: Set.Set Nodeld 24

, removeMembers :: Set.Set NodeId} 25
deriving (Eq, Show, Generic) 26

27

instance Serial.Serialize Message 28

Listing 1.1. The NodeState and Message

The shows the LocalInfo definition and the function examples for
actions idleLeave, selfUpdate, and informedTimeout. Other functions check the
enabling conditions of the above actions.

data LocallInfo = Locallnfo 1
{ nodeState :: NodeState 2

Title Suppressed Due to Excessive Length

, localInformId:: InformID

, introCounter :: Word32

, inMemory :: Nodeld

, toAdd :: Set.Set NodelId
, toDelete :: Set.Set Nodeld
, deleteInform :: Set.Set Nodeld
, ack :: Set.Set Nodeld
, grouplist :: Set.Set NodelId

} deriving (Show, Eq, Generic)

idleLeave :: NodeId -> Locallnfo -> Locallnfo
idleLeave self locallnfo =
localInfo{deleteInform=Set.insert self (deleteInform locallnfo)l}

selfUpdate :: LocallInfo -> Locallnfo
selfUpdate locallnfo =
localInfo{grouplList=Set.empty, toDelete=Set.empty}

informedTimeout :: LocalInfo -> LocalInfo
informedTimeout localInfo =
localInfo{nodeState=Idle, locallnformId = (0,0)}

15

[I N NI

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Listing 1.2. The Locallnfo and function examples

The shows part of the test of the implementation. The function

idleLeave and the Inform message encoding and decoding are tested.

main :: I0 ()
main = hspec $ do
describe "Protocol_ functions" $ do
it "idlelLeave should add self to deleteInform" $ do
let initialInfo = LocalInfo
{ nodeState = Idle
, localInformId = (1, 1)
, introCounter = 0
, inMemory = 0
, toAdd = Set.empty
, toDelete = Set.empty
, deleteInform = Set.empty
, ack = Set.empty
, groupList = Set.empty

self = 99
updatedInfo = idleLeave self initiallnfo
Set.member self (deleteInform updatedInfo) ‘shouldBe‘ True

describe "Messagegencoding and decoding" $ do
it "Inform messageyshould encodeyand decodeycorrectly" $ do
let message = Inform { informId = (1, 100) }
encoded = Serial.encode message
decoded = Serial.decode encoded
decoded ‘shouldBe‘ Right message

© W N oA W N

Listing 1.3. The test

The energy consumption estimation of this protocol’s Haskell implementation
is compared to the gossip-based solution with a different number of nodes and task

messages sending frequency in a fixed period.

16 J. Li, V. Zsék
6 Discussion

Using the protocol presented in this paper, after the network is partitioned, based
on the failure detection results, a large group of nodes will gradually be divided
into multiple small groups according to the network partition. We are designing
protocol supplementary algorithms related to group merge, node self-checking, and
security. After the network partition is restored, the small groups can be restored
to a large group by merging.

Lazy failure detection can be converted to an algorithm similar to the heartbeat
mechanism by disguising heartbeat information as job information and sending it
periodically. Compared with heartbeat information, it should be called periodical
detection information; however, the principle is similar: sacrificing sustainability in
exchange for sensitivity to failure.

When the nodes exchange task-related messages frequently, the speed of detect-
ing failures is not compromised in the lazy failure detection algorithm. However,
this approach sacrifices the speed of failure detection when task-related messages
between nodes are infrequent. In extreme cases where no nodes in the group are
functioning, and there is no communication, failures will not be detected. Such sce-
narios are acceptable under this protocol. In other words, this algorithm permits
the failure of permanently isolated nodes undetected. From the protocol’s perspec-
tive, the failure status of nodes in an inactive system (assuming the system activity
of the actor model is mainly message communication) is non-essential. During idle
periods, all machines should conserve energy and rest. When tasks emerge, it will
then be determined which nodes have failed. Therefore, this protocol is unsuitable
for systems with strict requirements on the detection speed of failed nodes or that
rarely communicate between nodes.

Most distributed algorithms rely on a large number of message passing to ensure
consistency. As the number of nodes increases, the message overhead will increase
linearly or faster, causing network congestion and increased latency, leading to
scalability limitations. The group list consistency algorithm includes a join requests
forwarding mechanism under scalability consideration to ease the problem. The join
requests are processed in a bunch to decrease the round of consistency coordination
and the number of messages. However, scalability limitations still exist.

In the group list consistency algorithm, the node in introducer state only plays
a temporary role as a guide when a new node joins and does not have permanent
special privileges or control capabilities. Therefore, the existence of the introducer
does not violate the principle of the symmetric P2P system.

Since network delay and system load vary, a fixed timeout will cause additional
communication overhead in group list consistency algorithm and lead to misjudg-
ment in lazy failure detection algorithm. Therefore, according to the network con-
ditions and system load, a mechanism for dynamically adjusting the timeout can
be added to this protocol in the actual implementation.

This protocol is designed for systems with rare failures and communication
overhead-reduction requirements. According to the lazy feature, it may also suit
data centers with reliable nodes and an upper limit of message delivery delay.

Title Suppressed Due to Excessive Length 17

However, evaluations of the implementations in different environments are needed
to confirm this statement.

7 Related work

The group list consistency algorithm’s primary distinctions from other distributed
algorithms or protocols are the requirements and the solved problems.

Lamport’s distributed mutual-exclusion algorithm [I3] is a prominent solution
often considered for addressing mutual exclusion and synchronization in distributed
systems. It can be used to create a distributed mutex to lock the distributed group
list modification. However, upon reviewing the algorithm, we have discovered that
its assumptions and requirements do not align with our specific scenario. Our sys-
tem cannot fulfill the assumption that the message can be received in order, as
we have designed it based on the actor model and connectionless transportation
protocol. Moreover, the distributed mutual-exclusion algorithm requires the active
participation of all processes, whereas we must account for potential node failures
in our system. The primary variation is that our system does not require the total
ordering of events. In our scenario, it is possible for the introducer who made the
earlier lock requests to give up the lock requests. Although we still require mutual
exclusion to ensure only one introducer enters the critical section, we do not require
enforcing a specific order.

Distributed transaction commit algorithms or protocols, like the two-phase com-
mit protocol [5], the three-phase commit protocol [5], and the Paxos commit algo-
rithm [8], can also maintain the group list consistency in a group membership pro-
tocol: the group members decide about the group list modifications. However, com-
paring the group list consistency algorithm with the distributed transaction commit
algorithm, the members in our system do not need to abort; our system has a de-
centralized symmetry architecture requirement. Furthermore, this algorithm solves
the blocking problem using timeouts (JoinReqTimeout, InformTimeout, Informed-
Timeout) and failure detection, which differs from the approach of the three-phase
commit protocol. Besides, this algorithm has a forward join requests mechanism to
increase the scalability.

In our design, to ensure the independence of nodes, each node has a local group
list that contains information about group member nodes’ addresses or node IDs,
excluding itself. Therefore, we also need to ensure the distributed consistency of
the local group list. Since distributed consistency is involved, we also considered
two classic distributed consensus algorithms: Paxos [I4], and Raft [I7]. We can
also develop a group membership protocol using distributed consensus algorithms.
However, these algorithms do not match our sustainability requirements because
of the periodical messages. Additionally, this algorithm is designed specifically for
group member updates. Furthermore, the group list consistency algorithm needs to
be designed with the actor model for symmetric P2P systems.

18 J. Li, V. Zsok
8 Conclusion

The paper presented a novel sustainable group membership protocol containing
two main algorithms. The design, formal specification, verification, and functional
programming implementation of the two main algorithms of the protocol were in-
troduced. Our approach eliminates the need for periodic messages, reducing com-
munication overhead through a lazy failure detection algorithm. The group list con-
sistency algorithm provides a consistency solution for a decentralized distributed
system following the actor model and symmetric P2P systems architecture. Scala-
bility and sustainability are both considered during the design phase.

This work represents an attempt to formally specify and verify distributed sys-
tems or algorithms under specific conditions. Practical exercises have demonstrated
that high-level abstract mathematical languages, such as TLA+, can significantly
aid system architects in the design and verification phases. Such methodologies
contribute to a heightened confidence in the system’s correctness.

In future work, our protocol can be enhanced with more supplementary al-
gorithms for advanced functional features and security considerations. It can be
further proved with the help of the symbolic model checker APALACHE, property
reduction methodology, and SMT-based interactive theorem prover Ivy [22]. Fur-
ther optimizing the protocol can be done for different types of distributed systems
and exploring additional applications in environments with varying failure rates
and communication patterns.

References

1. Agha, G.A., Kim, W.: Actors: A unifying model for parallel and distributed comput-
ing. Journal of Systems Architecture 45(15), 1263-1277 (1999)

2. Allavena, A., Demers, A.J., Hopcroft, J.E.: Correctness of a gossip based member-
ship protocol. In: Aguilera, M.K., Aspnes, J. (eds.) Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, Las
Vegas, NV, USA, July 17-20, 2005. pp. 292-301. ACM (2005)

3. Aspnes, J.: Notes on theory of distributed systems. CoRR arXiv, abs/2001.04235
(2020)

4. Bazzan, A.L., Kliigl, F.: Introduction to intelligent systems in traffic and transporta-
tion. Springer Nature (2022)

5. Bernstein, P.A., Hadzilacos, V., Goodman, N., et al.: Concurrency control and recov-
ery in database systems, vol. 370. Addison-wesley Reading (1987)

6. Birman, K.P.: Guide to reliable distributed systems: building high-assurance applica-
tions and cloud-hosted services. Springer Science & Business Media (2012)

7. Das, A., Gupta, 1., Motivala, A.: Swim: scalable weakly-consistent infection-style pro-
cess group membership protocol. In: Proceedings International Conference on Depend-
able Systems and Networks. pp. 303—-312 (2002)

8. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Trans. Database Syst.
31(1), 133-160 (mar 2006)

9. Hackage Contributors: secureudp - haskell package. https://hackage.haskell.org/
package/secureUDP| (2017), accessed: 2024-12-10

https://hackage.haskell.org/package/secureUDP
https://hackage.haskell.org/package/secureUDP

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Title Suppressed Due to Excessive Length 19

Hackage Contributors: cereal - haskell package. https://hackage.haskell.org/
package/cereal (2022), accessed: 2024-12-10

Hackage Contributors: containers - haskell package. https://hackage.haskell.org/
package/containers| (2023), accessed: 2024-12-10

Hasan, R., Anwar, Z., Yurcik, W., Brumbaugh, L., Campbell, R.: A survey of peer-
to-peer storage techniques for distributed file systems. In: International Conference
on Information Technology: Coding and Computing (ITCC’05)-Volume II. vol. 2, pp.
205-213. IEEE (2005)

Lamport, L.: Time, clocks and the ordering of events in a distributed system. Com-
munications of the ACM 21, 7 (July 1978), 558-565. pp. 558-565 (1978)

Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Computing Col-
umn) 32, 4 (Whole Number 121, December 2001) pp. 51-58 (December 2001)
Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA (2002)
Mohapatra, S., Rahimi, M.R., Venkatasubramanian, N.: Power-aware middleware for
mobile applications. In: Ahmad, 1., Ranka, S. (eds.) Handbook of Energy-Aware and
Green Computing - Two Volume Set, pp. 193-224. Chapman and Hall/CRC (2012)
Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In:
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Confer-
ence. p. 305-320. USENIX ATC’14, USENIX Association, USA (2014)

O’Sullivan, B., Goerzen, J., Stewart, D.B.: Real world haskell: Code you can believe
in. " O’Reilly Media, Inc." (2008)

Reiter, M.: A secure group membership protocol. IEEE Transactions on Software
Engineering 22(1), 31-42 (1996). https://doi.org/10.1109/32.481515

Saputri, F.R., Dhaneswari, S.F.: Sensor design for building environment monitoring
system based on blynk. Ultima Computing: Jurnal Sistem Komputer 14(1), 36-41
(2022)

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., Balakr-
ishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networking 11(1), 17-32 (2003). https://doi.org/10.
1109/TNET.2002.808407

Tran, T.H.: Symbolic Verification of TLA-+ Specifications with Applications to Dis-
tributed Algorithms. Ph.D. thesis, Ph. D. thesis, Technische Universitdt Wien (2023)
Uzair, M., Yacoub Al-Kafrawi, S., Manaf Al-Janadi, K., Abdulrahman Al-Bulushi, I.:
A low-cost iot based buildings management system (bms) using arduino mega 2560
and raspberry pi 4 for smart monitoring and automation. International journal of
electrical and computer engineering systems 13(3), 219-236 (2022)

Wayne, H.: Practical TLA+: Planning Driven Development. Apress (2018)

Yuan, X., Pan, Y., Yang, J., Wang, W., Huang, Z.: Study on the application of rein-
forcement learning in the operation optimization of hvac system. In: Building Simu-
lation. vol. 14, pp. 75-87. Springer (2021)

https://hackage.haskell.org/package/cereal
https://hackage.haskell.org/package/cereal
https://hackage.haskell.org/package/containers
https://hackage.haskell.org/package/containers
https://doi.org/10.1109/32.481515
https://doi.org/10.1109/32.481515
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2002.808407

	Formal Specification and Functional Programming Implementation of Distributed Lazy Group Membership Protocol

