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Abstract. In recent years the energy-efficiency of software has become
a key focus for both researchers and software developers, in an attempt
to reduce greenhouse-gas emissions and operational costs. Despite this
growing awareness, developers still lack effective strategies to improve
the energy-efficiency of their programs beyond the well-established ap-
proaches that optimise for runtime performance. In this paper we present
a dynamic adaptation algorithm that uses energy consumption feedback
to optimise the energy-efficiency of data-parallel applications, by steering
the level of parallelism during runtime through external control. This ap-
proach is especially suited to functional languages, whose side-effect-free
nature and strong semantic guarantees allow for easier code generation
and straightforward scalability of the parallelism of programs.
Through a series of experiments we evaluate the effectiveness of this ap-
proach. We measure how well the adaptation algorithm adapts to runtime
changes, and we evaluate its effectiveness compared to a hypothesised or-
acle that always determines the optimal level of parallelism, as well as
a runtime-optimising-based approach. We show that in a fixed-workload
scenario we approach the theoretical best energy-efficiency, and that in
changing workload scenarios the adaptation algorithm is able to react
to changes in the energy consumption pattern and converges towards an
optimal level of parallelism that minimising energy consumption.

Keywords: Dynamic Adaptation, Runtime Systems, Sustainability, Energy-
Efficiency, High-Performance Computing, Parallel Programming, Func-
tional Programming

1 Introduction

The importance of software sustainability has grown rapidly in recent years,
alongside an increasing awareness of environmental concerns and the need for
energy-efficient computing. From mobile applications to data centres, minimising
the energy consumption of software has become essential for mitigating environ-
mental impact, increasing battery life, and reducing operational costs. Tradi-
tional software systems often focus on maximising runtime performance without
adequately considering energy consumption. However, as sustainability becomes
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a priority, there is a growing need for approaches that balance runtime perfor-
mance and energy-efficiency.

The current landscape of computing hardware is characterised by its het-
erogeneity, with a shift towards multi-core and many-core hardware systems.
High-performance computing applications typically aim to fully utilise all avail-
able resources on these systems, with the goal of maximising runtime perfor-
mance. Determining efficient resource allocation for optimising performance – be
it runtime or energy-efficiency – depends not only on an algorithm’s implemen-
tation, but also on input data size, hardware characteristics, cache utilisation,
and system-specific configurations such as thread pinning. This makes static ap-
proaches for determining resource allocation increasingly difficult, as they fail to
account for variations in hardware capabilities and energy-efficiency [4]. Further-
more, it has been shown that optimising for runtime is not necessarily equivalent
to optimising for energy-efficiency, and that optimising for runtime performance
can even have a negative effect on the energy consumption of a program [34,3].

A key candidate for improving the energy-efficiency through more efficient
resource allocation is the thread management of an application. Traditionally,
thread management in software systems has focused primarily on performance
metrics such as execution time and operations per second. A notable approach in
the context of the Single assignment C (SaC) language uses a dynamic adapta-
tion algorithm that adjusts the thread-count of a program by observing changes
in runtime metrics [18]. This technique enables SaC applications to adapt to
varying workloads and resource availability, improving runtime performance by
efficiently utilising computational resources. This method optimises for runtime
performance, but does not directly address energy consumption.

We present a method that extends existing runtime adaptation techniques by
incorporating energy consumption as the primary factor in decision-making. By
dynamically adjusting the number of threads based on real-time energy consump-
tion metrics, we show that it is possible to achieve a more sustainable balance
between runtime performance and energy-efficiency. Functional languages are an
especially suitable target for this dynamic adaptation algorithm, as their side-
effect-free nature and strong semantic guarantees allow for easier code generation
and straightforward scalability of the parallelism of programs.

Our contributions are:

– A static analysis of data-parallel programs that investigates the relation
between the level of parallelism of an application and its overall energy con-
sumption. (Section 4)

– A dynamic adaptation algorithm that aims to minimise the energy con-
sumption of data-parallel applications by steering level of parallelism during
runtime. (Section 5)

– An implementation of a thread-steering mechanism in the data-parallel func-
tional language SaC, based on the dynamic adaptation algorithm. (Sec-
tion 6.1)

– An evaluation of how close the adaptation algorithm comes to the energy-
efficiency of a theoretical optimum. (Section 6.3 and 6.4)
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– An evaluation of the energy-efficiency improvements of the adaptation al-
gorithm compared a runtime-based approach and static approaches. (Sec-
tion 6.5 and 6.6)

2 Single assignment C

Single assignment C (SaC) is a functional array language that resembles the im-
perative syntax of languages such as C, whilst remaining side-effect-free [21,20].
It aims to generate high-performance parallel code for a wide range of multi-core
and many-core architectures.

One of the key design choices that makes this possible is the use of a single
language construct for all array operations, named a tensor comprehension [39].
These tensor comprehensions are side-effect-free mappings from index spaces to
element values, based on the set builder notation. Take for example the following
tensor comprehension, which increments the first 9× 9 values of an array:

arr = { iv -> arr[iv] + 1 | [0,0] <= iv < [9,9] }

This tensor comprehension constitutes an index variable iv that ranges over the
index set with lower bound [0,0] and upper bound [9,9]. If the lower or upper
bound can be inferred from the use of iv in arr[iv], they may be left out.
For each index variable in this index space, the value at that index the array is
incremented.

All array types in SaC consist of an element type followed by a shape spec-
ification in square brackets. In simple cases, such shape specifications are lists
of numbers describing the length of each dimension of the array. To express
relations between shape components, such shape extends can be replaced by
variables, where identical variable names require identical extends in the corre-
sponding positions. For example, an integer vector of length 100 can be defined
as int[100], and a square integer matrix of size n × n can be referred to as
int[n,n]. An n-dimensional array of doubles with rank d and shape vector shp
can be described by double[d:shp]. This notation is referred to as type pat-
terns [2]. It allows not only to express constraints within shapes but also between
different function arguments and return types. Take for example the shape con-
straints of a matrix multiplication. It requires that the multiplied matrices are
of shapes u× v and v × w, resulting in a u× w matrix.

This can be expressed as:

double[u,w] matmul(double[u,v] a, double[v,w] b)

Furthermore, shape variables such as u, v, and w can be used in function
bodies as if they were user-defined variables.

2.1 Parallelism in Single assignment C

The SaC compiler is capable to generate parallel code for a range of parallel
architectures, including multi-core machines [19], GPUs [23,26], and clusters [31].
In this paper, we extend the work on code generation for multi-core machines.
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Before the actual generation of multi-threaded code, the high-level optimisa-
tion phase of the compiler extensively fuses tensor comprehensions in order to
increase the granularity of parallelism and to improve the locality of code [21].
The multi-core back end then generates code which executes all top-level tensor
comprehensions of sufficient size in parallel [19]. Each of these regions is exe-
cuted in a fork-join style of bulk synchronous computing. To avoid the overhead
of thread creation and termination for each such parallel region, the threads are
being created only once upon program startup and kept active throughout the
execution.

We refer to such a set of threads as bees in a bee hive. One designated thread,
the queen bee, executes the entire program including the sequential sections,
and it coordinates all the other bees. The other bees wait until the start of a
parallel section is being signalled to them by the queen, and they return to the
waiting state thereafter. More details on the multi-threaded back-end can be
found in [19].

3 Defining “energy consumption”

To be able to quantify the energy-efficiency of a program, it is essential that
we accurately define what we mean by its “energy consumption”. Ideally we
would isolate the total amount of energy consumed by the hardware to run one
specific program, separating it from other sources of energy consumption such as
operating system overhead, background tasks, and the baseline power required to
keep the hardware operational. However, fully isolating the energy consumption
of a single process remains a challenge.

Currently, separating a program’s energy consumption from that of other
programs is only possible in certain environments. On Apple Silicon, for example,
this is possible through the use of the task_info API, which returns a per-
process energy consumption value [37]. For Apple’s Intel-based machines the
diagCall64 function can be used instead. On Linux-based operating systems
this is theoretically possible by extending the scheduler statistics, however to
the best of our knowledge there is no implementation available. Although these
methods provide potential solutions, they lack necessary documentation and
would require specific hardware and elevated permissions, which go against our
goal of making a broadly applicable adaptation algorithm. Furthermore, these
methods still fail to exclude the baseline power required to keep the hardware
operational, for which currently no solution exists.

For the purposes of this study we define the energy consumption of a program
as the total amount of energy consumed by the CPU throughout the entire
runtime of that program, given that no other user-defined programs are running
on that device. This implies that operating system overhead and baseline power
required to keep the hardware operational are included in these measurements,
as we cannot control or isolate these. We hypothesise that: if we succeed in
improving the energy-efficiency of a program, this will result in a measurable
decrease in total energy consumption across the runtime of that program.
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3.1 Measuring energy consumption

Running Average Power Limit (RAPL) is a technology developed by Intel for
measuring and controlling the energy consumption of the CPU. It can be used
to measure the total amount of energy consumed by the CPU throughout the
runtime of a program. Although initially based on estimation models, thanks
to improvements in hardware support RAPL has evolved into a precise energy
measurement tool. RAPL reports fine-grained and reliable energy consumption
data across various CPU domains, such as the package, PSys, and DRAM [28].
RAPL operates using a running counter that tracks the cumulative energy con-
sumed by each of these domains. The energy consumption in micro-Joules over a
time interval is calculated as the difference in counter values at the start and end
of that time period. Although RAPL is only available on Intel CPUs since the
Sandy Bridge architecture (2011), AMD supports a similar feature starting with
their Zen architecture (2017). In addition to its broad availability, RAPL requires
only slightly elevated privileges [42], making it accessible on many systems.

(a) 500× 500 matrix multi-
plication.

(b) 1000× 1000 matrix
multiplication.

(c) 1500× 1500 matrix
multiplication.

Fig. 1: Average energy consumption and runtime of 200 naive matrix multiplica-
tions in SaC. Energy consumption is denoted by bars, with corresponding values
in the left y-axis. Runtime is denoted by a line, corresponding to the right y-axis.
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4 Energy consumption patterns

We perform a set of static experiments to determine which factors affect the en-
ergy consumption patterns of programs, and whether this leads to cases where
using all available resources is not optimal. We aim to determine whether there
are cases where using all available resources is not optimal, and whether opti-
mising for energy-efficiency always correlates with optimising for runtime. We
do this to gain new insight that informs the design process of the dynamic adap-
tation algorithm in Section 5.

Presumably, using all available resources of a system does not necessarily lead
to the lowest energy consumption. Energy consumption patterns of programs are
influenced by a wide range of factors, including programming language choice,
algorithm implementation, workload behaviour, and hardware characteristics.
To illustrate this we investigate the effect of different implementations, workload
behaviours, and hardware characteristics on the energy consumption pattern of
the matrix multiplication, N-body, and nine-point stencil algorithms. Within the
context of data-parallel programming, these algorithms provide an interesting
mix of CPU-bound and memory-bound applications.

Benchmarks are conducted on an Intel Xeon E-2378 server, maintained by
the Radboud University. The system is accessible through Slurm, and contains
a single 8 core 16 thread CPU, running at a base clock of 2.60GHz. The CPU
has 16MB of level three cache, and the system itself provides 32GB of RAM.

4.1 Matrix multiplication

As our first benchmark we measure the runtime and energy usage of a single
matrix multiplication, for different input matrix sizes. The runtime and energy
measurements start right before the parallel region, and stop immediately after
synchronisation. The matrix multiplication algorithm is used across a wide va-
riety of domains, ranging from solving linear equations, to machine learning, to
computer graphics. Although more sophisticated algorithms exist [41], we use
the naive algorithm because it contains only a single tensor comprehension that
SaC parallelises over. Whereas more sophisticated approaches aim to have con-
sistent cache locality, the cache locality of the naive approach decreases as the
input size increases, shifting the bottleneck from CPU to memory. This naive
SaC implementation closely resembles the mathematical definition:

double[u,w] matmul(double[u,v] a, double[v,w] b)
{

return { [i,j] -> sum({ [k] -> a[i,k] * b[k,j] }) };
}

The average runtime and energy consumption of this matrix multiplication
algorithm on three different input matrix sizes are shown in Figure 1. Along the
x-axis is the number of threads, ranging from one to sixteen. Bars represent the
average energy consumption of a single matrix multiplication, whereas the line



Energy-Aware Dynamic Adaptation of Runtime Systems 7

represents the average runtime. The results of a 500× 500 matrix multiplication
in Figure 1a align with our expectations; increasing the number of threads im-
proves both the energy-efficiency and the runtime performance. When increasing
the number of threads from one thread to two threads we do observe a small
increase in both energy consumption and runtime, likely caused by the overhead
introduced by having to manage multiple threads. By default, SaC uses a busy
wait for the synchronisation of threads, which is known to have a negative effect
on the energy consumption of a program [9].

An interesting observation, that we see in the following benchmarks as well,
is that whereas the speedup in energy-efficiency and runtime performance is
similar for low thread-counts, as the number of threads increases the runtime
performance changes at a faster rate than the energy-efficiency. This suggests
that the overhead caused by hyper-threading and having to manage multiple
threads has a stronger negative effect on the energy consumption of a program
than on its runtime performance.

Increasing the matrix sizes past 500×500 introduces a significant shift in the
optimal thread-count. This can be observed in Figure 1c, and to a lesser degree
in Figure 1b. For 1000 × 1000 inputs there is a lot of variation in the observed
energy measurements, potentially due to inefficient work distribution and incon-
sistent cache locality between threads. Whereas the best runtime performance is
still obtained when using all available threads, the optimal thread-count in terms
of energy consumption has shifted to only a single thread. This surprising result
potentially arises from the fact that the memory required for these larger matri-
ces exceeds the CPU’s 16MB L3 cache capacity. When the combined size of the
input and output matrices surpasses the available cache, the bottleneck shifts
from compute to memory transfer. Although increasing the number of threads
does still decrease the runtime, it has an over-proportional effect on the energy
consumption. This reinforces the idea that selecting an optimal thread-count is
a non-trivial task that does not always coincide with optimising for runtime, and
that it is difficult to predict the precise reasons for such discrepancies.

4.2 N-body simulation

The N-body algorithm is typically applied in physics and astronomy to simulate
the effect of physical sources, like gravity, on systems of bodies such as particles
and celestial objects. For example, it can be used to simulate the movement of
the planets of the solar system. Each body is defined by a record type, con-
taining its current position, velocity, and mass. Although records in SaC use a
similar notation as in C, they are fully flattened into arrays of the record’s fields,
improving data locality [25].

A time-step of the N-body simulation on an array of bodies and delta-time
dt is defined as follows, where acc is a function that returns the acceleration
vector from one body to another.

struct Body[n] nbody(struct Body[n] bodies, double dt)
{
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(a) 10000 element N-body. (b) 25000 element N-body.

(c) 40000 element N-body.

Fig. 2: Average energy consumption and runtime of 200 N-body simulation in
SaC. Energy consumption is denoted by bars, with corresponding values in the
left y-axis. Runtime is denoted by a line, corresponding to the right y-axis.

accel = { [i] -> sum({
[j] -> acc(bodies[i], bodies[j]) }) };

bodies.pos += bodies.vel * dt;
bodies.vel += accel * dt;
return bodies;

}

For an N-body simulation with 10000 elements in Figure 2a we observe that
although increasing the thread-count strictly decreases the runtime, for simu-
lations with 25000 and 40000 elements in Figures 2b and 2c respectively, the
energy consumption plateaus after using more than eight threads. It seems that
any improvements in energy consumption gained by using hyper-threading are
mitigated by the overhead it introduces. Consequently, on a system with shared
resources and multiple running processes it might be beneficial to select a lower
thread-count for the N-body simulation, in order to free up the remaining threads
for other processes without incurring a significant negative impact on the energy
consumption of the N-body simulation.

4.3 Nine-point stencil

The nine-point stencil operation is used for image processing, computer simula-
tions, and for solving partial differential equations. Perhaps the most common
application of the stencil operation is in the training process of Convolutional
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(a) 10000× 10000 nine-
point stencil.

(b) 25000× 25000 nine-
point stencil.

(c) 40000× 40000 nine-
point stencil.

Fig. 3: Average energy consumption and runtime of 200 nine-point stencil opera-
tions in SaC. Energy consumption is denoted by bars, with corresponding values
in the left y-axis. Runtime is denoted by a line, corresponding to the right y-axis.

Neural Networks (CNN). In this context, the stencil operation is applied for edge-
detection and other image processing tasks, as well as for providing a means for
spatial awareness. Most relevant to us is the application of the stencil operation
for resizing arrays in CNNs, which highlights a real-world scenario where the
input data size changes during the runtime of a program.

The nine-point stencil is defined in SaC as:

double[2:shp] stencil(double[2:shp] a, double[3,3] w)
{

return { iv -> sum({
jv -> w[jv] * a[mod(iv+jv-1, shp)] })

| iv < shp };
}

It is represented as a weighted sum of each point in an array and its eight
immediate neighbours, where each weight depends on the corresponding value
in a 3× 3 array of weights.

For a 10000 × 10000 input matrix in Figure 3a we observe that both the
runtime and energy consumption decrease as the number of threads increases.
However for 25000× 25000 and 40000× 40000 inputs, using all available threads
is no longer optimal for energy-efficiency and runtime performance. We see this
in Figures 3b and 3c respectively, where as the input size increases the optimum
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thread-count decreases. Whereas the change in the energy consumption pattern
of the matrix multiplication algorithm could be explained by cache-behaviour,
that is not the case in the nine-point stencil operation. It is unclear why this
behaviour occurs, which highlights again the difficulty in determining an optimal
thread-count.

4.4 Implementation language

(a) 500× 500 matrix multi-
plication in Rust.

(b) 1000× 1000 matrix
multiplication in Rust.

(c) 1500× 1500 matrix
multiplication in Rust.

Fig. 4: Average energy consumption and runtime of 50 naive matrix multiplica-
tions in Rust. Energy consumption is denoted by bars, with corresponding values
in the left y-axis. Runtime is denoted by a line, corresponding to the right y-axis.

To validate that these observations are not specific to SaC, we also evaluate
a manually parallelised implementation of the matrix multiplication algorithm
in Rust. We observe in Figure 4 that switching the implementation language
from SaC to Rust produces a significantly different energy consumption pattern.
Although for the 500× 500 and 1000× 1000 inputs in Figures 4a and 4b respec-
tively the optimum thread-count remains unchanged, the single-threaded SaC
implementation performs significantly better than the Rust implementation in
terms of both runtime and energy consumption. Furthermore, the runtime and
energy consumption of the Rust implementation plateau already when using four
or more threads, whereas the runtime and energy consumption of the SaC im-
plementation strictly decrease as the number of threads increases. In Figure 4c
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we observe that, whereas for a 1500 × 1500 input the optimal thread-count for
the SaC implementation is at only a single thread, the optimal thread-count for
the Rust implementation lies at twelve threads.

4.5 Thread-pinning & Scheduling

(a) 500× 500 matrix multi-
plication in Rust.

(b) 1000× 1000 matrix
multiplication in Rust.

(c) 1500× 1500 matrix
multiplication in Rust.

Fig. 5: Average energy consumption and runtime of 50 naive matrix multiplica-
tions in Rust. Energy consumption is denoted by bars, with corresponding values
in the left y-axis. Runtime is denoted by a line, corresponding to the right y-axis.

Besides changing the input data size, we investigate whether a change in
system configuration can also introduce a change in the energy consumption
pattern of a program. To this end we investigate the effect of disabling thread
pinning, which was enabled for the previous benchmarks. When disabling thread
pinning, the responsibility of thread management moves from the application to
the operating system. This makes it difficult to reason about the way in which
threads are scheduled, as it becomes dependent on the specific operating system,
and its configuration.

Disabling thread pinning in SaC has no significant impact on the energy con-
sumption pattern of the chosen benchmarks on the system under test, besides
slightly increasing the energy consumption overall. Therefore we omit those re-
sults here. In the case of the Rust implementation, it can be observed in Figure 5c
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that disabling thread pinning has a significant impact on the energy consump-
tion profile. Disabling thread pinning has almost no effect on the 500× 500 and
1000× 1000 matrix multiplications, in Figures 5a and 5b respectively. However,
for 1500 × 1500 input matrices there is a significant change in the energy con-
sumption pattern. As the number of threads increases from 8 to 16, the energy
consumption gradually starts increasing again. This behaviour suggests that the
overhead associated with hyper-threading may outweigh the benefits of paral-
lelism, further complicating the task of optimising for energy-efficiency.

5 Energy-Aware Dynamic Adaptation

In Section 4 we observe that the selection of an optimal thread-count to maxi-
mize energy-efficiency depends on the running conditions. Factors such as input
data size, cache limits, memory transfer overhead, thread pinning, and imple-
mentation choices can heavily influence the energy consumption profile of an
application. Given the multitude of effects, a static cost-model-based approach
seems infeasible. A profiling-based approach might provide better data but would
incur a significant overhead, which goes against our goal of optimising for energy.
Consequently, we look for a dynamic approach to avoid the need for manual tun-
ing, minimise overall energy consumption, and to be able to adapt to runtime
changes.

The overall idea is based on the observation that data-parallel codes typically
perform several repetitions of the same parallel computation before moving on
to the next set of repetitions. This behaviour allows dynamic adaptation to tune
the parallelism between such repetitions [18]. The adaptation algorithm monitors
changes in the energy consumption from one repetition of a parallel region to the
next, and periodically adjusts the recommended thread-count in an attempt to
find the thread-count with the lowest energy consumption. Based on measured
changes in energy consumption, using power meters built in to the processor, the
algorithm determines whether to increase or decrease the thread count for the
next iteration, and by what amount. The hypothesis is that with this approach,
we can adapt the thread-count during runtime in correspondence to changes in
energy consumption, converging to a (local) optimum for energy-efficiency.

The algorithm uses two variables for steering the thread-count of an appli-
cation: a step direction, and a step size. The step direction describes whether
the number of threads will be increased or decreased, where the step size gives
the amount of threads that will be added or removed. The algorithm is executed
at a fixed frequency, and is supplied with an array of energy consumption sam-
ples of the total amount of energy consumed by each iteration op the parallel
region. The frequency is configurable, but we found that for our benchmarks
that a frequency of ten iterations per thread-count adjustment strikes a balance
between a high adaptation speed whilst also being resilient against noise such as
short-running background tasks and operating system overhead. To filter noise,
the median value of the given energy consumption samples is taken.
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When the measured energy consumption of an iteration differs more than a
factor α compared to the previous iteration, it is likely that there was a change in
workload behaviour. To be able to quickly find the (potentially different) optimal
thread-count, the step size is reset to half the number of maximum threads. If
there was an increase in energy consumption of less than factor α, we assume
that the optimal thread-count is somewhere in between the current thread-count
and the previous thread-count. In that case the step direction is inverted, and
as to not overshoot the optimum the current step size is halved.

As we observe in Section 4, changing the thread-count by even a single thread
can have a significant negative impact on the energy consumption of a program.
In an attempt to minimise this overhead, alongside the intrinsic scheduling over-
head for making changes to the thread-count, we aim to settle into a fixed
thread-count when we are close to the (local) optimum. To this end we use
a real-valued thread-count and step size. Instead of decreasing the step size at
each iteration by a fixed amount, updating the step size is defined by a function:
max( 35∆t, ∆t / (β +∆t)), for β ∈ [0.5, 1]. Using this function, step sizes greater
than one are decreased by a fixed fraction 3

5 . For step sizes near one the function
is less steep, ensuring that we do not settle in a local optimum too quickly by
decreasing the step size too much. For our benchmarks we have found that a
value of 0.85 for β works well.

When using such a real-valued step size, the step size will eventually near
zero and consequently the thread-count will no longer change. In an attempt
to escape local optimums, the step size is reset to half the maximum amount
of threads when it becomes less than γ ∈ (0, 1]. The lower the value of γ, the
larger the amount of iterations that is required until the step size is reset. For
our benchmarks we have found that a value of 0.155 for γ works well.

A formal definition of this algorithm is described in Algorithm 1.

6 Case-studies

We conduct a series of experiments to evaluate the effectiveness of the dynamic
adaptation algorithm. First we evaluate the ability of the algorithm to adapt to
runtime changes and reach an optimal thread-count, by comparing the thread-
count given by the adaptation algorithm to an optimal thread-count that can be
derived from the observations in Section 4. To evaluate how close the adapta-
tion algorithm comes to the performance of a theoretical optimum, we compare
its effectiveness against a hypothesised oracle that always determines the most
energy-efficient number of threads. To investigate whether there are differences
between our energy-optimising approach and a runtime-optimising approach, we
similarly compare our approach to the runtime-based adaptation algorithm de-
scribed by Gordon et al. [18]. We investigate whether the adaptation algorithm
introduces significant energy overhead, and finally we measure how much energy
the adaptation algorithm saves compared to multiple static approaches.

Both the energy-based and runtime-based dynamic adaptation algorithms,
the benchmark scripts, and the benchmark results are publicly available on
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Algorithm 1 Algorithm for updating the thread-count based on energy mea-
surements.
Require: Maximum number of threads mt, current number of threads nt, direction of

change d̂ ∈ {−1, 1}, rate of change ∆t, array of energy samples S, and parameters
α, β, γ ∈ R.

Ensure: A continuous updating of nt, d̂, ∆t, and Eold.
1: d̂← −1
2: ∆t← 1

2
mt

3: loop
4: Wait for samples S
5: Enew ← median(S)
6: if (Enew < Eold · (1− α)) ∨ (Enew > Eold · (1 + α)) then
7: d̂← sign(mt − 2nt)
8: ∆t← 1

2
mt

9: else
10: if Enew > Eold then
11: d̂← −d̂
12: if ∆t > γ then
13: ∆t← max( 3

5
∆t, ∆t / (β +∆t))

14: else
15: d̂← sign(mt − 2nt)
16: ∆t← 1

2
mt

17: Eold ← Enew

18: nt ← nt + d̂ ·∆t
19: nt ← clamp(nt, 1, mt)

GitHub [1]. The implementation of the thread-switching beehive system and
adaptation algorithm in SaC are available on the SaC GitLab project [22].

6.1 Thread-management in Single assignment C

We hook into SaC’s beehive system, explained in Section 2.1, to control the
number of threads of SaC programs dynamically. Before sending a signal to the
worker bees to start processing, the queen requests the recommended thread-
count and decreases or increases the size of the hive by putting worker bees
to sleep or waking up sleeping bees. Since the actual thread-count is fixed, we
selectively put bees to sleep through the use of a semaphore. The side-effect-
free nature of the parallel code enables the required workload redistributions
through the queen bee without any potential impact on the overall semantic of
the program. Using a semaphore, instead of the standard wait, ensures that the
threads of sleeping bees are free to be used by other processes on the system.
Sleeping bees are awoken by the queen bee by posting to this semaphore, after
which these bees enter their wait state again, waiting for the queen to signal
them to start working.
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6.2 Energy overhead

With our goal of minimising the energy consumption of programs, it is crucial
that the adaptation algorithm itself does not introduce a significant amount
of energy overhead. We measure the overhead introduced by the adaptation
algorithm by applying it to a function that does nothing, and simply returns
zero. The measures sources of overhead then are the starting and stopping of
each energy measurement, and the re-computation of the suggested thread-count
when ten energy measurements have been supplied. The energy consumption
and runtime overhead are measured by repeating this process one million times.
We find that on average the algorithm has an energy overhead of 48.49µJ and a
runtime overhead of 4.84µs. From this we conclude that the adaptation algorithm
does not introduce significant energy overhead.

While there might be additional effects of the adaptation that cause overhead,
such as context switches or other operating system effects, we fail to identify
experiments that would quantify these effects. We study the overhead that stems
from the adjustment process itself in a series of experiments where we look at
an execution where the problem-size is being changed over time.

6.3 Adaptation quality

Factors such as input data size typically change during the execution of a pro-
gram. A prominent real-world example this is observed in the training process
of Convolutional Neural Networks, where each layer of the network operates on
differently sized arrays. We have observed in Section 4 that these changes can
cause shifts in the optimal thread-count. A key requirement for the adaptation
algorithm is its ability to adjust to such changes during the runtime of programs.
The objective is to dynamically converge towards the optimal thread-count un-
der changing workload behaviours and system configurations. We evaluate the
adaptation quality of the algorithm by gradually changing the input data size
on the examples from Section 4, and assessing how effectively the adaptation
algorithm converges to the thread-count with minimal energy consumption.

Matrix multiplication The matrix multiplication algorithm in SaC presents an
interesting challenge for our adaptation algorithm. For 1500 × 1500 input ma-
trices using only a single thread consumes the least amount of energy, whereas
using two threads already consumes the most amount of energy. Since the en-
ergy consumption strictly decreases for each subsequent thread-count after two
threads, it is likely that the adaptation algorithm ends up in the local optimum
at sixteen threads.

Figure 6 shows the actual thread-count suggested by the adaptation algo-
rithm across the runtime of a single program, alongside the optimum thread-
count as found in Section 4. The x-axis represents the runtime of the program,
where the input data size – denoted by the x-axis labels – changes at each third of
the program’s runtime. The orange dashed line shows the optimal thread-count
that can be derived from the observations in Section 4. The blue line shows the
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thread-count recommended by the adaptation algorithm. The closer the sug-
gested thread-count comes to the derived optimal thread-count, the better the
adaptation quality of the algorithm. In Figure 6 we see that the adaptation al-
gorithm is able to find the optimum thread-count for 500× 500 and 1000× 1000
input matrices. However, as expected, the algorithm is not able to find the op-
timum at a single thread for 1500 × 1500 input matrices. It is however able to
remain in the local optimum at sixteen threads.

Fig. 6: Adaptation quality on the SaC implementation of the matrix multiplica-
tion algorithm.

N-body simulation In the case of the N-body simulation we have observed in Sec-
tion 4 that the energy consumption plateaus when using eight or more threads.
Any thread-count between eight and sixteen threads can be considered as suf-
ficient, since the energy consumption at each of these thread-counts lies within
a few percent of each other. Figure 7 shows that the adaptation algorithm is
able to find the optimum thread-count for the N-body simulation. In fact, even
though there is only a small difference in the energy consumption between eight
and sixteen threads, the adaptation algorithm still finds the optimum at sixteen,
fourteen, and twelve threads for all three input sizes respectively. For brevity we
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exclude the N-body simulation from the remaining benchmarks, as it presents
no further noteworthy results or insights.

Fig. 7: Adaptation quality on the SaC implementation of the N-body simulation.

Nine-point stencil For the nine-point stencil operation we have observed in Fig-
ure 3 that as the input data size increases, the optimal thread-count gradually
decreases. Applying the adaptation algorithm we see in Figure 8 that it is able to
converge to the optimal thread-count in these cases. Although for a 40000×40000
input the algorithm suggests a thread-count of ten instead of twelve, Figure 3c
shows that the energy consumption at these two thread-counts is within a few
percent of each other, so we consider this thread-count sufficient.

Rust implementation Figure 9 shows the adaptation quality for the Rust im-
plementation. In Section 4 we saw the most variation in this benchmark, with
optimum thread-counts at eight, twelve, and sixteen threads, as well as local op-
timums. Even in a scenario with varying optimal thread-counts, the adaptation
algorithm is able to quickly find the optimal thread-count after a change in the
matrix size or system configuration.

These experiments show that the dynamic adaptation algorithm is capable
of adequately adapting to runtime changes, except in outlier cases such as the
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Fig. 8: Adaptation quality on the SaC implementation of the nine-point stencil
operation.

1500 × 1500 matrix multiplication in SaC where we do however find the local
optimum. When a change in the energy consumption pattern occurs, the adap-
tation algorithm is able to convert to the optimal thread-count within a few
thread-count adjustments.

6.4 Comparison to oracle-based approach

To further evaluate the effectiveness of the dynamic adaptation algorithm we
compare its performance against a theoretical “oracle” approach. This theoretical
oracle knows which thread-count will result in the lowest energy consumption for
the current implementation, workload behaviour, and hardware characteristics.
Although in general this level of foresight is unattainable without an analysis like
the one in Section 4, it provides a theoretical upper bound for the performance
of the chosen benchmarks. These optimums serve as the baseline to simulate the
decision-making process of the oracle. This oracle represents the best possible
energy consumption, so any solution that closely approaches its performance can
be considered highly effective.
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Fig. 9: Adaptation quality on the Rust implementation of the matrix multiplica-
tion algorithm.

Matrix multiplication Table 1 shows how close the adaptive algorithm comes to
the theoretical best performance on the matrix multiplication algorithm, pro-
vided by the oracle. For 500× 500 inputs the dynamic approach is on par with
the oracle in terms of energy consumption, although it introduces a 10% increase
in runtime. Given a 1000× 1000 matrix these results suggest that the dynamic
approach consumes 7% less energy, however this is likely a consequence of the
large amount of variation that was observed in Figure 1b, potentially due to in-
efficient work distribution and inconsistent cache locality between threads. This
does however show that for 1000×1000 inputs the dynamic approach provides a
similar level of performance. For a 1500×1500 matrix size the dynamic approach
consumes 55% more energy than the oracle-based approach, which is a result of
the inability of the adaptation algorithm the reach the optimal thread-count at
a single thread. This does however lead to a 27% shorter runtime compared to
the oracle-based approach.

Nine-point stencil Table 2 shows the overhead of the dynamic approach on the
nine-point stencil operation. For 10000 × 10000 and 25000 × 25000 inputs the
dynamic approach provides a similar level of performance, with only a 5% in-
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Matrix size Energy Runtime
500× 500 0% 10%

1000× 1000 -7% -5%
1500× 1500 55% -27%

Table 1: Energy difference between the adaptive approach and the theoretical
best performance of the oracle for the matrix multiplication algorithm.

crease in energy consumption compared to the theoretical optimum. However
for 40000 × 40000 inputs the energy consumption is 15% worse compared to
the oracle. In Figure 8 we observed that for this input size the adaptation al-
gorithm recommends ten threads, instead of the optimal thread-count of twelve
threads. Although this thread-count has a similar energy consumption compared
to running at twelve threads, it does have significantly worse runtime, leading
to a 33% increase in runtime. Part of the increase in energy consumption can be
attributed to additional energy overhead inherent to an increase in runtime, as
we discuss in Section 3.

Matrix size Energy Runtime
10000× 10000 5% 4%
25000× 25000 5% 5%
40000× 40000 15% 33%

Table 2: Energy difference between the adaptive approach and the theoretical
best performance of the oracle for the nine point stencil operation.

Rust implementation For the Rust implementation of the matrix multiplication
algorithm in Table 3 we see that the overhead of our dynamic approach is mini-
mal in cases where thread pinning is enabled. With thread pinning disabled, the
dynamic approach consumes up to 8% more energy and has an up to 18% longer
runtime, which is potentially due to additional scheduler overhead inherent to
thread management.

These results demonstrate that while this theoretical oracle is not feasible
in practise, in the typical case our dynamic approach provides a practical solu-
tion for reasonably approximating the theoretical optimal energy-efficiency. For
outliers such as the 1500 × 1500 matrix multiplication in SaC the dynamic ap-
proach might not be able to find the optimal thread-count, instead finding a
local optimum that results in an increase in energy consumption.

6.5 Comparison to runtime-based approach

We repeat the same benchmark as in Section 6.4, however we now compare the
energy-based dynamic adaptation algorithm against an implementation of the
dynamic runtime-optimising algorithm described by Gordon et al. [18].
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Matrix size Thread pinning Energy Runtime
500× 500 Enabled 3% 6%

1000× 1000 " 1% 3%
1500× 1500 " 8% 10%
500× 500 Disabled 1% 2%

1000× 1000 " 1% 1%
1500× 1500 " 8% 18%

Table 3: Energy difference between the adaptive approach and the theoretical
best performance of the oracle for the matrix multiplication algorithm in rust.

Matrix multiplication Table 4 shows that for 500×500 and 1500×1500 inputs the
energy-optimising and runtime-optimising approaches provide a similar level of
performance. For 1000×1000 inputs we even observe an 11% decrease in energy
consumption, however this could again be partially due to the large amount in
variation for this example. Although the most energy-efficient threat-count for a
1500× 1500 input does not correlate with the optimal thread-count for runtime,
in Figure 6 we observed that the energy-optimising approach is not able to find
this optimum, instead converging to a threat-count of sixteen. This is the best
thread-count for runtime, so consequently both approaches perform similarly on
1500× 1500 inputs.

Matrix size Energy Runtime
500× 500 -1% 0%

1000× 1000 -11% -17%
1500× 1500 -2% -7%

Table 4: Energy difference between the energy-based and runtime-based adap-
tation algorithms on the matrix multiplication algorithm.

Nine-point stencil In Table 5 we see that for the two smaller input sizes the
difference in energy consumption between the energy-optimising and runtime-
optimising approach is within a few percent of each other. However, the energy-
optimising approach does have a 25% greater runtime than the runtime-optimising
approach for a 40000 × 40000 input. As we discuss in the comparison to the
oracle-based approach, this is likely due to the fact that the energy-aware algo-
rithm recommends a threat-count of ten, which is similar to using twelve threads
in terms of energy consumption, but is significantly worse in terms of runtime.
Keeping this in mind, a 7% increase in energy consumption seems reasonable.

Rust implementation Table 6 shows that in the case of the Rust implementa-
tion of the matrix multiplication algorithm, the energy-optimising approach and
runtime-optimising approach have similar performance, with the energy-based
algorithm always performing slightly better in terms of energy consumption.
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Matrix size Energy Runtime
10000× 10000 -2% -8%
25000× 25000 -4% -3%
40000× 40000 7% 25%

Table 5: Energy difference between the energy-based and runtime-based adap-
tation algorithms on the nine-point stencil operation.

Matrix size Thread pinning Energy Runtime
500× 500 Enabled -1% -3%

1000× 1000 " -2% -5%
1500× 1500 " -1% -6%
500× 500 Disabled -2% -1%

1000× 1000 " 0% 0%
1500× 1500 " 0% 2%

Table 6: Energy difference between the energy-based and runtime-based adap-
tation algorithms on the matrix multiplication algorithm in Rust.

These results show that, while a runtime-based approach can provide a sim-
ilar level of performance in cases where energy consumption scales linearly with
the number of threads. In cases where the energy consumption or runtime is
not strictly decreasing with respect to the thread-count, the runtime-based ap-
proach is not able to achieve the same level of energy-efficiency – or even runtime
performance – as the energy-based approach.

6.6 Comparison to static approaches

Finally, we evaluate how much energy can be saved when using the dynamic
approach compared to static approaches that always run at a fixed thread-count.
For a set of fixed thread-counts we measure the average difference in energy
consumption compared to using a dynamic approach. Besides running single-
threaded, typical choices for threat-count are chosen based on the number of
physical cores or the maximal number of available threads. Therefore we include
the results of running at one, eight, and sixteen threads respectively. In Section 4
we observed that for our examples choosing twelve threads often also leads to
lower energy consumption, therefore we include a twelve-threaded application as
well.

Matrix multiplication Table 7 describes the difference in energy consumption
and runtime between the dynamic adaptation algorithm and static thread-count
approaches. Compared to always running at sixteen threads the adaptive ap-
proach provides a similar level of performance, however when a poor choice in
thread-count is made the adaptive algorithm can save up to 21% of energy. Al-
though the adaptive approach is 85% faster in terms of runtime compared to
a single threaded approach, the energy reduction is 12%. This is due to the
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outlier in 1500× 1500 inputs for which our adaptation algorithm is not able to
find the optimal thread-count, where using a single thread has a lower energy
consumption but a greater runtime.

#Threads Energy Runtime
1 -12% -85%
8 -21% -57%
12 -7% -21%
16 -1% 4%

Table 7: Energy consumption of the dynamic adaptation algorithm compared to
static approaches on the matrix multiplication algorithm.

Nine-point stencil If a reasonable, but ineffective, choice in thread-count is made
for the nine-point stencil operation we observe in Table 8 that 10% of energy can
be saved with our dynamic approach. Compared to a single-threaded approach,
our dynamic approach consumes 79% less energy on average. Statically choosing
twelve threads leads to a slightly lower energy consumption, however in practise
this is not a thread-count that is typically chosen without an extensive analysis
of the optimal thread-count for energy consumption, as we have performed in
Section 4.

#Threads Energy Runtime
1 -79% -137%
8 -10% -39%
12 4% 0%
16 -5% 7%

Table 8: Energy consumption of the dynamic adaptation algorithm compared to
static approaches on the nine-point stencil operation.

Rust implementation For the Rust implementation of the matrix multiplication
algorithm, Table 9 shows that with thread pinning enabled we save a significant
amount of energy compared to statically choosing eight threads and are on par
when choosing sixteen threads. However with thread pinning disabled we save
a significant amount of energy compared to running at sixteen threads, whereas
we are on par when choosing eight threads. This shows that even for the same
algorithm, it might be unclear which thread-count is optimal, and that in either
case a dynamic approach can aid in decreasing energy consumption.

From this evaluation we conclude that improvements in energy consumption
can be significant in cases where a poor choice was made for the static thread-
count. Even in cases where the static choice was the optimal one, the dynamic
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#Threads Thread pinning Energy Runtime
8 Enabled -28% -67%
12 " 2% 3%
16 " -3% -1%
8 Disabled -2% -6%
12 " -2% -1%
16 " -6% -5%

Table 9: Energy consumption of the dynamic adaptation algorithm compared to
static approaches on the matrix multiplication algorithm in Rust.

approach results in a similar energy consumption, excluding the outlier case of a
1500× 1500 matrix multiplication in SaC, for which our approach found a local
optimum. Compared to static approaches, the dynamic approach can save up to
79% of energy. In cases where a reasonable, but incorrect, choice was made for
the thread-count our approach saves up to 21% energy in the tested benchmarks.

7 Related Work

7.1 Dynamic adaptation

Besides the runtime-based dynamic adaptation algorithm by Stuart et al. [18],
there exist other approaches that aim to steer the resource allocation of a system
through dynamic control, in an attempt to improve the runtime performance of
programs.

Grand Central Dispatch (GCD) is a technology developed by Apple that aids
developers in writing parallel programs [38,33,17]. GCD is integrated into the
host operating system, and provides a holistic approach for thread management
and execution, shifting this load from the developer to the scheduler. However,
GCD still requires some manual instrumentation from developers. They must de-
fine blocks of code that they dispatch to GCD synchronously or asynchronously,
using one of several types of waiting queues. Parallel Dispatch Queues (PDQ) are
a similar programming abstraction [8]. By synchronizing messages in a queue,
it aims to reduce the overhead caused by acquiring and releasing synchroniza-
tion primitives, as well as preventing busy waiting within handlers. These ap-
proaches however only optimise for runtime performance and do not consider
energy-efficiency.

A related approach is Dynamic Voltage Frequency Scaling (DVFS). Instead of
trying to increase energy-efficiency or runtime performance by instrumenting the
software, this approach aims to instrument the hardware by scaling the voltage
supplied to the CPU. Dynamic programming approaches have been applied to
further improve the effectiveness of DVFS [24].
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7.2 Profile-based optimisation

Profile-based optimizations use the results of profiling test runs to select an
optimal implementation of an algorithm for the given input data or hardware
configuration. A prominent example of this is FFTW3, which selects one of many
discrete Fourier transformation implementations through profiling [10]. They
achieve this with the use of a special-purpose compiler, that generates optimised
code for the given hardware in a planning phase. It would be interesting to
investigate whether similar results can be obtained when optimising for energy-
efficiency during this planning phase.

Profile-based optimisation of virtual machine scheduling is a popular avenue
of research in the context of data-centres [7,5,6,32]. These approaches focus on
the development of resource allocation policies and scheduling algorithms that
aim to decrease the carbon footprint of data-centres without compromising on
the required quality of service.

7.3 Static methods for optimising energy

Although there exists a multitude of compiler optimisations that aim to minimise
the runtime of programs, not many optimisations exist that aim to specifically
reduce energy consumption [34]. Pallister et al. have provided several optimi-
sation that specifically aim to reduce the energy consumption of programs, in
the context of embedded devices [35,36]. As have we, they have found that
for optimal energy-efficiency gains a vertical integration process that exploits
hardware-specific energy characteristics is needed, to bridge the gap between
hardware and software.

Bangash et al. have investigated byte-code transformations in the context of
Android applications, determining whether certain (combinations of) transfor-
mations lead to in increase or decrease in energy consumption [3]. They found
that certain combinations of byte-code transformations can actually increase
energy consumption, whereas choosing the right combination of transformation
can lead to a reduction of up to 11% in energy consumption.

7.4 Energy visualisation & analysis

One of the key requirements in allowing developers to increase the energy-
efficiency of their software is the ability to visualise and analyse the energy
consumption of their code [40]. There exist semantics for programming languages
that can calculate the energy consumption of their programs, and allow for cal-
culation of break even points of algorithms [15,13,12]. Making these semantics
work for a full language is hard, as can be seen in [14].

Another approach is to use model checking to detecting energy bugs and
hotspots in control software [16]. The control software targetted with this model
checking does have key interaction between software and hardware made explicit
in the source code This is not the case for our target domain, in which all
interactions are implicit. This makes using model checking harder.
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Using the same explicit interaction is used in [30], in which energy con-
sumption graphs are generated next to control software source code inside an
IDE. Although it allows for near instant feedback (couple of seconds delay) to
programmers, which is great for improving the code, it does not fit our target
domain.

7.5 Energy-efficiency programming strategies

There is a handful of programming patterns that are known to improve the
energy-efficiency of programs. These include application-level techniques such
as caching, buffering, and batching, but also system-wide techniques such as
retention policies and data compression. The effectiveness and adoption of such
techniques have been previously investigated [27,11].

Another prominent example of a well-known pattern for reducing energy
consumption is load balancing. Multiple approaches exist, however these make
generalized assumptions about the energy-efficiency of the hardware. Kistowski
et al. have compared a variety of load distribution strategies, and propose a new
strategy that reduces a system’s energy consumption even further [29].

8 Conclusion

In this paper we present a dynamic adaptation algorithm aimed at minimising
the energy consumption of data-parallel applications. It is based on the observa-
tion that data-parallel applications typically apply the same parallel operations
in a repetitive fashion. This property allows for a dynamic feedback loop that
reacts on changes in energy consumption from one repetition to the next. Our
experiments show that such a non-intrusive approach can be very effective while
requiring no in-depth program analysis, involving no programmer effort at all,
and causing negligible overhead. Looking at three different use cases with dy-
namically changing behaviour, we can see that our adaptation approach in most
cases gets within 10% of a manually generated, ideally adapting runtime. The
only remarkable outlier is the case of matmul where there exists a global mini-
mum in the extreme case which our adaptation algorithm fails to find. We also
observe that the dynamic approach for any chosen fixed number of threads yields
energy improvements. Depending on the number of threads chosen, the gains
are up to 79%. Surprisingly, we also notice that our energy-optimising algorithm
improves slightly over the runtime-optimising dynamic algorithm of [18]. This
reflects our static analysis which show that while there is a correlation between
overall runtime and energy use, the energy minima usually are reached before
the runtime minima when increasing the number of threads. Overall, we show
that our approach provides a feasible method for lowering the energy footprint
of functional data-parallel applications solely based on code generation without
the need of any user intervention.

Whilst our adaptation algorithm proves effective across a range of data-
parallel workloads, future work could explore the capability of the algorithm
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to adapt to changes in runtime conditions caused by other processes running
in the background. Furthermore it might be interesting to investigate whether
the same approach can be applied so switch between devices in a heterogeneous
system, for example to switch between a CPU and GPU implementation of an
algorithm. Beyond the array based domain, there is potential for applying this
approach in other contexts that handle a large amount of similar computational
complexity. For example, by adjusting resources dynamically in response to work-
load demands, web-servers could decrease their energy consumption, potentially
without compromising on responsiveness.
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