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Abstract. Implementing communication between edge devices in IoT
systems and their server is often a tedious and bug-prone task, since dif-
ferent programming languages with distinct underlying paradigms have
to cooperate. The mTask system prevents this semantic friction by pro-
viding a single task-oriented framework for the whole system. Commu-
nication between tasks on the server and the edge device is the focus of
this paper. Shared data sources provide flexible communication between
running tasks on the server and the edge device. We introduce an im-
proved version of these shares with a clearer and easier to use semantics.
The shares on the edge device offer a strict subset of the functionality of
shares on the server. To improve the communication between edge de-
vices and the server, we introduce the possibility to start parameterized
server tasks from the edge device.

1 Introduction

Implementing communication between an edge device in an IoT system and
a web server is often a tedious and bug-prone task. While most PC or server
software is written in higher level languages or frameworks, edge devices are
still mostly programmed in a low-level language like C. In this paper, we aim to
automate this communication within a task-oriented framework by first using
task parameters and results, and later shared data sources, shares for short.

One of the challenges with code involving different types of devices (in our
case, an edge device and a web server) is the semantic friction between the
different devices [5]. This semantic friction is caused by the different kinds of
programming languages and paradigms that are used on web servers and edge
devices. Web servers are often programmed in high-level languages and frame-
works providing automated memory management, a functional programming
paradigm, and other higher-level features. Edge devices, however, are usually
programmed in low-level languages such as C. As these languages are vastly
different and often have a different underlying paradigm, it is difficult to create
code that is semantically exactly the same on each side.

Edge devices are nowadays often connected to the internet, i.e. part of the
Internet of Things. These connected devices need to communicate with a web
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server, which then provides a user interface for the end user. For the implemen-
tation of this communication code, the semantic friction is even more apparent
than in the rest of the code base. Firstly, all communication code has to be
written twice: once for the server-side paradigm and language, and once for
the client-side paradigm and language. These two implementations have to se-
mantically match each other exactly to provide correct communication, while
type checking across the two languages is usually not possible. This makes the
implementation of communication code prone to bugs. Furthermore, all this du-
plicate has to be maintained, so implementing bug-free communication does not
guarantee that it will stay that way.

The mTask system is a framework that removes this semantic friction by
bringing top to edge devices [7]. It integrates directly with iTask, a top system for
web servers [16]. With iTask and mTask, a programmer writes a single program of
which part is executed on the web server, and part is executed on the edge device.
All communication between iTask and mTask is fully automated, although some
limitations still have to be overcome. In this paper, we will refer to edge devices
running mTask as mTask devices, or just devices.

In section 2, we briefly discuss what top is and how it works. We discuss what
iTask and mTask are and how they are used. We create an example implemen-
tation of a thermostat as a case study and discuss how communication between
the web server and mTask devices can be instigated using task parameters and
results.

In section 3, we introduce shares to handle communication. We discuss how
these can be used on the server, as well as on the device. We discuss the disad-
vantage that it is currently not possible to access shares cross-platform between
iTask and mTask, and propose changes to make this possible. We do the same for
the impossibility to share a shared data source between multiple mTask tasks.
Finally, we touch on synchronization and how it can be used to further increase
the modularity of a program.

In section 4, we discuss the semantics of shared data sources. We will discuss
the already existing semantics for iTask and mTask shares, and see that these
semantics hold for cross-platform access. We also see that, in some case, two
synchronized shares can semantically be considered the same share.

In section 5, we look at how we implement the features used in section sec-
tion 3. We conclude that with only one added combinator, it is possible to
implement all features discussed in this paper.

1.1 Research contributions

– We provide a systematic motivation for using shared data sources in task-
oriented programming.

– We introduce a new design for shared data sources on mTask devices. Their
semantics is a strict subset of shared data sources available on iTask servers.

– We introduce a way to invoke parameterized server tasks from mTask de-
vices.
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– We show that the semantics of the previous design is easily implementable
in the new design.

2 Task-oriented programming in IoT

In this section, we briefly explore top in iTask and mTask. We then implement a
simple thermostat program, where we only use task parameters and results for
communication. We discuss the problems and limitations we encounter. Shares
are introduced in section 3.

2.1 Tasks, iTask and mTask

At the core of top are tasks. Tasks are an abstract representation of work, or in
other words, tasks that have to be done. This can be a wide variety of things.
For example, in iTask, a task might be: fill in this form using the web interface.
An example of an mTask task is: read the temperature using a certain sensor.

Tasks can be combined to make compound tasks. In its simplest form, this is
either sequential or parallel. Sequential combinators are also called step combi-
nators. An example use of a step combinator is: let a user fill in this form, then
display the filled in form values on the screen for confirmation. An example use
of a parallel combinator is: let the user fill in this form, and at the same time
show a countdown for a time limit.

An implementation of top for multi-user distributed web applications is
iTask [16, 18]. It is an embedded domain-specific language (DSL) written in
the host language Clean [17]. The mTask system is a top implementation for
mTask devices, also written as an embedded DSL in Clean. The two systems
are integrated using the function withDevice. This sets up a connection between
an mTask device and the iTask server. Once a connection to a device has been
established, the iTask function liftmTask is used to execute an mTask task on a
connected device. This function compiles the DSL code to bytecode and handles
all communication [10]. The mTask device only has to be programmed once with
the mTask RTS, a domain-specific operating system. This way, iTask controls
what mTask tasks are run on which device, and when. This is called placement
[11].

2.2 A simple thermostat

Using iTask and mTask, we create an example implementation of a simple ther-
mostat. We assume we have connection information of an mTask device, which
is equipped with a temperature sensor and a heater. This device is controlled
from a web server, which sets the target temperature.

In listing 1.1, we create a function thermostat1, hosting the iTask code. The
user interface is handled completely by iTask, where the user can enter both the
connection details for the device and the target temperature that the thermostat
should strive towards. We also create a onDevice function, hosting the mTask
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code. This code takes the temperature set within iTask, and uses a temperature
sensor and heater to keep the temperature stable around the target temperature.

1 // Initiate the thermometer on the edge device.
2 // Definition is used to keep technical clutter out of the examples
3 dhThermometer = dht (DHT_DHT (DigitalPin D2) DHT22)
4

5 // Create a form field to insert the target temperature
6 temperatureForm temperature =
7 updateInformation [] temperature <<@ Label "Target temperature"
8

9 // All of our examples are implemented as a 30-second loop
10 repeat30 task = rpeatEvery (BeforeSec $ lit 30) task
11

12 thermostat1 :: TCPSettings � Task Bool
13 thermostat1 deviceInfo =
14 temperatureForm 20.0 >>? λtargetTemp �
15 withDevice deviceInfo λdevice �
16 liftmTask (onDevice targetTemp) device
17 where
18 onDevice :: Real � Main (MTask v Bool) | mtask,dht v
19 onDevice targetTemp =
20 dhThermometer λthermometer �
21 declarePin D4 PMOutput λheater �
22

23 { main = repeat30 (
24 temperature thermometer >>∼. λcurrentTemp �
25 writeD heater (currentTemp <. lit targetTemp)
26 )}

Listing 1.1. Thermostat v1. In this design, the target temperature is set once via
iTask, and then maintained using the thermometer and heater on the mTask device.

In the code in listing 1.1, some basic tasks are clearly visible. For example,
temperatureForm, on listing 1.1 within iTask, displays a form in the user interface.
In mTask, the temperature task on listing 1.1 uses the thermometer to read the
current temperature.

On listing 1.1, we also see a step combinator. As soon as the user clicks
the submit button on the form, the step combinator executes the rest of the
program. Listing 1.1 does not have parallel combinators, but we will see some
in listing 1.2.

mTask does not use the same combinators as iTask, but has its own distinct
set of combinators. Even though mTask and iTask are integrated well, the imple-
mentations of iTask and mTask are separate. Using the same combinators would
result in name conflicts. Generally, mTask combinators contain a dot character
(.) whereas iTask combinators do not. This makes it easy to recognize which is
which.

Finally, we use the integration functions. On listing 1.1 we use withDevice

to make a connection with the device using the connection details, in this case
supplied by the function argument. On listing 1.1 employ the liftmTask function
to create an iTask task from a mTask device and an mTask task.
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Communication and limitations The example in listing 1.1 is fairly limited.
It is only possible to set the target temperature once, and then the mTask
thermostat heats to that temperature forever. During the execution, the target
temperature cannot be changed. There is only one form of communication which
is going from the server to the device. On listing 1.1 we can see that the variable
targetTemp is used in the mTask program.

To understand exactly how this form of communication works, we have to
understand liftmTask and how it runs tasks on an mTask device. In our example
in listing 1.1, we see that the mTask program is created in the function onDevice.
The target temperature is inserted into this representation by calling lit on it
on listing 1.1. This means that the value of targetTemperature is hardcoded,
the host language is used as a macro language to construct mTask programs,
linguistic reuse [8]. As mTask is a shallowly embedded DSL, the view on the
DSL is a bytecode compiler. This is then compiled at runtime into bytecode and
sent to the device.

2.3 An interactive thermostat

In the example in listing 1.1, it is only possible to set the target temperature
once. We now extend the example so that the user can set the target temperature
whenever he wants, and we display the current temperature in the interface. To
set the target temperature on the device, we use a function argument again. To
retrieve the current temperature from the device, we use the task result.

1 // Definition to create a temperature viewing field
2 temperatureShow temperature =
3 viewInformation [] temperature <<@ Label "Current temperature"
4

5 thermostat2 :: TCPSettings � Task ()
6 thermostat2 deviceInfo =
7 withDevice deviceInfo λdevice �
8 mainLoop device (20.0, 0.0)
9 where

10 mainLoop :: MTDevice (Real, Real) � Task ()
11 mainLoop device (targetTemp, currentTemp) =
12 ( liftmTask (onDevice targetTemp) device >>- λcurrentTemp �
13 waitForTimer False 30 >-| return (targetTemp, currentTemp))
14 -| |-
15 ((temperatureForm targetTemp -| | temperatureShow currentTemp)
16 >>- λtargetTemp � return (targetTemp, currentTemp))
17 >>- λtemperatures � mainLoop device temperatures
18

19 onDevice :: Real � Main (MTask v Real) | mtask,dht v
20 onDevice targetTemp =
21 dhThermometer λthermometer �
22 declarePin D4 PMOutput λheater �
23

24 { main =
25 temperature thermometer >>∼. λcurrentTemp �
26 writeD heater (currentTemp <. lit targetTemp) >>|.
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27 rtrn currentTemp }

Listing 1.2. Thermostat v2. Where v1 only allows the user to set the target temper-
ature once, v2 continuously show the interface to set the target temperature and view
the current temperature. Every 30 seconds everything refreshes.

In listing 1.2, we have taken the loop out of the mTask program and put it
in the iTask program. This means that, instead of looping every 30 seconds, the
mTask program is restarted every 30 seconds with a new target temperature.
The current temperature is then returned as the task result, and is used in iTask
again to be displayed. Aside from using shares, which we introduce in section 3,
we have no other way to refresh the interface with the new current temperature
then to refresh it every 30 seconds.

The iTask main loop can be seen in listing 1.2 on listings 1.2 to 1.2. We use
the -| |- and -| | on listing 1.2 to run some parts of the program in parallel. The
semantics of the two combinators are slightly different, however.

The -| |- results in the value of the task that ends first. This means that if
the user presses submit on the form, the right task ends and restart both tasks
with the new target temperature. If the user does not press submit on the form,
the timer expires and the left task ends. Both tasks restart again, but this time
with the updated current temperature.

The -| | on listing 1.2 is a variant, which is only interested in the task result
on the left-hand side. This makes sense in our example, as we display the current
temperature side by side with the target temperature, but we are only interested
in the result of the form. The right-hand side task runs until the left-hand side
ends.

As iTask and mTask are single-threaded applications, parallel tasks cannot
run truly concurrently. Instead, the semantics of iTask and the parallel combi-
nators run the two tasks interleaved, using small step rewrites.

And finally, there is liftmTask followed by a 30-second timer, on listing 1.2.
The liftmTask function executes a step of the heater and updates the current
temperature. The timer makes sure the mTask program is executed at least every
30 seconds. At the same time, on listing 1.2, a temperature form for the target
temperature is shown, together with a field displaying the current temperature.

Communication and limitations In the example of listing 1.2, we commu-
nicate with the mTask device by continuously stopping and restarting the task
on the device, as well as the tasks generating the user interface. This way, we
use the task parameters and results to keep the target temperature and current
temperature up-to-date in all parts of the program.

In section 2.2, we discussed how mTask programs are constructed and up-
loaded to the mTask device. We concluded that the target temperature value is
hardcoded into the mTask program that is sent to the device. Because mTask is
implemented as a shallowly embedded DSL, the type checking is done at compile
time by the host programming language Clean. However, the actual compilation
is done at runtime. This means, in listing 1.2, every time the main loop gets ex-
ecuted and liftmTask is called, the program is recompiled and reuploaded to the
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device, with the most up-to-date target temperature hardcoded in the compiled
task code. This is problematic for several reasons.

First of all, this is a burden for the programmer. In this case, we needed a rel-
atively complex loop structure with several parallel tasks to perform a relatively
simple task. This code needs to be written and maintained by the programmers.
Secondly, it is a waste of resources. Every 30 seconds, the entire mTask program
is recompiled and sent over the network. Especially on mTask devices, which
usually run on batteries, this can accelerate battery depletion. Moreover, some
devices are connected by relatively low-bandwidth connections, which has to be
shared with other devices. Currently, we are only looking at a basic thermostat
implementation which restarts every 30 seconds, but it is easy to imagine systems
with more volatile variables, generating many more recompilation cycles.

3 Communication for running tasks

In section 2, we implemented a simple thermostat system using a web server pro-
grammed in iTask, and an edge device programmed in mTask. We implemented
the communication using task parameters and results, and we concluded that
task parameters and results are not sufficient to implement communication be-
tween a device and a web server. In this section, we look at another mechanism
frequently used in task-oriented programming: shared data sources.

3.1 Shared data sources

When communicating using task parameters and results, parallel running tasks
can only communicate by being restarted. Shared data sources allow for com-
munication between parallel running tasks without the requirement of being
restarted. In their core principle, shared data sources are only a small interface
containing a read and a write function. Shared data sources in iTask have been
extended with some extra functionality, like parametric lenses and a notification
system [4].

A simple shared data source acting like a variable can be created using the
function withShared. It takes an initial value for the shared data source, and a
callback function with the shared data source as an argument. This shared data
source can then be used in child-tasks.

1 // New temperature form fields using shares
2 temperatureFormShared sds = updateSharedInformation [] sds
3 <<@ Label "Target Temperature"
4 temperatureShowShared sds = viewSharedInformation [] sds
5 <<@ Label "Current Temperature"
6

7 shares :: Task Real
8 shares = withShared 20.0 λsds �
9 temperatureFormShared sds
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10 -| | temperatureShowShared sds

Listing 1.3. This example program shows parallel usage of shares. The
temperatureShowShared field is continuously updated with the value set using
temperatureFormShared.

Fig. 1. The interface generated by listing 1.3 is shown here. The user updates the field
on top, which is continuously synchronized with the read-only field at the bottom.

For example, in listing 1.3, we have a shared data source used by two parallel
child tasks. The child tasks generate an interface containing an input field and
a textual written value, as can be seen in fig. 1. The form task updates the
value of the shared data source when the form value changes, and the display
task updates the displayed value when the value of the share changes. Whenever
the form value is changed, the value just below changes with it. This process is
continued infinitely, or until it is stopped by a parent task.

These shared data sources are used to improve the modularity and separation
of concerns in source code. Take for example our thermostat implementation in
listing 1.2. There, we have a single main loop, handling the user interface and
mTask device in a big ball of spaghetti. Using a shared data source, we separate
these concerns in listing 1.4.

1 thermostat3 :: TCPSettings � Task Real
2 thermostat3 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 withDevice deviceInfo λdevice �
6 temperatureFormShared iTargetTempShare -| |
7 temperatureShowShared iCurrentTempShare -| |
8 mainLoop device iTargetTempShare iCurrentTempShare
9 where

10 mainLoop device iTargetTempShare iCurrentTempShare =
11 (forever $ get iTargetTempShare >>- λtargetTemp �
12 liftmTask (onDevice targetTemp) device >>- λcurrentTemp �
13 set currentTemp iCurrentTempShare >-|
14 waitForTimer False 30)
15

16 onDevice :: Real � Main (MTask v Real) | mtask,dht v
17 // Identical to onDevice in listing 1.2

Listing 1.4. Thermostat v3. Where v2 has to restart the interface every 30 seconds
to update it, v3 uses shared data sources to automate this task. The mTask device
code still has to be restarted every 30 seconds to synchronize the target and current
temperatures.
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On listing 1.3, we see two new form field macros. These variants handle
their input/output via shares instead of retrieving and returning the variables
directly, like the ones in listing 1.1. These are now called on listing 1.4, outside
the thermostat loop.

On listing 1.4, we create the shares to be used in the temperature form fields
and the main loop. In the main loop itself, we only have to regularly run the
thermostat using the values present in the shared data sources. We can see on
listing 1.4 that the values are retrieved from and updated to the shared data
sources.

3.2 Share access from the device

Up to here, we have implemented our thermostat solely using techniques already
available in stable versions of iTask and mTask. However, we still have a relatively
monolithic implementation, with a big main loop (the forever on listing 1.4)
starting both the iTask and mTask parts of the code repeatedly. We would like
our implementation to be more modular, similar to how temperatureFormShared

is a completely detached module, whilst still communicating via the shared data
source.

To increase modularity, we provide interfacing to access shared data sources
cross-platform. Tasks in mTask can now access iTask shared data sources via
the functions iGet and iSet, while iTask can access mTask shared data sources
via the functions mGet and mSet.

This further allows us to separate the communication from the control struc-
ture. Communication between the iTask server and the mTask device is no longer
dependent on starting or restarting the mTask program.

In the next version of our thermostat, we move the main loop back to the
device. This means that the thermostat task on the device only has to be started
once, which overcomes the limitations as posed in section 2.3. Whenever we need
to access data from the shared data sources, we use iGet and iSet to do so. As a
small optimization, we compare the current value to the previous one, and only
update it once the value changes.

1 thermostat4 :: TCPSettings � Task Bool
2 thermostat4 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 withDevice deviceInfo λdevice �
6 temperatureFormShared iTargetTempShare | |-
7 temperatureShowShared iCurrentTempShare | |-
8 liftmTask (onDevice iTargetTempShare iCurrentTempShare) device
9 where

10 onDevice :: (Shared sds Real) (Shared sds Real)
11 � Main (MTask v Bool)
12 | RWShared sds & mtask,dht,lowerSds v
13 onDevice iTargetTempShare iCurrentTempShare =
14 dhThermometer λthermometer �
15 declarePin D4 PMOutput λheater �
16 withmTaskShared 20.0 λoldCurrentShare �
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17

18 { main = rpeatEvery (BeforeSec $ lit 30) (
19 temperature thermometer >>∼. λcurrentTemp �
20 getSds oldCurrentShare >>∼. λoldCurrent�
21 If (currentTemp ==. oldCurrent) (rtrn currentTemp)
22 (iSet iCurrentTempShare currentTemp >-|
23 setSds oldCurrentShare currentTemp) >-|
24 iGet iTargetTempShare >>∼. λtargetTemp �
25 writeD heater (currentTemp <. targetTemp)
26 ) }

Listing 1.5. Thermostat v4. Where v3 only used shared data sources on the server,
we now use shared data sources for all communication.

The function thermostat4 in listing 1.5 is very similar to the function thermostat3

in listing 1.4. The only difference is that on listing 1.5 of listing 1.5, the call to
the main loop is replaced by liftmTask.

Then, in the mTask code, we create a new share using withmTaskShared on
listing 1.5. We start the device loop using repeat30 on listing 1.5, and in the
loop on listing 1.5 to listing 1.5 we implement our thermostat logic. When we
get or set the current or target temperatures on listing 1.5, the data is directly
retrieved from or written to the corresponding shared data source on the server.

Communication and limitations In this example, all communication is fully
handled by reading to or writing from shared data sources. The shared data
sources can be directly used from the server. However, as we do not expect the
current temperature to change every 30 seconds, we can save a lot of network
traffic (and battery life) by checking whether the value is actually new. We can
see on listing 1.5 to listing 1.5 that some scaffolding is necessary to implement
this behaviour.

To implement the same behaviour on the server side for the target tempera-
ture, we have to take a different approach. On the client side, we have our own
iGet every time the value changes. However, on the server side, the updating of
the share is fully handled using temperatureFormShared. We discuss this approach
in more detail in section 3.4.

Finally, two of our goals with this approach were to be less monolithic and to
use less data over the network. However, if we want to split our task into separate
tasks for the thermometer and the heater control, we encounter a problem. As
we call withmTaskShared from within a task, we cannot access the same shared
data source from two different tasks. We are forced to use the iTask share, which
operates fully over the network. In section 3.3 we change the implementation of
withmTaskShared to overcome this limitation.

3.3 Task-independent shares

To overcome the limitations discussed in section 3.2, we need to separate the
connections to the shared data sources from tasks. We can see an example of
what exactly is the problem in listing 1.6. In this example, we tried to keep the
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data local on the device, by using mTask shared data sources. However, each task
now has its own shared data source, which means the data is not linked. This is
visualized in section 3.3. On the left side we see the situation as in listing 1.6.
Each task lifted by liftmTask lives in its own little box. All shared data sources
it needs are included in this box, and tasks cannot access shares in other tasks’
boxes. The right side shows the desired situation, where the connections to shares
are made independent of tasks uploaded by liftmTask.

1 thermostat5a :: TCPSettings � Task Bool
2 thermostat5a deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 withDevice deviceInfo λdevice �
6 temperatureFormShared iTargetTempShare | |-
7 temperatureShowShared iCurrentTempShare | |-
8 liftmTask (sensor iCurrentTempShare) device | |-
9 liftmTask (heater iTargetTempShare) device

10 where
11 sensor iCurrentTempShare =
12 dhThermometer λthermometer �
13 withmTaskShared 20.0 λmCurrentTempShare �
14

15 { main = repeat30 (
16 temperature thermometer >>=. λtemp �
17 setSds mCurrentTempShare temp >-|
18 iSet iCurrentTempShare temp)}
19

20 heater iTargetTempShare =
21 declarePin A4 PMOutput λheater �
22 withmTaskShared 20.0 λmCurrentTempShare �
23

24 { main = repeat30 (
25 getSds mCurrentTempShare >>∼. λcurrent �
26 iGet iTargetTempShare >>∼. λgoal �
27 writeD heater (current <. goal))}

Listing 1.6. Thermostat v5a. We attempt to split the code for the thermometer and
heater into two different tasks. This implementation fails, as the mCurrentTempShare in
the heater task does not communicate or synchronize with the one in the thermometer
task.

To accomplish this, we have to take the creation of shares out of the mTask
code, and create shares in the iTask code instead. Listing 1.7 shows how this is
implemented in our example thermostat application.

1 thermostat5b :: TCPSettings � Task Bool
2 thermostat5b deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 withDevice deviceInfo λdevice �
6 withmTaskShared device 20.0 λmCurrentTempShare �
7 temperatureFormShared iTargetTempShare | |-
8 temperatureShowShared iCurrentTempShare | |-
9 liftmTask (sensor mCurrentTempShare iCurrentTempShare) device | |-

10 liftmTask (heater mCurrentTempShare iTargetTempShare) device
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liftMTask liftMTask

withDevice

mTask
Device

iTask
Server

liftMTask liftMTask

withDevice

Shares
Tasks

Fig. 2. This diagram shows the setup and communication between iTask on the server
and mTask on a device. The left side shows the situation as in listing 1.6, with the
situation of listing 1.7 on the right.

11 where
12 sensor mCurrentTempShare iCurrentTempShare =
13 dhThermometer λthermometer �
14 /∗ No share creation here ∗/
15

16 { main = repeat30 (
17 temperature thermometer >>=. λtemp �
18 setSds mCurrentTempShare temp >-|
19 iSet iCurrentTempShare temp)}
20

21 heater mCurrentTempShare iTargetTempShare =
22 declarePin A4 PMOutput λheater �
23 /∗ No share creation here ∗/
24

25 { main = repeat30 (
26 getSds mCurrentTempShare >>∼. λcurrent �
27 iGet iTargetTempShare >>∼. λgoal �
28 writeD heater (current <. goal))}

Listing 1.7. Thermostat v5b. Where v5a does not have working communication be-
tween the two tasks, v5b does.

The thermostat version of listing 1.7 contains a few updates from the previous
version in listing 1.5. Firstly, the onDevice task has been split into a sensor task
on listing 1.7, which is responsible for reading the thermometer and updating
the current temperature, and a heater task on listing 1.7, which is responsible
for controlling the heater from the target and current temperatures. Secondly,
the creation of the share has been taken out of the individual mTask tasks, and
has moved to the iTask code on listing 1.7. Finally, we drop the check to see
if the current temperature has changed from the previous one on listing 1.5 to
listing 1.5 of listing 1.5, as we discuss this in more detail in section 3.4.

In the thermostat version of listing 1.7, the communication between the de-
vice and the web server is implemented as described on the right side of sec-
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tion 3.3. Separate tasks on the device can now directly communicate with each
other, as well as with the web server.

Communication and limitations This version eliminates the network traffic
for communication between running mTask tasks. However, as we see on list-
ing 1.7, we still need to update both the mTask and iTask version of the share.
On listing 1.7, we see that every iteration of the temperature check still requires
a network call to the iTask share, even though the temperature probably only
changes sporadically.

3.4 Synchronizing shares

1 thermostat6 :: TCPSettings � Task Bool
2 thermostat6 deviceInfo =
3 withShared 20.0 λiTargetTempShare �
4 withShared 20.0 λiCurrentTempShare �
5 withDevice deviceInfo λdevice �
6 withmTaskShared device 20.0 λmTargetTempShare �
7 withmTaskShared device 20.0 λmCurrentTempShare �
8 syncIToM device iTargetTempShare mTargetTempShare | |-
9 syncMtoI device mCurrentTempShare iCurrentTempShare | |-

10 temperatureFormShared iTargetTempShare | |-
11 temperatureShowShared iCurrentTempShare | |-
12 liftmTask (sensor mCurrentTempShare) device | |-
13 liftmTask (heater mCurrentTempShare mTargetTempShare) device
14 where
15 sensor mCurrentTempShare =
16 dhThermometer λthermometer �
17

18 { main = repeat30 (
19 temperature thermometer >>=. λtemp �
20 setSds mCurrentTempShare temp)}
21

22 heater mCurrentTempShare mTargetTempShare =
23 declarePin A4 PMOutput λheater �
24

25 { main = repeat30 (
26 getSds mCurrentTempShare >>∼. λcurrent �
27 getSds mTargetTempShare >>∼. λgoal �
28 writeD heater (current <. goal))}

Listing 1.8. Thermostat v6. Where v5 has to do manual synchronization every time
we write to a share, we now have background tasks to automate these tasks.

We now would like to go one step further, and fully separate the thermo-
stat logic from the communication logic. We would also like to optimize our
communication logic, so it only requires bandwidth whenever the value actually
changes. To accomplish this, we make use of separate data-synchronization tasks
syncItoM and syncMtoI. They take an iTask and an mTask share, and synchronize
the value from one side to the other whenever the value actually changes. Their
implementation is further discussed in section 5.3. These are simply functions we
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can insert alongside the liftmask’s and temperature form, in the same manner
as we use temperatureFormShared in section 3.1 to offload the handling of the
user interface. In mTask, we can now focus solely on implementing our device
code, knowing the communication is fully handled elsewhere.

In this final version of our thermostat in listing 1.8, we outsource the synchro-
nization of shares between server side and client side to the new tasks syncItoM

and syncMtoI.
We run the synchronization tasks parallel to the rest in listing 1.8. Note that

on listing 1.8, we do not need to update the iTask share any more.
Data synchronization does come with a few footnotes. We discuss the exact

semantics and limitations of synchronization in section 4.3.

4 Semantics of shared data sources

In this section, we discuss the semantics of shared data sources, cross-platform
access to shared data sources, and synchronization of shared data sources as
described in section 3. We note that the original semantics for shared data sources
hold for cross-platform access, but not for all cases of synchronized shared data
sources.

4.1 Semantics of shared data sources

In this section, we look at the informal semantics of the operations get, watch,
set, upd and amend1. In the thermostat examples of section 3, we only used get

and set, together with their mTask (getSds, setSds) and cross-platform (iGet,
iSet, mGet, mSet) variants. The upd and amend operations are also available in the
mTask and cross-platform variants, using the same naming conventions. Finally,
in iTask we have a watch operation, this is implemented as a different combinator
to get as an optimization. The watch is used to observe a shared data source
over a period of time. In mTask, the getSds includes the functionality of the
watch. A comparison table of mTask and iTask operations is given in table 1.
The exact definitions of the five base operations in iTask are given in listing 1.9.

1 // Get the value of a shared data source once
2 // as a stable value
3 get :: (Shared a) � Task a
4

5 // Watch the value of a shared data source continuously
6 // as an unstable value
7 watch :: (Shared a) � Task a
8

9 // Set the value of a shared data source
10 set :: a (Shared a) � Task a
11

1 Note: The full iTask shared data source implementation supports several features
that mTask shared data sources do not. For the sake of simplicity, we will only
discuss features of iTask shared data sources that mTask supports as well. More info
about full iTask shared data sources can be found in papers by Lubbers and Böhm
[9] and Domoszlai et al. [4].
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12 // Update the value of a shared data source
13 upd :: (a � a) (Shared a) � Task a
14

15 // Update the value of a shared data source, return a custom value
16 amend :: (a � (b, Maybe a)) (Shared a) � Task b

Listing 1.9. We define the type signatures of the operations on shared data sources.

iTask mTask

get getSds >>=. rtrn

watch getSds

set setSds

upd updSds

amend amendSds

Table 1. We compare the iTask operations on shared data sources with their variants
in mTask.

Given a shared data source of type Shared a:

– get takes the shared data source and immediately returns the value of the
share as a stable value.

– watch continuously reads the shared data source, and returns its value as an
unstable value.

– set takes a value and a shared data source. It writes this value to the shared
data source, and returns it as well.

– upd takes a transformation function of type a � a and a shared data source.
It applies the transformation function on the value of the shared data source.
The resulting value is both written back to the shared data source, and
returned by the upd function.

– amend is a more general version of the upd. It separates the value written into
the share and the value returned by the amend task utilizing a tuple. The
full type of the transformation function is a � (b, Maybe a). The left part
of the tuple is returned by the amend, whilst the right side is written as a
new value to the share. Furthermore, the right side is a Maybe. It is possible
to omit writing back to the share by returning Nothing here.

Furthermore, the following properties hold on all four operations:

– Atomicity : The operations are guaranteed to be atomic.
For get and set this is natural and easy to achieve. However, for upd and
amend, this is an important property which requires a careful implementation.
If we were to transform the value of a share using only get and set, a parallel
running task could write to the same shared data source, introducing a race
condition.

– Incompleteness: It is not guaranteed that all tasks observing the shared data
source see all changes.
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– Ordering : It is guaranteed that all tasks observing the shared data source
see changes in the same order.

– Convergence: After a certain amount of time without any updates, all tasks
observing the shared data source see the same value.

To give a bit more intuition for the properties Incompleteness, Ordering and
Convergence, let us look at the example of listing 1.10. In this example, we run
tasks a and b in parallel. Each of them sets the value of the share, and then
forever reads the share to do something with it.

The Incompleteness non-guarantee tells us that it is undefined whether any
of these tasks sees both values. It is possible that either, or both, only see the
value that is written last. This simply has to do with the fact that there are
defined moments on which the task looks at the value of the share. If the value
of the share changes twice between two observations, the task misses the first
value. When it is imperative that no updates are missed, the programmer can
employ a queue in the shared data source.

The Ordering property guarantees us that the values that are seen by the
tasks are always seen in the same order. It is not possible that task a first sees
value 12 and then 42, while task b first sees 42 and then 12, or vice versa.

The Convergence property guarantees that, eventually, both tasks will ob-
serve the last written task value.

1 both = withShared 0 λshare �
2 a share -&&- b share
3

4 a sds = set 12 sds >-|
5 watch sds >>* // ...
6

7 b sds = set 42 sds >-|
8 watch sds >>* // ...

Listing 1.10. We define two iTask tasks to illustrate that both tasks see values in the
same order (Ordering), but not necessarily all values (Incompleteness).

The Atomicity property demonstrates the need for an upd operation nicely. As
an example, we consider a program where multiple parallel running tasks increase
a counter by one throughout the code. Were this +1 implemented by a get

share >>- λ v � set (v+1) share, we would have a race condition in our code.
Implementing it with an upd instead, we get upd ((+) 1) share. This version
performs the whole operation in a single step, avoiding race conditions.

To illustrate the need for amend over upd, we look at the function dequeueInShare

in listing 1.11. This example would not be possible to implement using an upd,
as we need to return the updated queue to the share, but we need to return
the dequeuedItem to the program. This is precisely the functionality the amend

provides.

1 dequeueInShare :: (Shared (Queue a)) � Maybe a
2 dequeueInShare share = amend (λqueue �
3 let (dequeuedItem, updatedQueue) = dequeue queue in
4 (dequeuedItem, Just updatedQueue)
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5 ) share

Listing 1.11. The dequeue operation shows the necessity of the amend operation.

The upd is also not sufficient. We would not be able to write the updated
queue back to the shared data source, while returning the dequeued item to the
function caller. This illustrates the necessity of the amend on top of the upd. It
is, however, possible to implement the upd using the amend (see listing 1.12).

1 upd :: (a � a) (Shared a) � a
2 upd fn sds = amend (λvalue �
3 let value‘ = fn value in
4 (value‘, Just value‘)
5 ) sds

Listing 1.12. It is possible to implement the upd operation using the amend.

4.2 Semantics of cross-platform access

In the previous section, we discussed the semantics of iTasks and mTasks shared
data sources. The properties of Atomicity, Ordering and Convergence are easily
guaranteed on these systems, as the host/server is the sole controller. The iTask
and mTask runtime systems can tightly control how operations on shared data
sources are performed, and ensure these properties.

However, as we combine iTask and mTask, we have a multiprocessor system.
If we want to implement this combination in some kind of distributed manner,
we run into all kinds of synchronization problems. A more elegant approach is
to handle share updates on the runtime system where the share exists. This
approach has also been used in distributed iTasks [14, Section 4.2]. However,
as mTask shares differ from iTask shares, we cannot simply overload the share
access operations like they do.

Let us look at this approach more closely. As an example, we take the upd

operation. In fig. 3, on the left side, we see a visualization of the upd operation
using a single runtime (either iTask or mTask) setting. Time is represented on
the y-axis. On the x-axis, we have space for two tasks A and B, and a shared data
source they can use. At some point, task A wants to perform an upd operation.
To make the upd atomic, the transformation function is taken out of the task,
and executed directly on the value of the shared data source. This value is then
directly written back into the share, as well as given back to the calling task.
Any task B is blocked from accessing the shared data source for as long as the
transformation function needs to update the value.

Figure 3 on the left side shows the same process, but in a cross-platform set-
ting. The platforms are separated by a network layer in the middle. In this case,
we again take the transformation function out of the task. This time we send it
over the network to give it to our own task C running on the side containing the
shared data source. This task C then runs the upd operation using the transfor-
mation function, which is executed like in the single-platform situation (fig. 3,
right). Finally, task C sends the task result back to task A, so it can resume
execution as well.
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Fig. 3. These sequence diagrams show how an upd operation is performed, both on the
same device and over the network. On the left side the update is single-platform, while
on the right side it is cross-platform.

Let us check whether the semantics indeed hold using this method. The
Atomicity property holds, as the transformation function is eventually executed
as a normal single-platform upd operation. The Ordering property holds as well,
as all changes to the status of the share originate from the single iTask system.
They arrive to different parts of the system in the same order, albeit a bit later
on the other platform due to networking delays. The same holds for Convergence.
As our semantics do not restrict timing delays in any shape or form, all semantics
still hold.

4.3 Semantics of synchronization

In section 3.4, we introduced synchronization functions syncItoM and syncMtoI to
synchronize two shares existing in iTask and mTask. In this section, we discuss
how this synchronization compares to the semantics defined in section 4.1. Can
we see these synchronized shares as two different interfaces to semantically one
single share? When should caution be used?

One-way synchronization In thermostat6 as defined in listing 1.8, we see two
sets of shared data sources: one for the target temperature and one for the current
temperature. For both of these shared data sources, one way synchronization
is applied. In the example of the target temperature for example, the target
temperature is read and written from the server side (by temperatureFormShared),
and only read from by the heater task on the client side. As such, the value is
only synchronized from the server to the client. To generalize: we have read-write
side A, read-only side B, and one way synchronization from A to B.

In this setup, the semantics hold and both shares can be considered one
single shared data source, as long as side B only reads from it. As there is no
synchronization from B to A, side A never updates if side B updates. This means
we only have to discuss the semantics of get, as upd and amend write to the share
like set does. The Atomicity property holds. As the synchronization function
sends updates in the same order as they come into the share on side A, we also
preserve the order of updates. The Ordering property holds as well. If the update
function skips an update, it is not a problem because of the Incompleteness
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property. Finally, as the Convergence property does not restrict timing delays,
we only need to ensure that the task value eventually ends up on the other
side. As this is the exact job description for the synchronization function, this
property holds as well.

Another way of looking at this setup is by considering B as a read-only cache
for the shared data source. In this case, the updates are pushed proactively to side
B by the synchronization function, instead of retrieved from side A on-demand
by the cross-platform get function.

If a write from side B is still necessary, we can always use a cross-platform
write to maintain the semantics.

Two-way synchronization When introducing two-way synchronization, all
three of the properties Atomicity, Ordering and Convergence fall apart. For the
Atomicity property, we can easily create a parallel upd on either side of the
network, breaking atomicity completely. For the Ordering property, any kind of
crossing communication from updates on either side of the network breaks the
semantics. Each side sees its own update first, followed by the others. When
two updates happen on either side on exactly the same time, they will send a
message to the other side to synchronize it. They both inherit each other’s value,
breaking Convergence as well.

In this case, we are dealing with distributed memory [? ], with all its race
conditions and other synchronization issues. That does not mean, however, that
two-way synchronization cannot be useful, as there are still properties we can
define on synchronized shares:

– Propagation Any update on either side will eventually reach the other side.
How long exactly depends on the network connection between the client and
server.

This property can be used to implement different synchronization protocols,
made to fit the exact situation. For example, we can change the synchronization
method slightly to get back the Convergence property:

On one side of the synchronization, we change the implementation. Every
time a value update comes in which is different from the value already in the
shared data source, we update it and send it back to the original side as well.

Synchronization or cross-platform access? Multiple different trade-offs be-
tween synchronization and cross-platform access exist. There is no one solution
to fit all use cases. In this section, we briefly discuss the differences.

– Data safety: The semantic properties hold using cross-platform access or
one-way synchronization, but not when using two-way synchronization.

– Network/battery usage: When reads are plentiful but writes are sparse, syn-
chronized data uses less network and bandwidth. Even if two-way synchro-
nization is not possible due to data-safety concerns, one-way synchronization
can still be used.
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In the case where writes are plentiful, but reads are sparse, cross-platform
access generally performs better. One might even develop a small protocol
where two completely separate shared data sources collect data on either
side, only to be combined when the data is read.

– Read/write speed: Access to a share on the same side is orders of magnitude
faster than cross-platform access over a network. If read-speed is an issue,
synchronized data performs better. Write speed is not an issue, as the task
continues execution whilie the write is performed.

5 Implementation

In this section, we will discuss the implementation of the techniques above. We
will see that the implementation of cross-platform share access only requires one
extra combinator loweriTask. We will look at loweritask and discuss what con-
structs we require for its implementation. Finally, we show that synchronization
in its simplest form also only requires constructs previously defined in this paper.

5.1 Cross-platform access

To perform cross-platform communication safely, we need to execute the read
and/or write on the other side of the network. As we discussed in section 4.2
near fig. 3, the safest way to do this while maintaining all guarantees and no
code duplication is to insert a task actually performing the get, watch, set, upd
or amend on the side where the share in question lives.

iTask access to mTask shares For iTask to work with mTask shares we
already have the liftmTask combinator to perform any mTask operation on the
device. We can utilize this to transfer our operation to mTask.

1 mGet :: MTDevice (BCInterpret (Sds a)) � Task a
2 | type a
3 mGet dev sds = liftmTask {main = getSds sds >>∼. rtrn} dev
4

5 mSet :: MTDevice (BCInterpret (Sds a)) a � Task a
6 | type a
7 mSet dev sds a = liftmTask {main = setSds sds (lit a)} dev
8

9 mUpd :: MTDevice ((BCInterpret a) � BCInterpret a)
10 (BCInterpret (Sds a)) � Task a
11 | type a
12 mUpd dev fndef sds = liftmTask (
13 fun λfn=fndef In
14 {main=updSds sds fn}) dev

Listing 1.13. Using liftmTask, we implement iTask access to mTask shares.

Listing 1.13 shows the implementations for get, set and upd, where the
BCInterpret type is the mTask compilation monad. For simplicity, we omit the
watch and amend, as they are similar to get and upd respectively. For get and
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set, the implementation is trivial. We simply wrap the mTask version of the
operation in a liftmTask. The upd, however, needs a function. Because of how
functions in mTask are implemented, this adds some complications. To see why,
let us look at an example function in listing 1.14.

1 fun λfn=(λarg � // Function body
2 ) In // Function fn is callable here

Listing 1.14. A function in mTask is defined using the fun ... In ... operator pair.

In this example, we see two different notions of the function. Firstly, we have
the function definition (λ arg � //function body). This is a lambda function in
the host language, which gets an argument and delivers a function body. It has
type (BCInterpret a) � (BCInterpret b): it receives an mTask argument and
results in an mTask return value. If we used this directly as a function in mTask
code, the full function body would be expanded directly into the calling code
every time we call the function.

Secondly, we have fn. This notion of function can be considered just the label
of the function: it tells the mTask system which function body has to be called
when we execute this function. To make sure this function is callable by mTask
code, it has type (BCInterpret a) � (BCInterpret b). The observant reader has
already seen that this is the same type as the function definition.

Finally, we have the In operator. The fun and In operators together make
sure that the function body is compiled, labelled using fn, and usable on the right
side of the In. The current implementation of mTask functions is introduced in
an earlier paper on mTask [10, Sections 3.1 & 4.2].

We now create our mUpd with the above knowledge. To make sure we are
on the right side of the In, where we are allowed to use the function, we ask
the function definition fndef from the mTask programmer and define it as a
function ourselves as function fn. On the right side of the In, we can now use
this function in the updSds. However, the function definition and the function
label both have the same type, which means we cannot use the type system to
enforce that the mTask programmer provides the correct one out of those two.
This is a limitation of our current approach.

It is possible to avoid these overlapping types by adding a function application
combinator to the eDSL language. This addition allows us to change the type of
the function label (fn) to a boxed variant. The trade-off is that adding a function
application combinator pushes the eDSL further away from the host language,
causing semantic friction. In our eDSL implementation, we chose to accept this
type overlap in favour of not having an application combinator.

mTask access to iTask shares To provide mTask access to iTask shares,
we can use a similar approach. We define a loweriTask combinator, which is
the inverse of liftmTask. In section 5.2 we will discuss how such combinator
is implemented. We now use this combinator to implement the cross-platform
access. As the function we give the upd is simply a host language function, we
do not need any workaround to make this work as we needed for mUpd. The
definitions are given in listing 1.15.
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1 iGet :: (Shared a) � BCInterpret (TaskValue a)
2 | Readable sds & TC a & type a
3 iGet sds = loweriTask (λ_ � get sds) (lit ())
4

5 iSet :: (Shared a) (BCInterpret a) � (BCInterpret (TaskValue a))
6 | Writeable sds & TC a & type a
7 iSet sds value = loweriTask (λa � set a sds) value
8

9 iUpd :: (Shared a) (b a � a) (BCInterpret b)
10 � (BCInterpret (TaskValue a))
11 | RWShared sds & TC a & type a & type b
12 iUpd sds fn value = loweriTask (λb � (upd (fn b) sds)) value

Listing 1.15. Using loweriTask, we implement mTask access to iTask shares.

5.2 loweriTask

To implement cross-platform access as described in section 5.1, we need a loweriTask

combinator. Such a combinator contacts the server, executes a task there, and
synchronizes the task value generated by the iTask task with the mTask task.
The signature of loweriTask is given in listing 1.16.

1 loweriTask :: (a � Task b) (BCInterpret a) � BCInterpret (TaskValue b)

Listing 1.16. We define the type signature of loweriTask.

As we can see, the function expects exactly one argument to be passed to the
task. Zero or more than one arguments can be passed by using a unit type or a
tuple. This value is sent to the server, along with the request to start the task.
Every time the task value changes, it is sent back to the mTask device, and set
to be the task result of the loweriTask combinator.

To allow for this execution to happen, we need two components: (1) We need
to be able to create an iTask task from the mTask system, and (2) we need to
communicate with the server to be able to start the task

Creating an iTask task from mTask We want to be able to execute any
arbitrary Clean / iTask code from our loweriTask combinator. However, mTask
is an embedded DSL, which is restricted in its features compared to the host
language. We do not want these restrictions on the iTask tasks we want to
execute. Instead, we give loweriTask a native iTask task, which is then labelled
and stored on the server. The mTask program then uses this label to instruct
the server on which stored task to execute.

Communicating with the server The loweriTask function sends a message
to the server to start the iTask task. The iTask server already has an established
communication channel with the mTask device to start mTask tasks and obtain
task values when completed, which is visualized in the left side of fig. 4. When
a connection with a device running the mTask client is made, a communication
task is started. This communication task handles the connection with the mTask
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client. The device handle then contains a shared data source which is used as
a communication channel between the communication task and any other task
who needs to communicate with the mTask client. For example, liftmTask uses
these channels to upload a new mTask program to the mTask device.

channels

withDevice

liftmTask
comm.

task

connection

mTask
client

mTask
Device

iTask
Server

channels

withDevice

liftmTask
comm.

task

connection

mTask
client

Shares
Taskslowered
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Fig. 4. We show the communication channels used to communicate between iTask and
mTask tasks. On the left side, the channels are used to start an mTask task from iTask,
while on the right side an iTask task is started from mTask.

We extend this communication infrastructure with the necessary messages
for loweriTask, as visualized on the right side of fig. 4. As the liftmTask function
holds all labelled iTask tasks, it listens to task starting requests in the channel’s
shared data source. Once this task is started, it watches task value updates, and
sends them back to the mTask client.

5.3 Synchronization

To synchronize a share on side A to a share on side B, we use the following
four-step algorithm:

– Watching : Detect when a share on side A is updated
– Checking : Test if the value is different from the old one
– Updating : Update the share on side B if it is
– Repeating : Go back to watching and repeat

Let us discuss these steps according to the implementation of this algorithm
given in listing 1.17. This implementation synchronizes an iTask share to an
mTask share.

The first step of our algorithm is watching. We see a watch being used on list-
ing 1.17. The watch task has the value of the shared data source as its task result.
This watch is followed by the >>* step combinator. This combinator rewrites the
task on the left-hand side (the watch), and checks if a condition on its task result
holds. If it does not, it tries again for the next task result. If it does, it will con-
tinue with the next task. Such a pair containing a condition and a task is called a
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task continuation. As the >>* combinator checks for multiple task continuations,
it accepts a list of them.

The second step of our algorithm, the checking, is embedded in the use of
this task combinator. As we check for inequality to the old task value, this
task combinator only continues with the next steps of our algorithm when this
inequality holds.

The third step of our algorithm, the updating, happens on the next line (12)
using the mSet task to write directly to the mTask share. The repeating step on
follows listing 1.17, using a recursive call.

Finally, to start our algorithm, we have to retrieve the value of the shared data
source, to provide an initial “old” value to the algorithm. This bootstrapping is
done on listing 1.17.

1 syncIToM :: MTDevice (Shared a) (BCInterpret (Sds a)) � Task ()
2 | RWShared sds & iTask a & type a
3 syncIToM dev isds msds =
4 get isds >>- λv �
5 detectLoop dev isds msds v
6 where
7 detectLoop :: MTDevice (Shared a) (BCInterpret (Sds a)) a
8 � Task ()
9 | RWShared sds & iTask a & type a

10 detectLoop dev isds msds oldValue =
11 watch isds >>* [OnValue $ ifValue ((=!=) oldValue) $ \newValue �
12 mSet dev msds newValue >-|
13 detectLoop dev isds msds newValue]

Listing 1.17. syncIToM synchronizes the value of an iTask share to an mTask share
using the techniques shown in section 3.2.

The implementation to synchronize an mTask share to an iTask share in
listing 1.17 is symmetrical to the iTask-to-mTask synchronization. However, this
synchronization is implemented in mTask, there are some differences. First of all,
as we saw in table 1 in section 4.1, the getSds task implements the functionality
of both the iTask get and watch. We see that on lst:smi:watch, the getSds is
used to watch the shared data source. The other differences are merely the usages
of mTask combinators instead of iTask combinators. We see the watching and
checking steps on listing 1.18, the updating on listing 1.18, and the repeating on
listing 1.18.

1 syncMToI :: MTDevice (BCInterpret (Sds a)) (Shared a) � Task ()
2 | RWShared sds & iTask a & type a & Eq a & basicType a
3 syncMToI dev msds isds =
4 liftmTask (detectLoop msds isds) dev
5 where
6 detectLoop :: (BCInterpret (Sds a)) (Shared a)
7 � Main (BCInterpret (TaskValue ()))
8 | RWShared sds & iTask a & type a & Eq a & basicType a
9 detectLoop msds isds =

10 fun λfn=(λoldValue �
11 getSds msds >>*. [(IfValue $ (!=.) oldValue) \newValue �
12 iSet isds newValue >>|.
13 fn newValue]
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14 ) In
15 { main = getSds msds >>∼. λv � (fn v) }

Listing 1.18. syncMToI synchronizes the value of an mTask share to an iTask share
using the techniques shown in section 3.2.

To extend this to two-way synchronization, we simply call both syncItoM and
syncMtoI on the pair of shares, as in listing 1.19.

1 syncIandM :: MTDevice (BCInterpret (Sds a)) (Shared a) � Task ()
2 | RWShared sds & iTask a & type a & Eq a & basicType a
3 syncIandM dev msds isds =
4 syncIToM dev isds msds -| | syncMToI dev msds isds

Listing 1.19. syncIandM synchronizes an mTask share and an iTask share bi-
directionally by starting single-directional synchronization tasks in both directions.

6 Future work

In this paper, we have shown how shares can be used to greatly improve com-
munication between an mTask device and a web server. However, there are still
some open questions.

Currently, shares are required to be of fixed size. This means that recursive
abstract data types like lists/queues/trees are not supported. It is an open prob-
lem to see how we can add support for those data types on mTask devices, given
the fact that the amount of memory is very limited, and no memory virtualiza-
tion exists. This could be very useful when we want to implement for example
a message queue. This message queue could use an actual queue data structure
inside a shared data source.

Secondly, we only discussed one-on-one communication for shares, between
a server and a device. Communication between two mTask devices is forced to
take a detour via the server. When two devices are on the other end of a low-
bandwidth connection, direct device to device communication is preferable. This
could also be used for swarm behaviour, or mesh networks of mTask devices.

Finally, some shares may contain big data types which are only partially
updated. We can save on a lot of network traffic if we only send deltas of sds
updates. This way, queues and records containing a lot of data can be updated
way more efficiently.

7 Related work

On smaller IoT devices using microcontrollers, the industry standard for writing
applications is the programming language C. The simplest, most bare-bones
option for the implementation of communication, is to use HTTP requests or
web sockets. Alternatively, a message broker like MQTT or AMQP can be used.
These options are explored and compared in a paper by Naik [12]. Compared
to the communication methods discussed in this paper, HTTP requests/sockets
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and message brokers are as low level and bare-bones as C is compared to higher
order languages like Clean.

On bigger IoT devices running a full operating system, any solution that also
runs on normal computers and web servers can be employed. While this paper
focusses on smaller IoT devices using microcontrollers, the same principles can
be applied for bigger IoT devices. Distributed iTask implements proxy access
to shared data sources similar to the interface of this paper [14, Section 4.2].
Another possibility is to run a full-fledged distributed memory system like Erlang
[1].

mTask provides fine-grained control over what code gets executed on what
device, using the liftmTask and loweriTask combinators. Other systems deter-
mine automatically what code runs on the server, and what runs on the client.
In contrast to our solution, these systems assume that all nodes are powerful
enough to execute any code fragment. A tierless JavaScript project created by
Philips et al. [15] uses static code analysis, and inserts remote calls automati-
cally into the code where necessary. JavaScript is an object-oriented language
with extensive access to program status, so shared data sources and/or synchro-
nization are not implemented. Potato is a reactive programming solution for IoT
problems in the Elixir/Erlang world, using a similar approach [3]. Potato is a
specific version of functional reactive programming [? ]. A (remote) observable
in Potato is somewhat similar to a SDS in TOP. The main difference is that an
observable produces a stream of values, while a SDS only has a single current
value that can change over time.

8 Conclusion

In this paper, we improve our single source solution for communication between
edge devices in IoT systems with their server. In the existing solution, the server
could spawn tasks on the edge device. The tasks on the server and edge device
can communicate via shared data sources during their execution. The two-way
communication via a single shared data source has a fuzzy semantics due to the
unavoidable communication delays.

In this paper, we introduce separate shares on the server and the device. The
interface to these shares on the server and the edge device is very similar. The
semantics of the shares on the edge device is a proper subset of the server-based
shares.

The server can update or read a shared data source on the device by spawning
an appropriate task. This requires the edge device-wide shared data sources
introduced here. In the previous system, every task on the edge device had its
own copy of the shared data source on the server.

To facilitate easy and efficient communication from edge device tasks to server
tasks, the device tasks can invoke a parameterized task on the server. Our exam-
ples show that this yields a convenient abstraction level for safe communication.

Unidirectional synchronization from server to device, or vice versa, has still
a well-defined semantics. This is easily expressed as a general task in our new
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abstraction level. The remote share will reflect any value that lasts long enough
with some delay.

All code shown here is implemented in the existing iTask system for the
server and mTask system for task-oriented programming. All code show in this
paper is available [6].
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