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Abstract. Inductive families provide a convenient way of programming
with dependent types. Yet, when it comes to compilation, their default
linked-tree runtime representations, as well as the need to convert be-
tween different indexed views of the same data when programming with
dependent types, can lead to unsatisfactory runtime performance. In
this paper, we aim to introduce a language with dependent types, and
inductive families with custom representations. Representations are a
version of Wadler’s views [13], refined to inductive families like in Epi-
gram [11]. However, representations come with compilation guarantees:
a represented inductive family will not leave any runtime traces behind,
without having to rely on automated optimisations such as deforestation
[14]. This way, we can build a library of convenient inductive families
based on a minimal set of primitives, whose re-indexing and conver-
sion functions are erased at compile-time. In addition, we show how we
can express inductive data optimisation techniques, such as representing
Nat-like types as GMP-style big integers, without special casing in the
compiler. With dependent types, reasoning about data representations
is also possible; for example, we get computationally irrelevant isomor-
phisms between the original and represented data.
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1 Introduction

Inductive families are a generalisation of inductive data types found in some
programming languages with dependent types. Every inductive definition is
equipped with an eliminator that captures the notion of mathematical induc-
tion over the data, and in particular, enables structural recursion over the data.
This is a powerful tool for programming as well as theorem proving. However,
this abstraction has a cost when it comes to compilation: the runtime represen-
tation of inductive types is a linked tree structure. This representation is not
always the most efficient for all operations, and often forces users to rely on
more efficient machine primitives to achieve desirable performance, at the cost
of structural recursion and dependent pattern matching. This is the first problem
we aim to address in this paper.
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Despite advances in the erasure of irrelevant indices in inductive families
[4] and the use of theories with irrelevant fragments [2,12], there is still a need
to convert between different indexed views of the same data. For example, the
function to convert from List T to Vec T n by forgetting the length index n is not
erased by any current language with dependent types, unless vectors are defined
as a refinement of lists with an erased length field (which hinders dependent
pattern matching due to the presence of non-structural witnesses), or a Church
encoding is used in a Curry-style context [8] (which restricts the flexibility of
data representation). This is the second problem we aim to address in this paper.

Wadler’s views [13] provide a way to abstract over inductive interfaces, so
that different views of the same data can be defined and converted between
seamlessly. In the context of inductive families, views have been used in Epigram
[11] that utilise the index refinement machinery of dependent pattern matching
to avoid certain proof obligations with eliminator-like constructs. While views
exhibit a nice way to transport across a bijection between the original data and
the viewed data, they do not utilise this bijection to erase the view from the
program. Despite deforestation handling this erasure to some extent, it is not
guaranteed to erase all traces of the view from the program, and the optimisation
might be difficult to predict.

In this paper, we propose an extension λrep to a core language with de-
pendent types and inductive families λind, which allows programmers to define
custom, correct-by-construction data representations. This is done through user-
defined translations of the constructors and eliminators of an inductive type to a
concrete implementation, which form a bijective view of the original data called
a ‘representation’. Representations are defined internally to the language, and
require coherence properties that ensure a representation is faithful to its the
original inductive family. In the final version of the paper, we plan to contribute
the following:

– A dependent type system with inductive families λind, and its extension by
representations λrep.

– A formulation of common optimisations such as the ‘Nat-hack’, and similarly
for other inductive types, as representations.

– A demonstration of zero-cost data reuse when reindexing by using represen-
tations.

– A translation from λrep to λind that erases all inductive types with repre-
sentations from the program.

– An implementation of this system and accompanying examples in Super-
fluid, a programming language with inductive types and dependent pattern
matching.

2 A tour of data representations

A common optimisation done by programming languages with dependent types
such as Idris 2 and Lean is to represent natural numbers as GMP-style [1] big
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integers. The definition of natural numbers looks like

data Nat

{
0 : Nat

1+ : Nat→ Nat

}
(1)

and generates a Peano-style induction principle elimNat of type1

(P : Nat→ U)→ P 0→ ((n : Nat)→ P n→ P (1+ n))→ (s : Nat)→ P s .

Without further intervention, the Nat type is represented in unary form, where
each digit becomes an empty heap cell at runtime. This is inefficient for a lot
of the basic operations on natural numbers, especially since computers are par-
ticularly well-equipped to deal with numbers natively, so many real-world im-
plementations will treat Nat specially, swapping the default inductive type rep-
resentation with one based on GMP integers. This is done by performing the
replacements

|0| = 0 (2)
|1+| = 1 + (3)

|elimNat P m0 m1+ s| = ubig-elim |s| |m0| |m1+| (4)

where | · | denotes a source translation into a compilation target language with
primitives ubig-∗.2

In addition to the constructors and eliminators, the compiler might also define
translations for commonly used definitions which have a more efficient counter-
part in the target, such as recursively-defined addition, multiplication, etc. The
recursively-defined functions are well-suited to proofs and reasoning, while the
GMP primitives are more efficient for computation.

The issue with this approach is that it only works for the data types which
the compiler can recognise as special. Particularly in the presence of dependent
types, other data types might end up being equivalent to Nat or another ‘nicely-
representable’ type, but in a non-trivial way that the compiler cannot recognise.
Hence, one of our goals is to extend this optimisation to work for any data type.
To achieve this this, our framework requires that representations are fully typed
in a way that ensures the behaviour of the representation of a data type matches
the behaviour of the data type itself.

1 Recursive parameters like P n are lazy, which makes the eliminator more efficient
when they are not used.

2 Idris 2 will in fact look for any ‘Nat-like’ types and apply this optimisation. A Nat-
like type is any type with two constructors, one with arity zero and the other with
arity one. A similar optimisation is also done with list-like and boolean-like types
because they have a canonical representation in the target runtime, Chez Scheme.
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2.1 The well-typed Nat-hack

A representation definition looks like

repr Nat as UBig



0 as 0
1+ n as 1+n

elimNat as ubig-elim
by ubig-elim-zero-id,

ubig-elim-add-one-id


Nat is represented as the type UBig of GMP-style unlimited-size unsigned inte-
gers, with translations for the constructors 0 and 1+, and the eliminator elimNat.
Additionally, the eliminator satisfies the expected computation rules of the Nat
eliminator, which are postulated as propositional equalities. This representation
is valid in a signature containing the primitives

0, 1 : UBig +,× : UBig→ UBig→ UBig

ubig-elim : (P : UBig→ U)→ P 0→ ((n : UBig)→ P n→ P (1+n))

→ (s : UBig)→ P s

and propositional equalities

ubig-elim-zero-id :∀Pbr ubig-elim P b r 0 = b

ubig-elim-add-one-id :∀Pbrn ubig-elim P b r (1+n) = r n (λ_. ubig-elim P b r n) .

Representations can also be defined for functions on Nat, such as addition, mul-
tiplication, and other numeric operations, in terms of UBig primitives.

repr add as + by +-id repr mul as × by ×-id

These will be replaced during a translation process back to λind, like rewriting
rules [6], given that we have the appropriate lemmas to justify them in the
signature.

This will effectively erase the Nat type from the compiled program, replacing
all occurrences with the UBig type and its primitives. In a way, the hard work is
done by the postulates above; we expect that the underlying implementation of
UBig indeed satisfies them, which is a separate concern from the correctness of
the representation itself. However, postulates are only needed when the repre-
sentation target is a primitive; the next examples use defined types as targets, so
that the coherence of the target eliminator follows from the coherence of other
eliminators used in its implementation.

2.2 Vectors are just certain lists

In addition to representing inductive types as primitives, we can use represen-
tations to share the underlying data when converting between indexed views of
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the same data. For example, we can define a representation of Vec in terms of
List, so that the conversion from one to the other is ‘compiled away’. We can do
this by representing the indexed type as a refinement of the unindexed type by
an appropriate relation. For the case of Vec, we know intuitively that

Vec T n ' {l : List T | length l = n} := List’ T n

so we can start by choosing List’ T n as the representation of Vec T n.3 We are
then tasked with providing terms that correspond to the constructors of Vec but
for List’. These can be defined as

nil : List’ T 0

nil = (nil, refl)
cons : T → List’ T n→ List’ T (1+ n)

cons x (xs, p) = (cons x xs, cong (1+) p)

Next we need to define the eliminator for List’, which should have the form

elim-List’ : (E : (n : Nat)→ List’ T n→ Type)
→ E 0 nil

→ ((x : T )→ (n : Nat)→ (xs : List’ T n)→ E n xs→ E (1+ n) (cons x xs))

→ (n : Nat)→ (v : List’ T n)→ E n v

Dependent pattern matching does a lot of the heavy lifting by refining the length
index and equality proof by matching on the underlying list. However we still
need to substitute the lemma cong (1+) (1+-inj p) = p in the recursive case.

elim-List’ P b r 0 (nil, refl) = b

elim-List’ P b r (1+ m) (cons x xs, e) = subst (λp. P (1+ m) (cons x xs, p))

(1+-cong-id e) (r x (xs, 1+-inj e)
(λ_. elim-List’ P b r m (xs, 1+-inj e)))

Finally, we need to prove that the eliminator satisfies the expected computation
rules propositionally. These are

elim-List’-nil-id : elim-List’ P b r 0 (nil, refl) = b

elim-List’-cons-id : elim-List’ P b r (1+ m) (cons x xs, cong (1+) p)

= r x (xs, p) (λ_. elim-List’ P b r m (xs, p))

which we leave as an exercise, though they are evident from the definition of
elim-List’. This completes the definition of the representation of Vec as List’,
which would be written as

repr Vec T n as List’ T n



nil as nil
cons as cons

elimVec as elim-List’
by elim-List’-nil-id,

elim-List’-cons-id


3 We will take the subset {x : A | P x} to mean a Σ-type (x : A) × P x where the
right component is irrelevant and erased at runtime.
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Now the hard work is done; Every time we are working with a v : Vec T n, its
form will be (l, p) at runtime, where l is the underlying list and p is the proof that
the length of l is n. Under the assumption that the Σ-type’s right component is
irrelevant and erased at runtime, every vector is simply a list at runtime, where
the length proof has been erased. In the full paper we will show how this erasure
is achieved in practice in Superfluid using Quantitative Type Theory [2].

We can utilise this representation to convert between Vec and List at zero
runtime cost, by using the repr and unrepr operators of the language (defined
in section 3). Specifically, we can define the functions

forget-length : Vec T n→ List T
forget-length v = let (l,_) = repr v in l

recall-length : (l : List T )→ Vec T (length l)
recall-length l = unrepr (l, refl)

and it holds by reflexivity that forget-length is a left inverse of recall-length.

2.3 General reindexing

The idea from the previous example can be generalised to any data type. In
general, suppose that we have two inductive families

F : Ξ → U G : Ξ → X ξ → U

for some index family X : Ξ → U . If we hope to represent G as some refinement
of F then we must be able to provide a way to compute G’s extra indices X from
F, like we computed Vec’s extra Nat index from List with length in the previous
example. This means that we need to provide a function

comp :∀ξ F ξ → X ξ

which can then be used to form the family

Fcomp ξ x := {f : F ξ | comp f = x}.

If G is ‘equivalent’ to the algebraic ornament of F by the algebra defining comp
(given by an isomorphism between the underlying polynomial functors), then it
is also equivalent to the Σ-type above. The ‘recomputation lemma’ of algebraic
ornaments [7] then arises from its projections. Our system allows us to set the
representation of G as Fcomp, so that the forgetful map from G to F is the identity
at runtime.

2.4 Zero-copy deserialisation

The machinery of representations can be used to implement zero-copy deseriali-
sation of data formats into inductive types. For example, consider the following
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record for a player in a game:

data Player


player : (position : Position)
→ (direction : Direction)
→ (items : Fin MAX_INVENTORY)
→ (inventory : Inventory items)→ Player


We can use the Fin type to maintain the invariant that the inventory has a
maximum size. Additionally, we can index the Inventory type by the number of
items it contains, which might be defined similarly to Vec:

data Inventory (n : Nat)

{
empty : Inventory 0

add : Item→ Inventory n→ Inventory (1+ n)

}
We can use the full power of inductive families to model the domain of our
problem in the way that is most convenient for us. If we were writing this in a
lower-level language, we might choose to use the serialised format directly when
manipulating the data, relying on the appropriate pointer arithmetic to access
the fields of the serialised data, to avoid copying overhead. Representations allow
us to do this while still being able to work with the high-level inductive type.

We can define a representation for Player as a pair of a byte buffer and a proof
that the byte buffer contents correspond to a player record. Similarly, we can
define a representation for Inventory as a pair of a byte buffer and a proof that
the byte buffer contents correspond to an inventory record of a certain size. The
projection inventory : (p : Player)→ Inventory p.items is compiled into some code
to slice into the inventory part of the player’s byte buffer. We assume that the
standard library already represents Fin in the same way as Nat, so that reading
the items field is a constant-time operation (we do not need to build a unary
numeral). We can thus define the representation of Player as

repr Player as {Buf | IsPlayer}


player as buf-is-player

elimPlayer as elim-buf-is-player
by elim-buf-is-player-id


with an appropriate definition of IsPlayer which refines a byte buffer. We will
provide the full details of this construction in the final paper.

2.5 Transitivity

Representations are transitive, so in the previous example, the ‘terminal’ rep-
resentation of Vec also depends on the representation of List. It is possible to
define a custom representation for List itself, for example a heap-backed array or
a finger tree, and Vec would inherit this representation. However it will still be
the case that Repr (Vec T n) ≡ List T , which means the repr/Repr operators
only look at the immediate representation of a term, not its terminal represen-
tation. Regardless, we can construct predicates that find types which satisfy a
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certain ‘eventual’ representation. For example, given a Buf type of byte buffers,
we can consider the set of all types which are eventually represented as a Buf:

data ReprBuf (T : U)


buf : ReprBuf Buf

from : ReprBuf (Repr T )→ ReprBuf T
refined : ReprBuf T → ReprBuf {t : T | P t}


Every such type comes with a projection function to the Buf type

as-buf :∀T.ReprBuf T T → Buf
as-buf buf x = x

as-buf (from t) x = as-buf t (repr x)
as-buf (refined t) (x,_) = as-buf t x

which eventually computes to the identity function after applying repr the ap-
propriate amount of times. Upon compilation, every type is converted to its
terminal representation, and all repr calls are erased, so the as-buf function is
effectively the identity function at runtime.4

3 A type system for data representations

This section provides an overview of the language λrep, which has dependent
types and representations for inductive families and global function definitions.
We start with a core language with inductive families λind, that is extended with
data representations to form λrep. All of the examples in the paper are written
in a surface language that elaborates to λrep.

The core languge λind, is a dependent type theory with Π and a Coquand-
style universe hierarchy Ui [10, 2.1], extended with strictly positive inductive
families and global definitions similarly to [9]. We follow a similar approach to
[5] by packaging named inductive constructions and global function definitions
into a signature Σ, and indexing contexts by signatures.

3.1 Extending λind with representations

We extend the language λind to form λrep, which allows users to define custom
representations for inductive types and global functions. First, we add a type
former

Repr : Ty (Σ | Γ )→ Ty (Σ | Γ ) (5)

along with two new terms in the syntax, forming an isomorphism

repr : Tm (Σ | Γ ) T ' Tm (Σ | Γ ) (Repr T ) : unrepr . (6)
4 We do not guarrantee that an invocation of as-buf will be entirely erased, but rather
that any invocation will eventually produce the identity function without having to
perform a case analysis on its T subject.
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which holds definitionally and preserves Π and universes. The type Repr T is
the defined representation of the type T . The term repr takes a term of type
T to its representation of type Repr T , and unrepr undoes the effect of repr,
treating a represented term as an inhabitant of its original type. These new
constructs satisfy certain equalities, some of which are given in fig. 1. New valid
signature items are introduced, corresponding to representation definitions for
components of inductive families and global function definitions.

Repr-Ctor-Id
repr c Π as κ ∈ Σ

Σ | Γ ` repr (c δ π) ≡ κ[δ, π] : A[δ, ξ[π]]

Repr-Data-Id
repr D ∆ Ξ as A ∈ Σ

Σ | Γ ` Repr (D δ ψ) ≡ A[δ, ψ] type

Fig. 1. Definitional equalities for Repr and repr relating to data types and construc-
tors with defined representations. Similar equalities hold for representations of global
function definitions and eliminators, albeit propositionally.

We state some basic lemmas below. The proof are left to the full version of
the paper, along with the formalisation of computational irrelevance.

Lemma 1. The term formers repr and unrepr are injective, i.e.

Σ | Γ ` repr t ≡ repr t′ : Repr T
Σ | Γ ` t ≡ t′ : T

Σ | Γ ` unrepr t ≡ unrepr t′ : T
Σ | Γ ` t ≡ t′ : Repr T

Lemma 2. The type former Repr is injective up to internal isomorphism, i.e.

Σ | Γ ` Repr T ≡ Repr T ′ type
Σ | Γ ` p : T ' T ′

Moreover, this isomorphism is computationally irrelevant.

4 Translating from λrep to λind

We can define a translation step R from λrep to λExt
ind , meant to be applied

during the compilation process. More specifically, the translation target is the
extensional flavour of λind by adding the equality reflection rule. We do this by
translating well-formed contexts, substitutions, types, and terms in a mutual
manner such that definitional equality is preserved. R preserves the structure of
λrep, but maps constructs to their terminal representations. Eliminator coher-
ence rules are preserved by reflecting the propositional coherence rules provided
by the defined representations. We will prove some desired properties of R [3]
such as typing and computational soundness, and preservation of consistency.
The final program can then be converted into a simply-typed language which
erases irrelevant data. We can recover a program in λind by translating exten-
sional typing derivations to intensional proofs [15].
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5 Implementation

Superfluid is a programming language with dependent types, U : U , quanti-
ties, inductive families and dependent pattern matching. Its compiler is written
in Haskell and the compilation target is JavaScript. Dependent pattern match-
ing in Superfluid is elaborated to a core language with internal eliminators.
The R transformation is then applied to the core program, which erases all
inductive constructs with defined representations. This is finally translated to
JavaScript, erasing all irrelevant data. As a result, we are able to represent Nat
as JavaScript’s BigInt, and List T/SnocList T/Vec T n as JavaScript’s arrays
with the appropriate index refinement, such that we can convert between them
without any runtime overhead.
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