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Abstract. Typed functional programming languages like Haskell and
OCaml make heavy use of the heap at run-time. This makes them largely
unsuitable for systems programming, where resources are limited and pro-
grams are often expected to run on bare-metal. This paper demonstrates
how a (slightly restricted) high-level, pure, functional language can be
compiled to machine code which does not use the heap at all. Despite
usually requiring a heap at run-time, features such as higher-order func-
tions, polymorphism and typeclasses are all supported by the surface
language. This is made possible through partial evaluation [4]: by care-
fully reducing the program at compile-time, we can eliminate these high-
level features entirely, resulting in a residual program which is trivial to
compile. This paper describes the operation of this partial evaluator in
detail, and shows how it can be implemented efficiently using an algo-
rithm based on NbE. To demonstrate the practicality of this approach,
we give several high-level example programs which can be compiled using
this method.

1 Introduction

At the core of most functional languages is a set of high-level features including
higher-order functions, polymorphism and algebraic data types. Most of the
time these features are a boon: they allow the programmer to write concise,
maintainable, readable code. However, all of these features typically require a
heap at run-time. This is problematic if we want to use functional languages for
systems programming, where it is common to target environments with extremely
limited resources. Consider the following Haskell program:

main :: IO ()
main = do

n :: Int <- readLn
m :: Int <- readLn
print (n + m)

While this program may appear simple, it implicitly makes use of a wide va-
riety of high-level (heap-using) features. Alone, using do-notation requires type-
classes (to resolve the Monad instance), higher-order functions (for the implicit
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calls to >>=) and polymorphism (also for >>=)! It is clear that every non-trivial
Haskell program will use the heap in some capacity — features such as higher-
order functions are too ubiquitous to avoid. Does this mean that high-level func-
tional programming is entirely reliant on the heap? This paper demonstrates
that this is not the case.

Reconsider our example from a computational perspective: it is unclear why
a program which adds two integers should need a heap at all! In this case,
features such as typeclasses and higher-order functions are only abstractions for
the programmer; they are not adding any real computational value. We show
that most of the time we can actually use these abstractions for free. Through
careful manipulation at compile-time, it is possible to transform a large class
of high-level functional programs into equivalent low-level programs which do
not require the heap at all. We make use of the type system to restrict input
programs, ensuring that this transformation is always possible. Compiling the
earlier example with our prototype implementation produces identical machine
code to the following C program compiled with clang.

int main() {
int n m;
scanf("%d", &n);
scanf("%d", &m);
printf("%d", n + m);

}

2 Contributions

The goal of this paper is to describe a method for designing and implementing
high-level functional languages which do not use the heap at run-time. We believe
this goal is worthwhile as not every low-level environment can feasibly support
the high amount of heap allocations typically required by a functional language
— by only using the stack, it becomes possible to use functional programming
in these restricted environments. We hope that this work will help facilitate the
design of functional languages which are suitable for systems programming on
low-resource devices such as microcontrollers.

The full paper will describe the complete implementation of a practical sur-
face language. However, for conciseness, this draft only focuses on how to compile
a more minimal core language, C. Specifically, we make the following contribu-
tions:

– We define a polymorphic, higher-order core language C which serves as an
elaboration target for surface languages. C has a novel type system which
guarantees that it can be compiled to stack-based code.

– We describe a pipeline which compiles C programs down to machine code.
We primarily focus on how partial evaluation can be used eliminate C’s high-
level features (higher-order functions, polymorphism) at compile-time.
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– In the full paper, we describe how to build a practical surface language
which elaborates to C. We cover common features such as typeclasses (incl.
monads), implicit polymorphism and data types.

We have implemented the approach described in this paper in a prototype
language, Strata, whose source code is available publicly1.

3 Core Language

3.1 Outline

This section will define the core language C and describe how it can be compiled
to stack-based machine code. The compilation process from C to machine code
is broken down into several distinct steps:

1. Partially Evaluate
2. Uncurry
3. Lambda Lift
4. Compile

At the core of our approach lies a partial evaluator. By carefully performing
reductions on the input program at compile-time, we can completely eliminate
high-level features such as higher-order functions (HOFs) and polymorphism.
By eliminating these features at compile-time, we no longer need to deal with
the problem of representing them at run-time. The result of partial evaluation
is therefore a program written in a very restricted subset of C, greatly simplify-
ing the rest of the compilation process. So that we can guarantee that partial
evaluation will eliminate all occurences of these high-level features, we slightly
restrict C programs through the type system. These extra/augmented rules will
be justified in detail throughout the remainder of this section.

After partial evaluation, we follow up with two auxiliary source-to-source
transformations: uncurrying and lambda-lifting. These steps remove curried and
nested functions respectively, and are implemented using relatively standard
algorithms. Unlike standard approaches to uncurrying [2], the type system and
partial evaluator guarantee that the input is in a restricted form where function
definitions are maximally η-expanded and there are no partial applications. This
greatly simplifies the process, resulting in a trivial algorithm. Our approach to
lambda-lifting is entirely standard, and ultimately the choice of algorithm is
irrelevant. Quadratic-time algorithms have been specified in detail in existing
literature [7].

Finally, the result of lambda-lifting is compiled to machine code. At this
point in the pipeline the language is extremely restricted, with only first-order
top-level function definitions remaining. Compilation is therefore trivial using
standard techniques for first-order languages — our sample implementation uses
a straightforward conversion to LLVM [6] to complete the compilation process.
1 https://gitlab.com/strata-lang/compiler
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3.2 Syntax

The core language C is an extension of System Fω with let-bindings, products,
fixed points, base types, and primitive operations. We assume the obvious strict
semantics. The full syntax is omitted for brevity, but our notation is standard.
In general, we use a single colon for annotating expressions with their type (e.g.
e : τ), and we use a double colon for annotating types with their kind (e.g.
τ :: κ).

Throughout the paper, we will often give examples in Haskell-like syntax
rather than C. This is to aid readability, as programming directly in a core
language is very terse. We assume the natural elaboration from the Haskell-like
syntax to C.

3.3 Type System

The kinding and typing rules for C are given in Figure 1 and 2 respectively.
The typing rules for constants and arithmetic/logic operations are omitted for
brevity, assuming the usual types.

The most unusual part of the type system is the kind ⋆o, indexed by an
order. The full justification for this system is given in Section 4.5, but we give
an intuitive overview here. The basic premise is that we want to differentiate
first-order and higher-order terms. Types are categorised as follows

⋆1 Basic types, such as Int, Bool, etc.
⋆2 First-order function types, modulo currying. Int -> Int -> Bool is included

in this kind, but (Int -> Int) -> Int is not.
⋆3 Everything else, including higher-order function types and types using uni-

versal quantification.

Intuitively, the kinds form a hierarchy where kinds with a higher number are
more lenient in the types they allow. This hierachy is realised through sub-typing
rule for kinds, kind-sub, meaning each kind is included in the one above.

3.4 Handling IO

IO functions are an important part of any practical language. In general, im-
purity does not mix well with program manipulation and partial evaluation —
even something as simple as inlining a let-binding can become problematic if the
bound expression has a side-effect. The most popular solution in modern func-
tional programming is the IO monad, but it is difficult to represent at run-time
without a heap. Instead, we thread a linear/unique2 World token throughout
the program, similar to the approach used by Clean [5]. At run-time the World
token can be treated as the unit type.

2 In this context, the distinction between linear and unique types is irrelevant.
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kind-base

Γ ⊢ ι :: ⋆1

kind-forall
Γ, α :: κ ⊢ τ :: ⋆i

Γ ⊢ (∀α :: κ.τ) :: ⋆3

kind-var
(α :: κ) ∈ Γ

Γ ⊢ α :: κ

kind-arrow
Γ ⊢ τ1 :: ⋆i Γ ⊢ τ2 :: ⋆j k = max(i+ 1, j, 3)

Γ ⊢ τ1 → τ2 :: ⋆k

kind-abs
Γ, α :: κ1 ⊢ τ :: κ2

Γ ⊢ (λα :: κ1.τ) :: κ1 → κ2

kind-app
Γ ⊢ τ1 :: κ1 → κ2 Γ ⊢ τ2 :: κ1

Γ ⊢ τ2 :: κ1

kind-prod
Γ ⊢ τ1 :: ⋆i Γ ⊢ τ2 :: ⋆j k = max(i, j)

Γ ⊢ τ1 × τ2 :: ⋆k

kind-sub
Γ ⊢ τ :: ⋆i i < j

Γ ⊢ τ :: ⋆j

Fig. 1. Kinding rules for C.

4 Partial Evaluator

4.1 Rules

We characterise the partial evaluator by a set of reduction rules. The notation
t ⇝ u means that subterms matching the pattern t should be replaced with u
during partial evaluation. Unless specified otherwise, there are no restrictions on
where these reductions can take place, meaning that we reduce under binders by
default. There is no stipulation on the order that reductions should take place,
as the rules are always designed to preserve confluence. Occasionally, rules may
have an attached side-condition which restricts when the rule should be applied
— this means the rules may not form a true rewriting system [3], but we borrow
the notation and terminology for conciseness.

Figures 3 and 4 detail the partial evaluator’s reduction rules for types and
expressions respectively.

4.2 Elimination

Ultimately, the partial evaluator removes high-level features by applying the ap-
propriate elimination rule. For example, higher-order functions are eliminated
through β-reduction; polymorphic functions are eliminated through monomor-
phisation. Almost all of the other rules are there to facilitate these eliminators by
rewriting expressions into a form which is more amenable to further reduction.
The most straightforward example of a “facilitating rule” is let-inlining. Consider
the following expression (assume g is a free variable of the appropriate type):

let twice = λf : Int -> Int. λx : Int. f (f x)

in twice g n
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type-var
(x : τ) ∈ Γ

Γ ⊢ x : τ

type-abs
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2

type-app
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

type-forall
Γ, α :: κ ⊢ e : τ

Γ ⊢ (Λα :: κ.e) : (∀α :: κ.τ)

type-inst
Γ ⊢ e : ∀α :: κ.τ1 Γ ⊢ τ2 :: κ

Γ ⊢ e τ2 : τ1[α 7→ τ2]

type-fix
Γ ⊢ e : τ → τ Γ ⊢ τ :: ⋆2

Γ ⊢ fix e : τ

type-prod
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2

type-let-prod
Γ ⊢ e1 : τ1 × τ2 Γ, x : τ1, y : τ2 ⊢ e2 : τ3

Γ ⊢ (let ⟨x, y⟩ = e1 in e2 ) : τ3

type-let
Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ (let x = e1 in e2 ) : τ2

type-if
Γ ⊢ eb : Bool Γ ⊢ et : τ Γ ⊢ ef : τ

Γ ⊢ if eb then et else ef : τ

Fig. 2. Typing rules for C.

(λα :: κ.τ1) τ2 ⇝ τ1[α 7→ τ2] (1)

Fig. 3. Reduction rules for partially evaluating types.

At the moment there are no possible β-reductions, yet a higher-order function
remains. We must therefore inline the higher-order function bound by let so that
β-reduction can take place. After running the above program through the partial
evaluator we are left with a first-order residual program:

g (g n)

The same idea applies to polymorphic functions which quantify over type
variables — they must be inlined and monomorphised. This process is closely
related to approaches which specialize higher-order functions to their functional
arguments [1]. A deeper comparison with specialization is given in the full paper.

4.3 Distribution

We must be careful that other constructs in the core language do not interfere
with the elimination of high-level features such as higher-order functions and
polymorphism. Specifically, language constructs satisfying all of the following
criteria must be paid extra attention:

– The construct is supported at run-time and may appear in the residual
program.
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e⇝ λx.e x if e : τ1 → τ2 (η)

(λx.e1)e2 ⇝ e1[x 7→ e2] (β)

(if e1 then e2 else e3) e4 ⇝ if e1 then e2 e4 else e3 e4 (if-distr)

let x = e1 in e2 ⇝ e2[x 7→ e1] if e1 is higher-order (let-inl)

(let x = e1 in e2) e3 ⇝ let x = e1 in e2 e3 (let-distr)

(let ⟨x, y⟩ = e1 in e2) e3 ⇝ let ⟨x, y⟩ = e1 in e2 e3 (let-prod-distr)

(Λα.e)τ ⇝ e[α 7→ τ ] (mono)

Fig. 4. Reduction rules for partially evaluating expressions.

– The construct can have a higher-order type if a higher-order functions is
used as direct sub-expression of the construct.

Intuitively, the reasoning behind this criteria is that a higher-order function
may get “stuck” as a sub-expression of the construct — if the construct may
appear in the residual program, it is possible that the higher-order function will
never get reduced and eliminated.

There are three constructs satisfying this criteria: fixed points, if-expressions
and let-bindings (both regular and pair-destructuring). Fixed points are a large
source of complications, and are separately discussed in Section 4.4. The remain-
ing constructs will be addressed here.

If-Expressions If-expressions allow any type of data in their branches as long
as both branches have the same type. We therefore should consider what happens
if both branches contain higher-order functions, like in the following expression:

(if e0 then λx.e1 else λy.e2) λz.e3

With just β-reduction, there is no way to make progress, yet higher-order
functions still remain in the residual program! One might try adding extra re-
duction rules for if:

if true then et else ef ⇝ et

if false then et else ef ⇝ ef

However, if e0 is a free variable (whose value may not be known until run-
time), then we are still stuck. Instead, we add the rule if-distr which distributes
applications into the branches of the if. The higher-order functions can then be
β-reduced and eliminated, leaving the following residual expression:

if e0 then e1 else e2
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Let Bindings Our rule for inlining let-bindings covers the case when the bound
expression is a higher-order function, but what about when the body of the let
is a higher-order function? The following expression shows that there is a similar
problem as with if-expressions:

(let n = 0 in λf.e1) λx.e2

The partial evaluator will not inline the let as it does not bind a higher-order
term to avoid code duplication. We are once again stuck, with no way to β-reduce
the higher-order function bound in the body of the let. The solution is analogous
to the one for if-expressions: introduce a rule which distributes applications inside
the let’s body. The rules let-distr and let-prod-distr implement this behaviour
for regular and product-destructuring let-bindings respectively.

4.4 Recursion

Practical functional programming languages almost always support general re-
cursion, usually in the form of recursive definitions. General recursion is a partic-
ularly interesting feature as it makes the language turing-complete, and means
that the language is no longer strongly-normalizing. This can cause problems
for a partial evaluator, as we can no longer blindly reduce expressions without
risking non-termination (this is true even if the input program is total).

In general, any rule which indiscriminantly unfolds fix will be problematic.
However, if we do not unfold fix, then we run into problems when recursion is
used in combination with higher-order functions. If we define a function which
is both higher-order and recursive, then it will remain in the residual program
(which should be first-order). Unlike non-recursive higher-order functions, we
cannot inline and reduce the definition due to the fix blocking further evalua-
tion.

To resolve this, we introduce the following simple restriction: recursive func-
tions must not be higher-order. This is realised through the kind system, where
the typing rule for fix requires that the type of the recursive definition must
have kind ⋆2. The reason why we use the kind system to enforce this rather than
a syntactic check is explained in Section 4.5.

With this set up, no problematic reduction rules are needed for fix, as it
can only bind first-order functions which are easy to compile. However, this
restrction does seem impractical: plenty of useful functions are both higher-
order and recursive! What about favourites like map and fold? Fortunately,
this restriction is not a barrier to writing these functions. By abstracting out
the recursive part of these functions into an inner definition, we can carefully
avoid introducing a function which would violate the rule. Consider the following
definition of map in Haskell:

map :: forall a b. (a -> b) -> [a] -> [b]
map f = go

where
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go :: [a] -> [b]
go [] = []
go (x : xs) = f x : go xs

The definition is functionally equivalent to the regular definition of map, but
avoids introducing a function which is both recursive and higher-order. The
outer function (map) is higher-order but not recursive, while the inner function
(go) is recursive but not higher-order.

It is possible to do this refactoring for the majority of higher-order func-
tions. Precisely, as long as the functional argument (in this case, f :: a -> b)
remains constant throughout all recursive calls, the refactoring is possible and
straightforward3.

4.5 Polymorphism

Another trademark feature of modern functional programming languages is poly-
morphism. So that one function can operate on many different types of data,
most functional languages use a uniform representation for all data — a pointer
to a heap allocated cell. Polymorphic functions can then indiscriminantly treat
all inputs in the same way, regardless of type. Since this is not an option without
a heap, we use a variant of the other predominant method: monomoprhisation.
This is realised through the mono rule in the partial evaluator.

Recursive Functions Like higher-order functions, we are relying on polymor-
phism being eliminated at compile-time by the partial evaluator. However, once
again, recursive function definitions can cause issues when used in conjunction
with polymorphism. As already discussed, recursive functions cannot be unfolded
due to issues with termination. Unfortunately, this means that any function that
is both recursive and polymorphic will remain in the residual program, as the
partial evaluator cannot monomorphise without inlining first. Similar to higher-
order functions, the typing rule for fix prevents this from happening as the kind
of any type which uses universal quantification will be ⋆3.

To implement standard functions which are both polymorphic and recursive
we can employ a similar trick to the one for higher-order functions: abstract
out the recursive part into an inner auxiliary definition. This is always possible
provided recursive calls are made with the same type variables to what the
function was given originally. For example, the following function composes an
endofunction with itself n times.

nTimes :: forall a. Int -> (a -> a) -> (a -> a)
nTimes n f = go n

where
go :: Int -> a -> a
go 0 x = x
go m x = f (go (m - 1) x)

3 A practical compiler might choose to perform this refactoring automatically.
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Kind System In addition to the direct interaction between polymorphism and
recursion, there is a more subtle nuance. When the typing rule for fix was
introduced, you may have wondered why a kind system is used to ensure the
function is first-order (modulo currying), as opposed to a syntactic condition.
There are a few reasons for this.

Primarily, the problem with a syntactic check relates to polymorphic type
variables. It raises the question — should a type variable be considered a first-
order or higher-order type? Consider a recursive function which takes an argu-
ment whose type is a type variable:

choose :: forall a. Int -> a -> a -> a
choose = go

where
go :: Int -> a -> a -> a
go 0 x y = x
go n x y = go (n - 1) y x

Depending on whether the variable a is later instantiated with a basic type
or function type, the type of the monomorphised function may be either first-
order (modulo currying) or higher-order. Because of this, we cannot treat all
type variables as being basic types: doing so would allow the programmer to
circumvent the restrictions on higher-order functions by hiding functions types
behind a type variable.

The problem stems from the fact that a type variable can represent a first-
order type or a higher-order type. By separating type variables based on whether
they represent functions or not, we can reason about whether a polymorphic
function definition is truly first-order for every possible type instantiation.
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