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Abstract. We propose a light-weight solution for generating code that
can use multiple GPUs from purely declarative program specifications.
Building on code generation for a single GPU, we show how CUDA’s uni-
fied memory can be leveraged to use multiple GPUs to collaboratively
compute data-parallel tasks, and to handle computations on data that
does not fit any of the GPU’s memories. We describe the key ideas and
implement them in SaC. We provide initial performance evaluations on
two different GPU architectures for three different benchmarks: matrix
multiplication, N-body simulation, and stencil computations. If alloca-
tion costs can be amortized, these experiments show efficiencies between
80% and 100% on up to four GPUs when using an explicitly memory-
orchestrated CUDA version as baseline.

1 Introduction

Graphics processing units (GPUs) are processors that have higher peak com-
pute rate and bandwidth compared to CPUs of comparable price and power
consumption. This makes them attractive for a range of domains requiring ex-
tensive computation, such as physics simulations, financial applications and deep
learning [10, 25, 19].

Obtaining the theoretic peak performance is challenging. The reason for this
is that GPUs are not stand-alone systems but accelerators that are specialized to
specific workloads. They need to be programmed differently, and have their own
memory which needs to be coordinated with the CPU and RAM (also called the
host). A straightforward way to increase the theoretic computational power of
a system is to add multiple GPUs. However, realising this performance becomes
difficult as the different GPUs need to be coordinated. An especially complicated
class of problems are those that do not fit in the memory of a single GPU. We
refer to these problems as being out-of-core. We are now essentially working with
a distributed memory system and all its associated challenges.

Making effective use of multiple GPUs requires the programmer to have
extensive knowledge of the hardware in addition to the problem domain. A large
body of research tries to shift this burden from the application programmer to
compiler writers by generating low-level GPU code from a high-level language.
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In particular functional approaches through languages such as Accelerate [5],
Futhark [14] or SaC [12] or other array languages such as APL [17] show GPU
performance that is competitive with hand-written counterparts [24, 2, 13, 16].
The related work uses extensive compiler analysis, sometimes in combination
with language extensions, to coordinate the GPUs.

The main idea behind this paper is that we can shift the burden even further,
by making the runtime instead of the compiler responsible for data-movement.
This way only minimal changes to the compiler are necessary to support using
multiple GPUs on out-of-core problems.

The mechanism that makes this possible is unified memory : one virtual ad-
dress space that can be accessed by all GPUs and the CPU. The GPU driver
and hardware are then responsible for maintaining a coherent view of memory
between GPUs and the host. This approach is typically associated with bad per-
formance. A reason for this is that the runtime needs to be advised on access
patterns to work efficiently. In many languages this is hard to do, but by working
with a functional language we have the strong semantic guarantees necessary to
generate this advice.

Our paper makes the following contributions.

– We propose a code generation scheme that can use multiple GPUs and handle
out-of-core problems. It constitutes a light-weight extension of a pre-existing
code generation scheme for unified memory [31];

– We show the effectiveness of our approach by implementing this scheme in
the language Single-Assignment C;

– We show how memory advice can overcome performance challenges typically
associated with unified memory.

2 Background

Single-Assignment C (SaC) generates CUDA code, a language for programming
GPUs. We use this language to explain some GPU programming concepts, and
briefly explain how SaC generates code.

2.1 GPU Programming

Computations are done through special functions called kernels. These contain
a small computation such as “compute t+ 1 and store it in index t", similar to
a loop-body in C (Listing 1.1).

void f ( i n t ∗x , i n t n) {
f o r ( i n t t = 0 ; t < n ; t++) {

x [ t ] = t + 1 ;
}

}
Listing 1.1: Array initalisation in C
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The programmer specifies for which t this is computed at the call site. For
example, to compute the set X = {t + 1 | 0 ≤ t < n}, the kernel could be as
follows.

__global__ void f ( i n t ∗x ) {
i n t t = blockIdx . x ∗ blockDim . x +

threadIdx . x ;
x [ t ] = t + 1 ;

}

The initalisation of t (the thread) is complicated because there is not one
canonical way to map computations to the hardware. Instructions are always
executed in groups of threads, typically 32, similar to SIMD instructions on a
CPU. Execution units on a GPU are grouped into streaming multiprocessors
(SMs), which also includes cache and control logic. The threads are divided into
groups called blocks of blockDim.x threads, and then divided over the SMs.
The index local to one such block is stored in threadIdx.x, and the block
index by blockIdx.x. Increasing the number of threads per block may help to
hide latency, similar to hyperthreading in CPUs. However, it also decreases the
number of blocks which can have a negative effect on scaling and load balancing.
There is no choice that is optimal for all problems. The number of threads per
block is limited by the hardware, typically 1024.

We specify the mapping to hardware between triple angular brackets at the
call site. We can call f as follows.

f<<<n / 1024 , 1024>>>(x ) ;

Here the second argument 1024 is the number of threads per block
blockDim.x, and the first argument n / 1024 is the upper bound on
blockIdx.x. We call this shape [n/1024, 1024] the thread space.

The variables end with .x because they are actually three-dimensional structs
with also .y and .z members. In this case all .y and .z members are 1, but for
indexing higher-dimensional arrays it may be convenient to arrange the threads
in a higher-dimensional grid. For example, 1024 threads may also be arranged
in a 32× 32 or 16× 16× 4 grid.

2.2 Unified Memory

Managing multiple address spaces requires extra work for the application pro-
grammer. Systems from personal computers to the world’s largest supercomputer
(as of 2024) Frontier support abstractions that provide the programmer with a
single virtual address space that can be accessed by the CPU and GPU. Depend-
ing on the vendor and exact implementation, these systems are called unified
memory, managed memory, or unified virtual addressing. We will be using the
term unified memory.

The implementation of unified memory in CUDA is proprietary, but it seems
that by default a page of memory can be accessed by only one processor — either
a GPU or the CPU — at a time, and if a page is accessed that is not present
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in the respective processor’s memory, a page fault occurs [7]. These page faults
result in on-demand page migration, which can lead to mixed results [22, 21, 31].
This behaviour can be changed by giving the runtime memory advice on how the
memory is used. For example the CUDA option cudaMemAdviseSetReadMostly
has the device create a local copy.

2.3 Single-Assignment C

SaC is a functional array language for numeric programming. It tries to be as
close to the mathematics as possible. For example, the array X = {t + 1 | 0 ≤
t < n} is specified as X = {[t] -> t + 1 | [0] <= [t] < [n]}. These array
specifications, called tensor comprehensions, expose concurrency: each element
can be computed independently from the others. The user can specify a compi-
lation target, which the compiler sac2c will use to generate parallel code. For
a GPU target, sac2c will generate a kernel from this specification. We have a
correspondence between the index set [n] and the thread space [n / 1024,
1024].

We can specify different expressions on different subsets of this index set,
as illustrated in Figure 1 and Listing 1.2. In the related work such a subset is
also called a partition. In Section 3 we will talk about the distinct mathematical
notion of a partition, so to avoid confusion we will use subset in this paper.

We generate one kernel for each subset. The compiler contains extensive ma-
chinery for generating a good bijection between index set and thread space [18].
The compiler has a target cuda that explicitly defines arrays on the GPU and
host. Transfers between the two are then optimised away as much as possible.
The target cuda_man uses unified memory instead (also called managed mem-
ory). The former has been observed to be more performant [31].

f(0) f(1) f(4) f(5)g(2) g(3) g(6) g(7)

Fig. 1: Array specified by Listing 1.2

{ [ i ] −> f ( i ) | [ 0 ] <= [ i ] < [ 8 ]
width [ 2 ] s tep [ 4 ] ;

[ i ] −> g ( i ) | [ 2 ] <= [ i ] < [ 8 ]
width [ 2 ] s tep [ 4 ] }

Listing 1.2: Array specified by two index sets

3 Design

To keep the implementation lean, we only make minor modifications to the
existing target using unified memory and one GPU [31]. We need to divide
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the work, and appropriately instruct the CUDA runtime on the memory access
patterns.

3.1 Work Distribution

In SaC, the index subsets may overlap, which requires us to process them se-
quentially. For this reason we do not distribute the subsets over the GPUs, but
split up each subset individually.

We need to split up such an index set into non-overlapping pieces that to-
gether make up the original set (also called a partition). We do this by splitting
along the first dimension, as illustrated in Figure 2. To be more precise, for the
simple case where the index set is of the form [n], we give GPU g rows g · b
(inclusive) to max((g+1) · b, n) (exclusive), where b =

⌈
n
G

⌉
, the smallest integer

b such that n ≤ Gb. This choice minimizes the maximum number of rows per
GPU, so for regular computations this gives optimal load balance.

0 1 2 3 4 5 6 7 8 9

GPU 0 GPU 1

(a) 1D distribution

0 1 2 3 4 5 6 7 8 9GPU 0

10 11 12 13 14 15 16 17 18 19GPU 1

(b) 2D distribution

Fig. 2: Distribution of arrays over two GPUs.

General Index Subsets The most general way of specifying an index set in
SaC is with a step and width. We need only minor modifications to the previous
scheme. In set notation, an index set [l] <= [i] < [u] step [s] width [w]
is equal to [l, u) ∩ Sslw where Sslw = {l + is+ j | i ∈ Z, 0 ≤ j < w}.

By distributing the intersection over the union, it becomes clear that a par-
tition without strides over G GPUs, say

[l, u) =

G⋃
g=1

[lg, ug),

also gives a strided partition
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[l, u) ∩ Sslw =

G⋃
g=1

([lg, ug) ∩ Sslw).

For lg ≡ l mod s, we have Sslgw = Sslw. So under this restriction the strides
and widths are the same.

In a similar vein to the simple case [l, u) = [0, n), we set lg = l + gb, ug =
min(l + (g + 1)b, u) for some b. To satisfy lg ≡ l mod s, we must take b of the
form sk. The best load balance is now obtained by finding the smallest b such
that bG ≥ u− l, which is

⌈
u−l
sG

⌉
· s.

Implementation of Work Distribution The partition of Figure 2a corre-
sponds to rewriting the SaC code

{ [ i ] −> i | [ 0 ] <= [ i ] < [ 1 0 ] }

to

{ [ i ] −> i | [ 0 ] <= [ i ] < [ 5 ] ;
[ i ] −> i | [ 5 ] <= [ i ] < [ 1 0 ] }

It is therefore tempting to also do this in the implementation. However, this
leads to unnecessary code duplication as one kernel per GPU would be generated.
Furthermore, the number of GPUs would need to be known at compile-time.

To avoid this, we reuse the thread space mechanism. This mechanism must
know what the index subset is, so parameters describing the subset must be
passed into the kernel (at the very least for cases where these parameters are
not known at compile-time). This means we can restrict the execution of the
kernel to the subsets defined above by only manipulating the call site, which
allows us to treat the kernel generation, thread space mechanism included, as
a black box. We insert some code around the kernel call at the very end of
the compilation process, when we generate the CUDA code, which we sketch
in Listing 1.3. The variables l0, u0 correspond to the lower and upper bound
in the first dimension. In the loop we replace these by lg and ug. To execute a
kernel on a different GPU, we first call cudaSetDevice(g) where g is an index
for that GPU. Then we call the kernel the same way as if we had one GPU.
While the CPU will immediately continue after calling the kernel, the GPU has
only finished computing after a call to cudaDeviceSynchronize().
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i n t old_l0 = l0 ;
i n t old_u0 = u0 ;

f o r ( i n t g = 0 ; g < NUM_GPUS; g++) {
/∗ Set l0 , u0 to l g and ug ∗/
l 0 = . . .
u0 = . . .
cudaSetDevice ( g ) ;
/∗ The f o l l ow i ng three l i n e s are

unmodif ied from the
cuda_man ta rg e t . ∗/

g r id = . . .
b lock = . . .
kerne l<<<grid , block>>>(l0 , u0 , . . . ) ;

}

f o r ( i n t g = 0 ; g < NUM_GPUS; g++) {
cudaSetDevice ( g ) ;
cudaDeviceSynchronize ( ) ;

}

l 0 = old_l0 ;
u0 = old_u0 ;

Listing 1.3: Kernel call distributed over NUM_GPUS GPUs

3.2 Memory Advice

An initial implementation of this code generation scheme has lead to poor results.
We address this with an additional optimisation.

For example, distributing the work of Listing 1.4 over two GPUs naively
leads to a 6× slowdown compared to using a single GPU.

double [m, k ] matmul ( double [m, k ] A,
double [ k , n ] B)

{
C = { [ i , j ] −> sum( { [ p ] −>

A[ i , p ] ∗ B[ p , j ] } ) } ;
r e turn C;

}
Listing 1.4: Matrix Multiplication in SaC

The entire jth column of B is needed to compute the jth element of a row
of C. As discussed in Subsection 2.2, the memory of B can only be on one GPU
at a time by default. Whatever GPU accesses the memory first will get the
memory page, and the other GPU will have to wait until it can be migrated
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back. This serializes the computation between the two GPUs. Instead, it would
be better if both GPUs created a copy of this page. This eliminates contention
on reads, at the cost of making writes to the same page by multiple GPUs more
expensive. This never happens in the code we generate because we only read
from B. We can instruct the runtime to use this copy-on-read scheme by giving
the cudaMemAdviseSetReadMostly memory advice.

This is not necessary for A. To compute row i of C, only row i of A is needed.
As both C and A have m rows, the distribution over GPUs is the same. The data
that has to be accessed is already present on that GPU, so there is no contention
between accesses.

Unfortunately, adding memory-advice has overhead, so we cannot insert it
everywhere. In the example Nine-Point Stencil, whose most important compu-
tation is in Listing 1.5, adding memory-advice leads to a 2 – 5× slowdown
compared to not inserting the memory advice.

{ [ i , j ] −> w[0 , 0 ] ∗ x [ i − 1 , j − 1 ] +
w[ 1 , 0 ] ∗ x [ i , j − 1 ] +
w[ 2 , 0 ] ∗ x [ i + 1 , j − 1 ] +
. . .
w[ 2 , 2 ] ∗ x [ i + 1 , j + 1 ] ;

| [ 1 , 1 ] <= [ i , j ] < [m − 1 , n − 1 ] ;
. . . }

Listing 1.5: Sketch of the most computationally intensive part of a nine-point
stencil.

This case is slightly more complicated than the access of A in Listing 1.4. The
last row of GPU 0, which is the first row of GPU 1 is accessed by both GPUs.
By GPU 0 as x[i + 1, ...] and by GPU 1 as x[i - 1, ...]. Except for the
first and last row, all required data is already present on that GPU. We call this
a local selection. The contention on these two rows is not enough to offset the
cost of inserting the memory advice.

We can generalize this by looking at how the selection vector (for instance
[p, j] in the case of B in Listing 1.4) relates to the index vector of the parallel
tensor comprehension ([i, j] in both examples).

Let us write [iv1, ..., ivd] for the selection vector, and [jv1, ...,
jvd] for the index vector. If jv1 is equal to iv1, the selections are all local,
and we do not have to insert the advice. Suppose our GPU has rows l to u.
If iv1 is equal to jv1 + c for some constant c, then the accesses are local for
rows l + c to u − c. This is most accesses for small c. For this reason, we mark
accesses for which iv1 is of the form jv1 + c. Given the functional nature of
SaC we can then check for all relatively-free variables of tensor comprehensions
whether all accesses are marked. If that is the case, we do not give memory
advice. Otherwise, we mark them as read-mostly.
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4 Performance Evaluation

We evaluate our approach in the style of distributed computing: we look at how
much faster our code gets when adding more GPUs. The runtime of using one
GPU divided by the runtime of using multiple GPUs is called the speedup. We
expect at most a G× speedup when using G GPUs. To measure how close we
get to this, we also compute the efficiency : speedup divided by the number of
GPUs. The closer this is to one, the better our system scales.

4.1 Evaluation Platform

Scientific computations typically use double precision, but this is poorly sup-
ported in consumer-grade GPUs. To capture this, we use two different evalua-
tion platforms. The first node (icis) has a similar double precision to bandwidth
ratio as a consumer-grade GPU. The second node (snellius) has first-rate sup-
port for double precision. The hardware and software specifications are given in
Table 1.

We use the SaC compiler at commit f5890fa with flags -gpu_mapping_strategy
jings_method_ext for all benchmarks. Additional flags for a specific bench-
marks are mentioned in their description. We used the standard library at
commit 78c74b2.

icis snellius
GPU RTX A6000 (2x) A100 (4x)

VRAM (GB) 48 40
Peak Bandwidth (GB/s) 768 1560
Peak FP64 (GFLOP/s) 604.8 9746

C compiler gcc 11.3.0 gcc 12.3.0
NVCC 12.0.14 12.1.105

NVLink bandwidth (GB/s) 14 25
Number of NVLinks 4 4

Table 1: Overview of the test systems, hardware and software.

4.2 Methodology

We consider three benchmarks, two with a high ratio of computations to array
size (Matrix Multiplication and N-Body Simulation), and one with a low ratio
(Nine-Point Stencil). We use floating point operations per second (flops) as a
measure of performance for those with a high ratio, and bandwidth for the
benchmark with a low ratio.

We evaluate the performance on a range of problem sizes, shown in Table 2.
Class D of Matrix-Multiplication is out-of-core on both systems, the rest of the
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experiments are in-core. The reason for the small number of out-of-core examples
is that SaC uses 32-bit integers for shapes, which limits the problem sizes.

We measure the costs inherent to the computation, that is the kernel-
execution time, allocation of the result, and any inter-GPU communication.
We do not measure any CPU-GPU transfer time of input and output because
this may not be needed, for instance when the data is created and consumed
on the GPU. The exact implementation and instructions for reproducibility are
available [27]. We have used pragmas to manually reduce the number of threads
per block for N-Body.

Class Matrix Multiplication N-Body Stencil
A 10.1 0.010 4.29
B 19.7 0.021 9.66
C 38.3 0.042 17.2
D 51.0 0.084 34.0

Table 2: Overview of the memory footprints in GB.

We compute and efficiency compared to the performance of our fastest, man-
ually orchestrated target cuda. The efficiency for an out-of-core run is compared
to the performance of the cuda target of the closest in-core class.

4.3 Matrix Multiplication

A matrix multiplication computes the composition of linear maps, making it a
fundamental operation in linear algebra with applications in many areas. A few
examples are linear programming, cryptography and deep learning [8, 6]. The im-
plementation, Listing 1.4, is straightforwardly translated from the mathematical
definition

Cij =

k∑
p=1

Aip ·Bpj

for m× k matrix A and k × n matrix B.
Data from A and B are reused k times. It is well-known that algorithmic

changes that improve the temporal locality of accessing A and B can speed up
the computation, but we refer this to future work.

This computation takes 2mn(k−1) flops. The matrices A and C are perfectly
distributed over the GPUs, but all GPUs need to access B. That means we need
O(n2) data-movement and O(n3/G) computation for multiplying two n × n
matrices on G GPUs. The communication does not scale, but for large n this
term is dominated by the computation. So we expect better efficiencies for large
n.

This is supported by the results of Figure 3, where we see efficiencies ranging
from 84% for classes A and B, to 91% for class D on four GPUs. The efficiencies
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Fig. 3: Matrix Multiplication on Snellius.

1 2
0

200

400

600

800

1,000

1,200

GPUs

G
flo

ps

A B C D
A (seq) B (seq) C (seq)

(a) Compute rate

1 2
0

0.2

0.4

0.6

0.8

1.0

GPUs

E
ffi

ci
en

cy

A B
C D

(b) Efficiency

Fig. 4: Matrix Multiplication on Icis.

are even higher in Figure 4, where they range from 95% to 98%. The A6000
has a much higher bandwidth to FP64 ratio than the A100, so data-movement
contributes even less to the compute rate.

It is interesting that class D does not seem to suffer from being out-of-core.
This is likely caused by the unified memory overlapping this extra communica-
tion with computation [28].

4.4 N-Body Simulation

The all-pairs N-body algorithm computes how the position and velocities of a
system of bodies affect each other through gravity. In larger applications this
exact algorithm is typically used to compute the forces between bodies that
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are near each other, and is combined with an approximate algorithm for bodies
further away [4].

The main structure of this algorithm is described in Listing 1.6. We have
[N, 3] arrays pos, accel, and velocity to represent vectors in three-dimensional
space, and an array of shape [N ] for the masses.

a c c e l = { [ i ] −> sum{ [ j ] −>
acc ( pos [ i ] , pos [ j ] , mass [ j ] } } ;

v e l o c i t y = v e l o c i t y + ac c e l ∗ dt ;
pos = pos + v e l o c i t y ;

Listing 1.6: Structure of nbody-simulation in SaC. The function acc computes
the acceleration caused by the force of particle j on particle i.

Most time is spent in the O(N2) computation of accel. The total cost is
20N2 + 12N flops per iteration.

The performance characteristics are very similar to Matrix Multiplication,
but even more pronounced. The computation is evenly distributed: for G in
total, each GPU does O(N2/G) computation per iteration. All bodies need to
be replicated on each GPU, so that is O(N) communication per iteration. In
contrast to matrix-multiplication, this computation is typically in-core.

As expected, we see high efficiencies in Figure 6, from 95% to 103%. This is
the only benchmark where we see the efficiency exceeding 100%. This cannot be
explained by variability in the measurements as the standard deviation is about
0.3%. The A6000 has 6 MB of L2 cache. Class A does not fit in the L2 cache
of one GPU, but does fit in the combined cache of both. We suspect this is the
cause.

In Figure 5 we have a high efficiency of 95% for the largest problem class D.
For the smallest problem class A this drops sharply for four GPUs, to 77%. The
A100 has 6912 execution units per GPU, so 24768 in total. As problem class A
has 20480 bodies, we can keep only 83% of these units busy.

4.5 Nine-Point Stencil

The final algorithm we benchmark is a 2D iterative nine-point stencil compu-
tation. This updates each point in a 2D grid with a weighted averages of its
nine neighbours, where we wrap around the edges. This is a common pattern in
finite-difference methods for solving partial differential equations [3].

More recently, it has found application in convolutional neural networks [29,
32]. In contrast to the other two algorithms, each iteration does a small number
of computations on each input element.

This tensor comprehension has nine index subsets because of the wrapping
around the edges. In Listing 1.5 we have shown the generated code for the most
computationally expensive one. Specifying these nine subsets is cumbersome, so
we have used the more generic code of Listing 1.7. This can handle analogues in
any dimension d, and also any shape wshp of weights. For example, if we want to
take a weighted average of points at most two removed (Manhattan-distance) in
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Fig. 5: N-Body simulation on Snellius.
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Fig. 6: N-Body simulation on Icis.

three dimensions, we would have d = 3 and wshp = [5, 5, 5] [1]. The compiler
is able to recognize the mod operator and generate the index subsets [30].

We use the flag -maxwlur 9 to ensure the weighted average of nine points
in the inner computation is unrolled. This takes 17n2 flops per iteration for an
n× n array, but it is more common to measure bandwidth as data-movement is
the limiting factor. This is 16n2 bytes per iteration.

For G GPUs, we need to do O(n2/G) data-movement within a GPU, and
O(n) data movement between GPUs. Therefore, we expect good results, similar
to Matrix Multiplication and N-Body. However, Figure 7 and Figure 8 show no
improvements over the cuda-baseline.

This is caused by a high cost for the first write to unified memory. When in-
creasing the number of iterations, in Figure 9 and Figure 10, we do see speedups.
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double [ d : shp ] r e l a x ( double [ d : shp ] x , double [ d : wshp ] w)
{

return { iv −> sum({ jv −> w[ jv ] ∗ x [mod( iv + jv − wshp / 2 , shp ) ] } )
| i v < shp } ;

}

Listing 1.7: Stencil computation in SaC.
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Fig. 7: Stencil on Snellius, 10 iterations

We can model the execution time for T iterations as Tx+ c, where x is the
cost per iteration, and c the cost for allocation, deallocation and constant over-
heads. From the measurements for T = 100 and T = 10, we can solve for x. The
bandwidth based on this number is graphed in Figure 11 and Figure 12. Here we
have efficiencies between 48% and 81%. The efficiencies are lower than the other
two benchmarks, especially for the smaller problem classes. This is because the
synchronisation cost is not negligible in this benchmark. Each iteration takes
0.009 seconds for problem class D on Snellius. For comparison, in Matrix Mul-
tiplication we have one synchronisation every 35 seconds, and in N-Body one
synchronisation every 96 seconds.

4.6 Effect of Memory Advice

We can only investigate the result of memory advice on small problems and few
GPUs because we quickly run into time limits. We have done measurements on
Snellius for two GPUs. For Matrix Multiplication we take three 1024 × 1024
matrices, for N-Body we take 32768 bodies and 10 iterations, for Stencil we take
a grid of size 1024 × 1024 and 100 iterations. We divide the performance of
either always inserting memory advice or never inserting memory advice by the
runtime of our optimisation in Table 3.
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Fig. 8: Stencil on Icis, 10 iterations
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Fig. 9: Stencil on Snellius, 100 iterations

We see that always inserting advice gives good results for Matrix Multipli-
cation and N-Body, but poor results for Stencil. If we never insert advice, the
situation is reversed. Our optimisation makes the best choice in all three bench-
marks. It is even a little bit faster in Matrix Multiplication and N-Body because
we do not insert the advice for arrays where we do not need to.

5 Related Work

Several studies have investigated compiling high-level specifications in functional
array languages to multi-GPU code with manually-allocated data. One work
presents envisioned compiler and runtime systems extensions for SaC for lever-
aging multiple multi-core CPUs and multiple GPUs without requiring additional
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Fig. 10: Stencil on Icis, 100 iterations
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Fig. 11: Stencil on Snellius, without allocation and deallocation

programmer effort [9]. A new distributed-variable type is proposed to enable
partial transfers of manually-allocated arrays between host and device. Further-
more, control structures are suggested to keep track of which parts of an array
are present where, essentially implementing a cache coherency protocol. The
authors evaluate a hand-coded prototype on a two-dimensional five-point sten-
cil computations with two different combinations of parameters using GTX 580
GPUs. Their experimental results find that assigning almost all the workload to
the GPU leads to the best results, and achieve a nearly two-fold speedup with
two GPUs, but run into significantly less improvement with three or more GPUs.

The next study extends the Futhark compiler with a new internal streaming
operator called the husk operator [15]. The author introduces a new type and se-
mantics to further present transformations for the map and reduce second order
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Fig. 12: Stencil on Icis, without allocation and deallocation

Matrix Multiplication N-Body Stencil
Always 0.93 0.94 0.20
Never 0.09 0.72 1.00

Table 3: Speedup of always giving advice, never giving advice compared to our
memory advice optimisation.

array combinators of Futhark, essentially allowing an intermediate Futhark pro-
gram to expose opportunities for distributable data and operations. The study
then also extends Futhark’s CUDA C backend, leveraging the husk operator for
multi-GPU execution and introducing a worker-thread runtime environment for
concatenation or reduction of the results on multiple devices. Next, the entire
implementation is tested on Futhark’s benchmark suite, investigating both the
effect of the husk operator in single and double GPU scenarios. In the multi-
GPU case, their results vary from near-linear speedups to limited improvements,
depending on the amount of data that has to be transferred between the two
GPUs. In single GPU scenarios the overhead of the husk operator is generally
negligible, except for some outlier applications — ranging from an improvement
of roughly 1.7× to significant slowdowns of 2.5×.

Accelerate [26] adds multi-GPU support by adding a fissioning program
transformation during the compilation process, essentially converting intra-
kernel data parallelism to inter-kernel task parallelism. Furthermore, a runtime
multi-GPU scheduler is added, which decides what task is executed on which
device. This scheduler resembles a typical approach, introducing a worker
thread for each CUDA device. These worker threads are handling both kernel
launches and copying dependencies to the GPU they represent. The authors
evaluate their implementation against three benchmarks on a two-GPU system,
where two of those three benchmarks are Matrix Multiplication and N-Body.
For the N-Body, they achieve linear speedups and even a 2.4× speedup when the
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bodies fit in the cache of a single GPU. Their matrix multiplication benchmark
achieves more modest speedups (around 1.3×), which the authors attribute to
needing to communicate larger partial results and more expensive combination
steps compared to their other benchmarks.

Another class of related work consists of more specialised transpilers and
frameworks that tend to either implement a custom unified-memory protocol or
extend CUDA’s unified-memory driver [23, 20]. One such example is the frame-
work SnuRHAC, which automatically and transparently distributes workloads
to multiple GPUs across multiple nodes [20]. The authors extend CUDA unified
memory with an additional Linux kernel module to achieve scaling beyond a
single node of multiple GPUs. Within a node, kernel workloads are distributed
by dividing the thread blocks in CUDA grids among multiple GPUs. Page fault-
ing is also reduced by implementing both static and dynamic page-prefetching
techniques. The implementation also includes heuristics to decide whether to
execute on a single GPU instead if the workload e.g. contains too many shared-
write accesses.

Finally, we take a look at related work that conducts manual experimen-
tation with CUDA unified memory. One study evaluated the effect of CUDA
performance hints for both in-core and out-of-core single-GPU scenarios on two
platforms across six different applications [7]. On one platform, they find that
memory advice only lead to benefits in in-core scenarios, whereas on the other
platform exclusively in out-of-core situations. When it comes to page prefetch-
ing, they find that it leads to significant improvements for one system, but no
benefits on the other. Overall, the authors conclude that unified memory is
a promising technology and point out that more research into optimal advice
placement would benefit programmer productivity.

Another study investigates a manual multi-GPU implementation using uni-
fied memory [11]. The authors analyse both programmability and performance,
focussing on the effect of performance hints. Their study considers two types
of memory advice: access patterns and placement of memory, and experiments
are also conducted with prefetching. The authors observe speedups ranging from
1.10× to 1.85× on their selected benchmarks. They find that programmability
is generally much improved due to not needing to do manual allocations nor add
explicit memory transfers, but at the same time performance hints are necessary
to achieve good performance. When it comes to performance, unified memory
can introduce communication optimisations due to only initiating transfers that
are strictly necessary for a given computation.

6 Conclusions and Future Work

We have implemented multi-GPU support for the language SaC by a light-weight
extension of its existing unified memory compilation target. The crucial insight
is that we can reuse the existing mechanism of specifying index subsets. To
deliver on SaC’s promise of performance, we insert memory advice based on
access patterns.
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Our benchmarks show promising results for both the N-Body and Matrix
Multiply algorithms. With large enough problem sizes, we see efficiencies above
90% with respect to SaC’s manually-allocated cuda target. For a nine-point
stencil we can obtain efficiencies in excess of 80%, but only when we do not
count allocation time. If the compiler cannot sufficiently reuse allocations, our
approach yields efficiencies as low as 12%, even for large problem sizes.

Future work is needed to address the efficient support of reductions or fold on
multiple GPUs. We use a basic device-wide synchronisation with expensive con-
text switches between GPUs. This does not stop us from obtaining high efficiency
on large problem sets, but fine-tuning this with event-based synchronization may
lead to performance benefits on smaller problem sizes.
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