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Abstract. Task-Oriented Programming is a declarative programming paradigm

where the main building blocks are tasks. Tasks represent work and have an ob-

servable task value. Tasks are combined to form compositions of tasks. From this

specification of work, a ready-for-work application can be derived automatically.

There are several implementations of task-oriented programming, for exam-

ple iTask, an industry-grade top system for distributed web applications; and

TopHat, a fully formalised task-oriented language. iTask and TopHat differ a

lot in philosophy. The iTask language only has two task super combinators from

which every other combinator is derived This makes it difficult to provide a for-

mal semantics for them. In TopHat more complex combinators are built from

a rich set of simple building blocks, core combinators. Consequently, defining a

formal semantics is easier.

By definition, the super combinators of iTask are more expressive than TopHat,

as they allow the programmer to use the full host language Clean to define the

behaviour. Whereas in TopHat, you have to create the behaviour by combining

simple core combinators. The contribution is twofold, we perform a qualitative

and quantitative analysis of task combinator usage in all published case study

applications, some examples from the iTask distribution and a sizeable real-

world industrial application. We reflect on combinator usage and show that over

95% of real-world task-oriented code is expressible using the core combinator

approach once it is extended with another combinator: reflect.

Keywords: Task-Oriented Programming

1 Introduction

Task-Oriented Programming (top) is a relatively new programming paradigm [18].

It is a declarative programming paradigm where tasks are the basic building blocks.

Tasks are an abstract representation of work and only describe what work needs to be

done, the how is derived from this specification. Tasks have an observable task value.

I.e. during the execution of a task, other tasks can observe the progress of the task and

make decisions accordingly. Besides exposing the progress of a task via its task value,

tasks can also share data using Shared Data Sources (sds). Task values are observed by

other tasks using task combinators. There is a rich set of task combinators that allow
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the composition of tasks. For example, tasks can be composed sequentially or parallel

to complex workflow systems.

There are several implementations of task-oriented programming, for example

iTask, an industry-grade top system for distributed web applications; toppyt, a top

implementation in Python; mTask, a top language for microprocessors that integrates

with iTask; and TopHat, a fully formalised top language.

The iTask system is an top implementation that generates an interactive multi-

user distributed web server that allows user to perform the work that was speci-

fied [16]. It has a long history and the set of task combinators changed continuously

throughout the years [9]. Furthermore, the many documented case studies in literature

and the usage in industry results in a relatively large codebase of real-world top ap-

plications. The philosophy behind iTask is that with two super combinators, all other

combinators could be derived. So this means that there is only one sequential super

combinator (step), and one parallel super combinator (parallel). As a consequence,

deriving new combinators is relatively easy, but understanding or changing the exact

semantics of the super combinators is very difficult. Attempts have been made but

always only on a subset of iTask [8].

TopHat is a top implementation that is fully mathematically formalised [22]. The

design of task combinators in TopHat is exactly opposite of iTask. Instead of deriv-

ing all combinators from two complex super combinators, there is a rich set of core

combinators from which more complex combinators are derived. Over the years, the

set of core combinators of TopHat has been extended to cover more and more of the

real-world workflow patterns. For example, doing things in parallel, and allowing the

user to dynamically spawn more tasks [21].

1.1 Research contribution

In this paper we analyse twelve published case studies, two of iTask’s internal work-

flow applications and a real-world industrial application. Furthermore we introduce

reflect, a new core combinator that can expose a task’s task value to siblings. With

this new combinator, w capture over 95%
3

of the real-world top combinator use.

2 Examples

Reflect is mostly use together with a selection and a whileUnchanged.

For example in incidone (cite)

taxman (cite)

interactive test suite (from iTask, no citation)

workflow admin (from iTask, no citation)

store admin (from iTask, no citation)

codequalitymonitor (from iTask, no citation)

3
draft preliminary



A Reflection on Task-Oriented Programming 3

3 Semantics

We present our formal semantics as an extension of TopHat[23]. TopHatis a formal

semantics of task-oriented programming, with a verified implementation in Idris and

a practical one in Haskell. It specifies the semantics of basic task-oriented operations.

The framework has been extended for symbolic execution of tasks [14], and next-

step hint generation [13]. Also, it is the foundation of proving equivalence of task

definitions [7].

3.1 Overview of TopHat

TopHat semantics is defined in three layers: the host layer, the internal layer, and the

external layer. These are depicted in Fig. 1. At the bottom, there is the host layer, which

evaluates pure lambda terms. On top of that, there are two task layers. The semantic

arrows in the internal layer prepare a task for user interaction. The semantic arrows

in the external layer do the actual handling of user inputs. Besides semantic arrows,

TopHat has the notion of observations. These are summarized at the right side of Fig. 1.

handle (⟶)

inputs ()

rendering ()

interact (⟹)

fixate (⇓) watching ()

normalize (↓)

failing ( )

value ()

evaluate (

↦

)

(read 𝑥 –∙ 𝑦 as ‘𝑥 is used by 𝑦’)

external layer

internal layer

host layer

Fig. 1. Overview of semantic layers, relations and functions in TopHat.

Our reflection extension does not alter the host layer. In these layers, only the

handle (⟶) and normal (↓) semantics need to be extended. Below, we first introduce

the host and task languages of TopHat. Next, we introduce observations on tasks and

the influence of reflection. After that, we show the additions to the normalisation and

handling semantics.

3.2 Host and task languages

TopHat’s host language is the simply typed 𝜆-calculus with basic types such as Booleans,

integers, and strings, extended with product and sum types. It also contains heap lo-
cations, which are values on the host layer and can only be manipulated on the task
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layers. Most importantly, our host language has no operation for general recursion,

and heap locations are restricted to only contain basic types, that is, no functions nor

other heap locations. This means, evaluation of 𝜆 terms is pure and total.

On top of the simply typed 𝜆-calculus, TopHat builds a task language. Its grammar

is given in Fig. 2 Terms 𝑒, 𝑣, and 𝑏 are expressions, values, and values of basic types in

the host language. Type 𝛽 stands for basic types. Next, we’ll discuss the operators in

the language. For more details about types and expressions in the host layer, we refer

to previous work [20].

Editors

𝑑 ∶∶= □
𝜈
𝛽 ∣ ⊟

𝜈
𝑏 ∣ □◦

𝜈
𝑏 – unvalued, valued, read-only

∣ ⊞
𝜈
ℎ ∣ ⊞◦

𝜈
ℎ – shared, read-only

Tasks

𝑡 ∶∶= 𝑑 ∣ ■𝑣 ∣  – editor, done, fail

∣ 𝑣1 ∙ 𝑡2 ∣ 𝑡1 ▶ 𝑣2 – transform, step

∣ 𝑡1 ▶◀ 𝑡2 ∣ 𝑡1 ◀▶ 𝑡2 – pair, choose

∣ share 𝑏 ∣ ℎ1 ∶= 𝑏2 – share, assign

Fig. 2. Grammar of TopHat’s task language.

Editors Editors are the end-points of a task, used to interact with end users. They

are an abstraction over input fields or widgets. Editors are typed, which means that,

for example, in an Int editor, end users can really only fill in integers. Editors come in

multiple flavours. Unvalued editors currently do not contain a value yet. They need to

be filled with a value of the appropriate type. Valued editors do contain such a value,

which can be modified by end users. Read-only editors also contain a value, but cannot

be modified. We will discuss editors on shared date shortly hereafter.

Combinators TopHat’s combinators join smaller task into bigger ones. Combinators

come in two main forms: sequential and parallel.

The main sequential operator is a step 𝑡1 ▶ 𝑣2. Here, when task 𝑡1 has an observable

value, this value is passed on to function 𝑣2 which calculates its continuation, also a

task. When this calculated continuation happens to be fail ( ), the step is not made

and we stay working on 𝑡1.

The parallel combinators come in two forms: pair and choose. Pairing two task

𝑡1 ▶◀ 𝑡2 let us work on both 𝑡1 and 𝑡2 interleaved. The observed value of both tasks is

combined in a tuple, if both are available, otherwise, the combination does not have

a value. Choosing between two task 𝑡1 ◀▶ 𝑡2 also means one can work on both tasks

interleaved. However, the observed value is the value of 𝑡1, if it is available, otherwise,

we choose the value of 𝑡2. If both are unavailable, the combination also does not have

a value.
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Sharing data Note that, till now, data could only be passed from task to task se-

quentially: when groups of tasks finish, resulting values can be used to calculate con-

tinuations. This is to restrictive to describe general workflow systems, where parallel

workflows need to react on data from each other. Therefore, data in top specifications

can be shared.

Shared data is introduced by share 𝑏 , which allocates the basic value 𝑏 on a heap

and returns a heap location ℎ. Using this ℎ, multiple tasks can watch the same data. For

example, shared editors watch a heap location, show it to end users, and allow them

to change it. Similarly, read-only shared editors watch a heap location, but end users

cannot modify it. The application itself can set heap locations to any basic value using

ℎ1 ∶= 𝑏2.

3.3 Observations

Tasks form syntax trees which can be observed. The most important observation on

tasks is their current value. This is a partial function from task trees to values. For

example, the unvalued editor □Bool of Booleans, does not have a value yet. Such a

value can be entered into the editor by sending it the input True. This rewrites the

task to the valued editor ⊟42, which currently has value 42. Value observations are

defined recursively on task trees. Notably steps never have a value, as we cannot tell

what continuation it will evaluate to.

Invariant:

(⊚ℎ𝑛, 𝜎) = (𝑛, 𝜎) ≠ 𝜎(ℎ)

But this does not hold!

share Nothing ▶ 𝜆ℎ. ⊚ℎ ■38 ▶◀ ℎ ∶= 42

Normalises to something which sets h to 38, so the value of the left task is not

reflected in the heap location. Can be solved by using read-only memory locations for

the programmer.

(⊚ℎ𝑡) = (𝑡)

(⊚ℎ𝑛) = (𝑛) ∪ {ℎ}

(⊚ℎ𝑛, 𝜎) = (𝑛, 𝜎)

(⊚ℎ𝑛) = (𝑛)

3.4 Normalisation and handling

N-Reflect

𝑡, 𝜎 ↓ 𝑛
′
, 𝜎

′
, 𝛿

′

⊚ℎ𝑡, 𝜎 ↓ ⊚ℎ𝑛
′
, [ℎ ↦ 𝑣]𝜎

′
, 𝛿

′
∪ {ℎ}

(𝑛′
, 𝜎

′
) = 𝑣
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H-Reflect

𝑛, 𝜎

𝜄

→ 𝑡
′
, 𝜎

′
, 𝛿

′

⊚ℎ𝑛, 𝜎

𝜄

→ ⊚ℎ𝑡
′
, 𝜎

′
, 𝛿

′

3.5 Sugar

⌊𝑡⌋ ∶= 𝑡 ▶ 𝜆_.  
⌈𝑡⌉ ∶= 𝑡 ▶ 𝜆𝑥. ■𝑥

𝑡 = 𝑒 ∶= share Nothing ▶ 𝜆ℎ. ⌊⊚ℎ𝑡⌋ ◀▶ 𝑒 ℎ

𝑡 < 𝑒 ∶= share Nothing ▶ 𝜆ℎ. ⊚ℎ 𝑡 ◀▶ ⌊𝑒 ℎ⌋

𝑒1 ? 𝑒2 ∶= (share Nothing ▶◀ share Nothing) ▶ 𝜆(ℎ1, ℎ2). ⊚ℎ1
(𝑒1 ℎ2) ▶◀ ⊚ℎ2

(𝑒2 ℎ1)

4 Applications

There are many test programs, case studies and entire applications that have been pub-

lished in literature. We analysed these applications with a tool that uses the compiler

to gather some statistics about the usage of task combinators.

– conf2009, a conference management system [17].

– itasks22009, a set of example programs for iTask 2 [11].

– trax2013, a single-player puzzle game [1].

– gin2012, the frontend for GiN, an graphical interactive task creater [6].

– incidone2012, an incident report application [10].

– tonic2014, the fronted for Tonic, a visualisation tool of iTask tasks [25].

– ligretto2014, a multi-user card game game [2].

– tasklets2015, bigger examples for executing small tasks in the browser using TaskLets

and EditLets [4, 3, 5].

– shipadventure2017, an interactive fire-extinguishing game situated on a naval ship [24].

– serviceengineer2017, a distributed multi-user application to manage and perform

job allocation for service engineers [15].

– taxman2018, workflow system for entering solar panel reimbursements [24].

– cws2023, smart campus monitoring system prototype [12].

– admin2024, several administrative task workflows for the iTask system to admin-

istrate the server itself [18].

– basicapiexamples2024, a set of example programs [18].

– VIIA2024, Vessel Information Integrating Application, a commercial application

to monitor coasts [19].

Goed opletten, lange tijd gebruikte iTask de »= als bind, dus we moeten onder-

scheid maken tussen iTask modules en monadische modules en hopen dat ze niet door

elkaar gebruikt worden.

niet door elkaar gebruikt worden. Table here with statistics

T
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Table 1. Some statistics. . .

Sequence 50%

Parallel and 50%

or 50%

all 50%

5 Related work

6 Conclusions

6.1 Discussion

. . . if needed. . .

6.2 Future work

Detaching tasks, i.e. separating tasks from their task tree and allowing other task trees

to take over the task, is something that is available in iTask. It would be interesting to

see if and what core combinator we would need in order to express this behaviour as

well.

Furthermore, the super combinator parallel allows tasks to add, remove or even

replace sibling tasks automatically. Figuring out which core combinators can provide

this behaviour is ongoing research.
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