
KappaMutor: A Compact Structured Combinator Processor
for Haskell

Yukang Xie1[0009−0001−4707−7203], Craig Ramsay1[0000−0002−8198−0746], Robert
Stewart1[0000−0003−0365−693X], and Hans-Wolfgang Loidl1[0000−0001−6318−1732]

Heriot-Watt University, Mathematical and Computer Sciences, Edinburgh, UK
{yx3007,Craig.Ramsay,R.Stewart,H.W.Loidl}@hw.ac.uk

Abstract. This paper presents KappaMutor, a new hardware graph reduction architecture.
It is based on structured combinators, a recently proposed, efficient 27-bit encoding of millions
of combinators. More flexible than fine-grained SKI combinators, they enable a more direct
translation of functions to combinators. KappaMutor employs parallel memories to execute
structured combinators in a single clock cycle. The architecture uses pipelining for heap
writes, hides the latency of heap updates and enables combinators to self-optimise. Based on
our measurements, runtimes are 11% to 58% shorter than running equivalent SKI combinator
programs in our KappaMutor architecture.

Keywords: Graph reduction · Structured combinators · Hardware design · Haskell.

1 Introduction

For the implementation of functional languages, the main research direction in the 1980s was to de-
velop custom hardware. Many graph reduction processors were developed to support lazy evaluation
in hardware, including [6,18,7,21,11] (see Section 6). In the 1990s, with hardware design processes
unable to keep pace with RISC processor advances, efforts shifted to compiler techniques1 [12]. Re-
cent projects have re-explored the original architectural ideas in light of stagnant clock frequencies
in general purpose CPUs, compounded by continued advances in hardware design tooling. In partic-
ular, FPGAs have continued to enjoy exponential growth of logic density, adoption of multi-ported
memories, and wide availability via cloud services.

Early graph reduction systems supported a small set of fixed SKI combinators, relying on com-
pilers to split user-defined functions into these fine-grained computation steps. Later systems sup-
ported user-defined supercombinators, allowing more direct execution of user-defined functions (see
Section 6). Accetti recently proposed structured combinators [1] to get the benefits of both ap-
proaches: (1) a minimal runtime system similar to that of a fixed combinator set; (2) smaller
generated programs enabled by deriving the shape of combinators directly from user functions.

Accetti developed the Fun instruction set to encode structured combinators, and the Blackbird-
II processor to evaluate Fun programs [1]. Its input language is formed of lambda terms, and its
compiler linearises these into instruction sequences that correspond to the evaluation of structured
combinators. In the general case, the compiler converts lambda abstractions first to fixed-set com-
binators using standard methods, followed by a traversal of the combinator graph, merging small
combinators into larger structured combinators.
1 The authors provide a curated history of functional architectures at:

https://haflang.github.io/history.html

https://haflang.github.io/history.html

2 Y. Xie et al.

This paper presents KappaMutor, a new structured combinator architecture. It differs from Fun
in three ways:

Language: KappaMutor’s input language is Haskell 2010 [13], providing the user a range of con-
venient modern functional language features. This is thanks to MicroHs [3], which we have
extended with a structured combinator backend.

Compiler: Our structured combinator backend takes a bracket abstraction styled approach with
three expression combination strategies, merging combinators on-the-fly to reduce program size
and runtime reduction steps.

Architecture: The architecture has two forms of memory parallelism: (1) independent memories
for the heap, the reduction stack and the update stack, and (2) parallel access to the 8 top-of-
stack elements. The architecture uses pipelining for heap writes to achieve one-combinator-per-
cycle reductions and hides the latency of heap updates.

This paper makes the following contributions:

– An optimising structured combinators compiler for full Haskell 2010. Its three strategies achieve
two goals: (1) minimising the combinator count of generated programs and (2) meeting the
architectural constraints (i.e., the number of holes in a reduction pattern) imposed by the
structured combinators architecture (see Section 3).

– KappaMutor, an optimised structured combinator architecture with parallel memories to achieve
one-combinator-per-cycle reductions (see Section 4).

– An experimental evaluation showing that our compiler generates smaller combinator programs
than MicroHs’s SKI backend in all 13 of our benchmarks. When comparing both backends on
our KappaMutor architecture, the structured combinators approach reduces runtimes by 11%
to 58% (see Section 5).

2 Structured Combinators

2.1 Background

In the context of combinatory logic systems, combinators are symbols that represent simple primitive
functions. Designers of hardware architectures for functional languages in the 1980s chose combina-
tor schemes such as SKI [19] as the intermediary between user code and hardware execution, due to
their simplicity and known approaches to convert the lambda calculus to combinators. These sys-
tems typically supported tens of combinators. Even though custom hardware meant each reduction
could be executed efficiently, the downside of small combinator sets was large compiler-generated
SKI programs, resulting in more reduction steps and slow runtime performance (Section 6).

Accetti’s recent work on structured combinators [1] addresses these limitations. By encoding
millions of combinators in a compact 27-bit format, structured combinators offer a more expressive
and efficient representation. The hardware overhead of this approach is primarily limited to a 6-bit
decoder (Section 2.2), a relatively inexpensive component. The flexibility of structured combinators
makes it possible to compile functional programs to far fewer combinators. Fig. 1 illustrates how
the Fibonacci function can be represented using both classic SKI combinators and structured com-
binators. Notably, the SKI representation requires 8 combinators, while the structured combinator
representation needs only 3. Fewer combinators reduce the reduction steps required to execute pro-
grams, thus improving runtime performance versus SKI-style architectures. We validate this result
in Section 5.2 with 13 Haskell benchmarks.

KappaMutor 3

fib n = if n <= 1
 then 1
 else fib (n - 2) + fib (n - 1)

Haskell source

SKI combinators

Structured combinators

Fig. 1: The Fibonacci function, compiled to classic SKI combinators and structured combinators.

2.2 Definition and Encoding

Structured combinators are machine-friendly encodings, which are self-contained definitions, where
the structure of their graph-reduction semantics is explicit. They are predefined graph transforma-
tions that explicitly capture the arity, the reduction pattern and the contents of the new graph
nodes. We follow [1] to present the definition of structured combinators.

Definition 1. A structured combinator Cp
a i is a 3-tuple:

– Arity a: The number of arguments the combinator expects.
– Structural pattern p: The shape of the lambda abstraction’s body of the combinator, indepen-

dent of specific variable names.
– Index list i: A list of de Bruijn indices indicating the order of argument usage in the reduction

pattern.

This 3-tuple representation is equivalent to the corresponding λ-form, providing sufficient infor-
mation for reduction. For instance, expression C

XX(X(XX))
4[0,3,2,1,2] e1e2e3e4 will be reduced to e1e4(e3(e2e3)).

Table 1 is borrowed from [1] to show how the common SKI combinators can be represented as struc-
tured combinators.

Table 1: Common SKI combinators and their structured combinator representation
SKI combinator λ-form Pattern Structured form

S λabc.ac(bc) XX(XX) C
XX(XX)
3[0,2,1,2]

K λab.a X CX
2[0]

I λa.a X CX
1[0]

B λabc.a(bc) X(XX) C
X(XX)
3[0,1,2]

C λabc.acb XXX CXXX
3[0,2,1]

We employ the same encoding scheme as [1] to represent structured combinators in our Kappa-
Mutor architecture, as depicted in Fig. 2. Each combinator requires 27 bits: 6 bits for 64 possible

4 Y. Xie et al.

reduction patterns (with 1 to 6 holes), 3 bits for arity (up to 6), and 3 bits for each de Bruijn index
in the index list.

arity pattern idx 0 idx 1 idx 2 idx 3 idx 4 idx 5

0 3 9 12 15 18 21 24 27

3-bit 6-bit 3-bit 3-bit 3-bit 3-bit 3-bit 3-bit

Fig. 2: The 27-bit structured combinator encoding.

To calculate the number of possible structured combinators, we first define h(n) as the number
of reduction patterns with n holes. This function can be recursively defined as:

h(n) =

{
1, if n = 1∑n−1

i=1 h(i)× h(n− i), otherwise

Using this definition, the total number of combinators supported by KappaMutor can be calculated:

6∑
i=1

(

6∑
j=1

h(j)× ij) = 3, 004, 365

Therefore, with the 27-bit encoding scheme, KappaMutor can support over 3 million unique com-
binators.

3 Compiler Design

3.1 Overview

Augustsson’s MicroHs compiler [3] compiles Haskell 2010 down to a fixed set of 19 combinators.
Our compiler (Fig. 3) extends MicroHs to support over 3 million structured combinators.

KappaMutor’s compiler accepts Haskell 2010 as its input language, leveraging the MicroHs
frontend. As KappaMutor currently lacks support for floating-point operations and I/O (Section 4),
we employ a limited prelude that includes definitions for Int and Bool. Lists, tuples and user-
defined data types are supported. The frontend of MicroHs is reused to transform Haskell code
to an intermediate representation, which is essentially the λ-calculus with literals and primitive
operators. Our compiler then removes all bound variables from the λ-calculus representation to
construct a structured combinator graph for KappaMutor. Our binary generator then transforms
the resulting graph into a format compatible with our Chisel-based KappaMutor implementation
(Section 4).

The rest of this section focuses on our work on code generation, from the λ-calculus to struc-
tured combinators. We first present our baseline code generation scheme (Section 3.2), then show
two optimisations that exploit the advantages of structured combinators to reduce combinators in
generated code (Section 3.3).

KappaMutor 5

*.hs

Prelude.hs

AST

Lex, Parse
&

Type Check

Desugar
&

Datatypes Encode

λ-Calculus Fixed Set
Combinators

Bracket
Abstract

Emit
File

Structured
Combinators

Runtime
System

Emit
File

KappaMutor

MicroHs

Bottom-Up
Code Gen

This Work

Fig. 3: Compilation workflow for KappaMutor.

3.2 Bottom-Up Structured Combinator Code Generation

In [1], Accetti proposed a compilation scheme to transform the λ-calculus to structured combinators.
The scheme first attempts pattern matching on the shape of lambda bodies. If pattern matching
succeeds (i.e., the pattern is supported by structured combinators), the lambda abstraction can
be directly converted to an applied combinator. If the pattern matching fails, the compiler will
transform the lambda abstraction to fixed-set combinators using standard methods (e.g., bracket
abstraction [10]), then walk through the combinator graph to merge small combinators into bigger
structured combinators.

We propose a different approach in this paper. Our scheme resembles bracket abstraction, build-
ing the combinator graph bottom-up in one go.

Bracket Abstraction Styled Algorithm The presentation of Fig 4 is an extension of [10] to
contrast the classic bracket abstraction algorithm with our code generation scheme. The compilation
function, C[e], recursively removes all lambdas inside e. When a lambda abstraction is encountered,
Ax[e] is used to abstract out bounded variable x from e. For basic bracket abstraction, we use the
notation Ab. In contrast, our scheme employs As. Note that the input expression of Ax already
does not contain any lambdas, since C is first applied to the lambda body. We annotate variables
and primitives, including combinators, as c.

C[e] compiles e to combinators Ab x[e] abstracts x from e As x[e] abstracts x from e

C[e1 e2] = C[e1] C[e2]
C[λx.e] = Ax[C[e]]

C[c] = c

Ab x[e1 e2] = S (Ab x[e1]) (Ab x[e2])

Ab x[x] = I

Ab x[c] = K c , if c ̸= x

As x[e1 e2] = M[As x[e1]] [As x[e2]]

As x[x] = CX
1[0]

As x[c] = CX
2[0] c , if c ̸= x

Fig. 4: Basic bracket abstraction and the structured combinator version.

The MicroHs compiler generates code using bracket abstraction with optimisation rewrites,
producing a fixed set of combinators. Our code generation algorithm follows the similar structure of
bracket abstraction to build structured combinators. We adopt the same main translation as C. For

6 Y. Xie et al.

the two base cases of the abstraction function, structured combinators CX
1[0] and CX

2[0] are produced,
instead of the I and K combinators. For the compound case, we require more delicately designed
rules, annotated as M[e1][e2], to merge sub-expressions on-the-fly while minimising the number of
combinators generated in the final compilation result.

Sub-Expression Combination To explain the design of M, we first give the definition of unary
form.

Definition 2. Expression e0e1 · · · en is in unary form if e0 is a structured combinator of arity n+1.

We claim that if the output of M is always a unary-form expression, then its input expressions
must also be in unary form.

The combination function M employs three strategies to merge sub-expressions, namely absorp-
tion, extension and addition. Absorption|/ is the ideal strategy because it merges two structured
combinators into one, thus the reduction of an expression takes a single cycle rather than two in
our KappaMutor architecture. It combines the leading combinators of the two sub-expressions by
merging their reduction patterns and index lists. This strategy assumes the two input expressions
are in unary form. It can only be applied when the resulting arity and reduction pattern are within
the constraints of KappaMutor’s architecture. Specifically, a structured combinator’s arity should
not exceed 6, and its pattern can contain up to 6 holes (Section 2.2). If absorption fails, the compiler
attempts to apply the extension strategy, which preserves one input expression, and extends the
other’s leading combinator to ‘send’ the abstracted variable down to the preserved expression. This
also requires the arity and reduction pattern of the structured combinator to fit within KappaMu-
tor’s architectural constraints. If extension also fails then the compiler falls back to the addition
strategy, which is equivalent to bracket abstraction. A C

XX(XX)
3[0,2,1,2] (i.e., the S combinator) is added

on top of the input expressions.
Fig. 5 illustrates examples of the three strategies, showing how absorption reduces combinators,

extension preserves them, and addition increases them. Note that the extension strategy can be
applied to either the left or the right input expression. Additionally, all of the strategies will only
produce unary-form expressions.

Extension Extension

Addition

Absorption

Fig. 5: Examples of the absorption, extension and addition strategies.

KappaMutor 7

3.3 Optimisations with Structured Combinator

We now present two optimisations to our code generation scheme. We begin by supporting the
combination of non-unary formed expressions. This improvement is designed to optimise the results
of nested calls to As, which are commonly introduced by curried functions and inner lambda ab-
stractions. We then show how classic SKI combinator optimisation rewrites can be generalised and
applied to structured combinators.

Combining Non-Unary Formed Expressions: The scheme described in Section 3.2 gener-
ates functionally correct code. However, it can be inefficient when applied to curried functions or
functions with inner lambda abstractions, which lead to nested calls to As. For instance, consider
the example in Fig. 6a. The compilation process produces three successively applied combina-
tors which takes three clock cycle to execute. An obviously more efficient representation would be
CXXXXX

5[2,0,3,1,4](+)(−), which can be reduced in one clock cycle.

(a) Baseline code generation (b) Code generation with non-unary support

Fig. 6: Abstracting bound variables from curried functions.

To improve the scheme, we first need to give combinators special treatment in the base case of
As x[e]. Specifically:

– For As x[C
p
a i], attempt to create Cp

a′ i′ as result, where a′ = a+ 1, and i′ = map (+1) i.
– If the result exceeds the architectural constraints of KappaMutor, revert to the less efficient

CX
2[0] C

p
n i.

The revised base cases for As x[e] may yield non-unary expressions, which contradicts the under-
lying assumption of the absorption and extension strategies presented in Section 3.2. Consequently,
M requires new rules to accommodate these non-unary expressions. The addition strategy remains
applicable, while the absorption and extension strategies necessitate modified combination logic.
Fig. 7 provides examples illustrating the non-unary versions of these two strategies.

The compiler checks the unary nature of input expressions and selects appropriate strategies
accordingly. The non-unary version of the absorption strategy is applicable when the left input
expression is non-unary and the right input expression is unary. Otherwise, the extension strategy
is employed. These enhancements effectively address the issue of stacked combinators resulting from
nested calls to As. Fig. 6b shows how the improved code generation handles the same example.

8 Y. Xie et al.

Absorption Extension

Fig. 7: Examples of the absorption the extension strategies, applied to non-unary-form expressions.

Generic Rewrites: Classic SKI compilation schemes rely on predefined rewrite rules to optimise
code by reducing the number of combinators in generated programs. We propose a similar approach
for structured combinator compilers, but instead of hardcoding rewrite rules, we advocate for a more
generic optimisation strategy based on the potential for optimisation within structured combinators.

Addition

Addition

Addition

Classic SKI rewrites Addition strategy with rewrites

Fig. 8: Classic SKI optimisation rewrites and examples of the improved addition strategy.

Among the numerous SKI rewrite rules, three are particularly fundamental, as illustrated in
Fig. 8. These rewrites occur during the compound case of bracket abstraction, where two sub-
expressions are merged. The underlying principle of these rules is to avoid unnecessary transmission
of the abstracted bound variable when it is not used in a sub-expression [10]. Traditional rewrites
achieve this by examining the structure of the sub-expression: the bound variable is deemed unused
if the sub-expression takes the form (K e). The three SKI rewrites in Fig. 8 correspond to the
following scenarios:

– Mutual disuse: If the bound variable is not used in either sub-expression, it is omitted from
both.

– Right-side usage: If the bound variable is only used in the right sub-expression, the B com-
binator is employed to transmit the variable.

KappaMutor 9

– Left-side usage: If the bound variable is only used in the left sub-expression, the C combinator
is used to transmit the variable.

With structured combinators, we can more generically determine whether a bound variable is
unused within a sub-expression: for an expression Cp

a i e1 · · · en, the bound variable is unused if n
is absent from i. Fig. 8 illustrates how similar rewrites can be applied to the addition strategy in
our compiler. When executing the addition strategy, the compiler prioritises these rewrites over
the introduction of the C

XX(XX)
3[0,2,1,2] combinator. Similar optimisations can be applied to the extension

strategy. For instance, M [CXX
2[1,0]e1] [C

X(XXX)X
4[0,3,1,0,1]e2e3] will yield CXXX

2[2,0,1]e1(C
X(XXX)X
4[0,3,1,0,1]e2e3), where

the extension strategy is enhanced by the SKI-styled rewrites.
Another category of generic rewrites applicable to structured combinators is based on η-reduction

(i.e., λx.(f x) = f). For an expression Cp
a i e1 · · · en, η-reduction is possible if n appears solely as

the final element of i, and p conforms to the pattern p′X, where p′ represents an arbitrary pattern.
In the extension and addition strategies, the compiler consistently attempts the η-reduction styled
rewrites on preserved input sub-expressions. For example, M [CXXX

3[1,2,0]e1e2] [C
X(XX)X
4[0,2,1,3]e3e4e5] will

produce CXXX(XX)
4[1,3,0,2,3]e1e2(e3e5e4), where the extension strategy is optimised through η-reduction-style

rewrites.

4 The KappaMutor Architecture

KappaMutor combines the foundation of Reduceron’s [14] hardware architecture with a graph re-
duction model based on Accetti’s structured [1] combinators. Together, they exploit parallel memory
access across dedicated memory units, bypassing costly node searching and allocation operations
inherent in heap-centric architectures. We implement KappaMutor in Chisel [4], a Scala-embedded
hardware description language. The implementation currently supports Accetti’s 27-bit structured
combinator encoding (Section 2.2), integers, and basic arithmetic primitives. This section details
KappaMutor’s design, beginning with the program representation, followed by the machine’s re-
duction model, and concluding with a discussion of key features and optimisations.

4.1 Program Representation

We adopt the style of [14] to present the program representation in our architecture, using Haskell
code (prefixed with ‘>’) for clarity.

In KappaMutor, the source program is compiled into a sequence of top-level functions, each
represented as a list of applications. This list comprises the spine application and nested applications
of the function. The compiled program is a concatenation of these top-level function lists, forming
a single list of applications.

> type Func = [App]
> type Prog = [App]

This definition diverges from template instantiation-based designs like Reduceron and Heron [16],
which define functions as 3-tuples comprising arity, spine application, and a list of nested applica-
tions.

Applications in the architecture are flattened, meaning they have no nested applications and
can be represented as a list of atomic elements.

10 Y. Xie et al.

> type App = [Atom]

Atomic elements in KappaMutor can be represented as a sum of products type.

> data Atom =
> PTR Int | -- Pointer to an application
> COM Arity Pat [Idx] | -- Structured combinator
> INT Int | -- Integer literal
> PRM Int | -- Primitive operator with an opcode
> Y -- Y-combinator

Our definition of Atom deviates from Reduceron’s, omitting function and argument pointers since
β-reduction is not used in KappaMutor. In our design, a PTR pointing to the spine application of a
top-level function effectively serves as a function pointer. Additionally, we exclude data constructors
and pattern matching case tables, as they are eliminated by MicroHs’s Scott encoding scheme. We
introduce structured combinators as a new atomic category. As described in Section 2.2, a structured
combinator is a 3-tuple comprising arity, reduction pattern (encoded as a 6-bit field in hardware),
and a list of de Bruijn indices.

> type Arity = Int
> data Pat = X | At Pat Pat
> type Idx = Int

In KappaMutor, each atom is represented using 32 bits, including its tag. As introduced in
Section 2.2, the arity upper bound is 6, and the 6-bit pattern field supports reduction patterns with
up to 6 holes. We limit the maximum application length to 6, as a combinator consumes at most
6 arguments, and compiled applications are typically under-applied. For longer applications, the
compiler splits them into multiple smaller in-sized ones.

4.2 Reduction Model

KappaMutor’s execution is centered around a reduction stack and its associated control logic. Fig. 9
illustrates the architecture’s datapath. The system incorporates three specialised memory units: a
dual-port heap for storing App structures, an update stack for handling UpdateRecords (Section 4.3),
and the reduction stack for storing Atom elements.

We adopt Reduceron’s stack implementation, enabling asynchronous reads and synchronous
writes to the top 8 stack elements. Additionally, we employ Reduceron’s infix primitive application
scheme to maintain strict evaluation semantics for primitive operators.

At startup, the pointer to the entry function is placed on the top of the reduction stack. At each
clock cycle, the type of the top Atom on the stack determines the next reduction rule to be applied:

– PTR: The pointed application is fetched from the heap and pushed onto the reduction stack.
– COM: The combinator and its arguments, as specified by the arity field, are popped from the

reduction stack. The combinator’s pattern guides the reduction logic in modifying the stack
and creating nested applications on the heap.

– INT: The type of the Atom at position (top-2) will be checked. If it’s an INT, the ALU result
is pushed onto the reduction stack; otherwise, a swap operation is performed to evaluate the
second ALU input.

– PRM: The top two elements of the reduction stack are swapped to preserve the infix order of
primitive operators.

KappaMutor 11

top

top - 1

top - 2

top - 3

top - 4

top - 5

top - 6

top - 7

Reduction
Stack

Reduction
Logic

Heap

Pipeline Reg

rw port 1 rw port 2

opcode in1 in2

out
ALU

top

Update
Stack

arity idx 0 ... idx 5

decode

[idx 1] PTR n+1

[idx 0] PTR n [idx 5]

[idx 2] PTR n+2

[idx 3] [idx 4]

spine

app 1

app 2

app 3

to stack

to heap

addr n+2

addr n+1

addr n

X(X(X(XX)))X

Fig. 9: Datapath diagram of the prototype architecture. In the example, [a] refers to the reduction
stack element at position (top-a-1).

– Y: Following the reduction rule YR = R(YR), the second-top element of the reduction stack is
consumed to create a self-referential application on the heap.

Most reduction rules are similar to those in [14], with the exception of structured combinator
(COM) reduction. Fig. 9 illustrates an example of structured combinator application. The 6-bit
reduction pattern is decoded to guide the construction of the spine and nested applications of
the result, while the index list selects the appropriate arguments from the reduction stack.

Execution terminates when the stack depth falls below the required number of arguments for a
reduction rule.

4.3 Architecture Features

We now present three features in the KappaMutor design, which differentiate it from template
instantiation based architectures like Reduceron and Heron. We first explain the pipeline design in
KappaMutor, which improves the performance when multiple nested applications are created on
the heap. Secondly, we introduce the heap update mechanism in KappaMutor, and our optimisation
to minimise its runtime overhead. Finally, we show how the memory layout of KappaMutor allows
top-level functions to be automatically improved during runtime.

Pipelined Heap Writes In Reduceron [14], the author enforces a one-reduction-per-clock-cycle
constraint by requiring function applications with more than two nested levels to be split across
multiple operations. This ensures that the design maintains its strict single-cycle reduction property.
KappaMutor faces a similar challenge: certain supported reduction patterns can generate up to three
nested applications within a single reduction, which exceed the capabilities of a dual-port heap to
process in one clock cycle.

12 Y. Xie et al.

Instead of splitting, we relaxed the one-reduction-per-clock-cycle requirement, allowing an ad-
ditional cycle for heap writing when necessary. To mitigate potential performance impacts, we
implemented a pipelined heap writing mechanism by introducing a pipeline register to the archi-
tecture (Fig. 9). This design offers two advantages. First, the extra heap writing cycle integrates
seamlessly with the dual-port heap for structured combinators in KappaMutor. Second, the pipeline
architecture ensures minimal performance degradation: execution stalls only when there is direct
contention for heap access between consecutive reductions. In most scenarios, the additional writing
cycle remains hidden, effectively improving overall throughput.

Hiding Heap Updates Heap updates are necessary in avoiding duplicated computation in lazy
evaluation. When an application is loaded from the heap onto the reduction stack, its evaluation
progress is tracked. Upon reaching normal form, the application is written back to the same heap
address.

In [14], Naylor designed an efficient heap update mechanism which utilises an update stack
(Fig. 9) to manage heap updates. When a PTR is dereferenced during reduction, an UpdateRecord
is pushed onto the update stack, recording the address and current stack depth. Before applying
any reduction rule, the architecture checks the update condition based on the current stack depth
and the top UpdateRecord. If a heap update is necessary, the update is performed, and the top
UpdateRecord is removed from the stack at that cycle.

KappaMutor adopts Reduceron’s heap update mechanism but introduces an optimisation. In-
stead of dedicating separate clock cycles for heap updates, KappaMutor can often perform heap
updates and reductions in parallel, provided the reduction doesn’t require heap access. This opti-
misation is possible for specific Atom types:

– PTR: Never appears as the top element in a normal form.
– COM: If the combinator does not create any nested applications (e.g., CXXXX

4[3,0,1,2]), it can be reduced
in parallel with a heap update.

– INT and PRM: These atom types can always be reduced in parallel with a heap update.
– Y: The Y combinator cannot be reduced in parallel with a heap update, as it requires heap

access.

Another scenario that prevents parallelised heap updates occurs when a chain of updates
is required. To detect and prevent incorrect parallel reductions in such cases, we extend the
UpdateRecord with an additional field to track the stack depth of the previous update record:

> type StackDepth = Int
> type HeapAddr = Int
> type UpdateRecord = (StackDepth, HeapAddr, StackDepth)

By incorporating this optimisation, over half of the heap updates can be hidden in runtime,
leading to a reduction in overall clock cycles.

Self-Optimising Property of Combinators Turner [20] highlighted the self-optimising property
of combinator graph reduction machines, where top-level functions can be dynamically reduced to
their normal form after their first execution. For example, in the following definition:

add x y = x + y
addOne = add 1

KappaMutor 13

The addOne function can be optimised to addOne y = 1 + y after its initial evaluation during
runtime. This property is particularly beneficial when the source code is in a combinatory pro-
gramming style, as seen in functions built from simpler components like foldr [20]. Augustsson [3]
further emphasised the importance of this property for handling overloaded functions in Haskell
type classes.

In KappaMutor, both top-level functions and runtime applications reside within the same heap,
which inherently enables self-optimising through heap updates. Fig 10 illustrates the first call to
the addOne function. After this initial call, addOne is updated to its normal form. Subsequent calls
to addOne can then bypass the pointer resolution of add, resulting in a one-cycle performance
improvement for each call.

add: [COM <c>, PRM <+>]

addOne: [PTR <add>, Int 1]

Reduction
Stack

PTR <addOne>
INT 5

Reduction
Stack

PTR <add>

INT 5
INT 1

Reduction
Stack

COM <c>

INT 5
INT 1

PRM <+>

Reduction
Stack

INT 5
PRM <+>
INT 1

Reduction
Stack

INT 6

add: [COM <c>, PRM <+>]

addOne: [COM <c>, PRM <+>, Int 1]

Heap Heap

heap update

Fig. 10: Example of self-optimisation through heap updates, where <c> is the combinator CXXX
3[1,0,2].

Turner [20] suggested that self-optimisation should also be achievable in other types of graph
reduction systems, such as a template instantiation machine. However, since Reduceron places
programs in a separate memory, and all the argument pointers are replaced by actual arguments
during template instantiation, it is less straightforward to achieve the self-optimising property.

5 Evaluation

In this section, we evaluate structured combinators generated by our code generation scheme (Sec-
tion 3), analysing both static code and runtime performance to highlight the advantages of struc-
tured combinators over classic SKI combinators. We also present the hardware implementation
result of the KappaMutor architecture (Section 4), focusing on resource utilisation and maximum
clock frequency to demonstrate the feasibility and compactness of our design.

5.1 Compiler-Generated Code Analysis

Two metrics are employed for the analysis of compiler-generated programs: combinator count and
application count. While not a direct indicator of runtime, combinator count can reflect the potential
reduction steps within a program, which links to the running time, given the one-combinator-per-
cycle nature of the KappaMutor core. Application count, on the other hand, is equivalent to program
size according to KappaMutor’s program representation (Section 4.1).

14 Y. Xie et al.

We compare three code generation schemes: the baseline structured combinator scheme from
Section 3.2, the optimised scheme from Section 3.3, and the original SKI code generation from Mi-
croHs. For comparison, we added a post-processing pass to the original MicroHs workflow, encoding
its 19 combinators into the structured combinator representation for KappaMutor, without further
modifications. The benchmark programs used in [14] and [16] were adopted for our evaluation. We
translated the f-lite [14] source code to Haskell, as expected by the MicroHs frontend, and used a
minimal prelude file for simplicity.

(a) Combinator count, normalised by MicroHs SKI code generation.

(b) Application count, normalised by MicroHs SKI code generation.

Fig. 11: Static code comparison. Improved code generation versus baseline code generation.

Fig. 11a and 11b present the combinator counts and application counts for the two structured
combinator schemes, normalised against the MicroHs SKI scheme. The results demonstrate that
our optimised scheme can reduce combinator count by 20% to 62% compared to the SKI scheme.
Considering MicroHs already applies extensive optimisation rewrites to its SKI code generation,

KappaMutor 15

this significant reduction underscores the power of structured combinators, aligning with Accetti’s
claims in [1].

It is unsurprising that the baseline scheme is outperformed by the SKI scheme in most bench-
marks. This is due to the prevalence of curried functions and inner lambda abstractions which can
significantly degrade code efficiency of the baseline scheme as discussed in Section 3.3. The results
also validate the necessity of the optimisations we implemented. An interesting exception is the fib
benchmark, where both structured combinator schemes yield identical results. This is because fib
lacks curried functions and is the smallest benchmark, with the compiled code consisting of only
three combinators.

In terms of application count (i.e., program size), both structured combinator schemes exhibit
similar results, reducing the number by 30% to 55% compared to the SKI scheme. A possible
explanation for the close similarity between the two structured combinator schemes lies in the shared
decision-making when the absorption strategy fails (Section 3.2). This leads to similar graph layouts
and application counts, despite the baseline scheme introducing a significantly higher number of
combinators per application.

One might argue that the SKI scheme’s use of 19 combinators could potentially reduce the
required bit width for encoding, thus it is unfair to compare program sizes in terms of application
count in a specific architecture like KappaMutor. However, other atomic elements, such as integers
and pointers, necessitate wider bit widths. Thus, it is challenging to exclusively optimise the bit
width for combinators in a hardware implementation of the SKI approach to achieve smaller program
sizes.

5.2 Runtime Performance Analysis

For runtime performance analysis, we focus on clock cycles and heap allocations during program
execution on KappaMutor. The comparison is still made between the two structured combinator
code generation schemes and MicroHs’s SKI code generation. As discussed in Section 5.1, the Haskell
benchmark programs are compiled using the three different code generation implementations. We
then execute these compiled programs on our KappaMutor architecture with Chisel’s simulation
framework, collecting runtime statistics. Given the exact same underlying architecture, clock cycles
directly correspond with wall-clock execution time. Additionally, heap allocation numbers provide
insights into memory consumption and potential garbage collection overhead, although at present
we have not yet implemented a garbage collector for KappaMutor.

Fig. 12a and 12b present the running cycle and heap allocation results for our structured com-
binator code generation, normalised against the MicroHs SKI code generation. The results indicate
that our optimised structured combinator scheme can reduce running cycles by 11% to 58% com-
pared to the SKI scheme. While the improvement is significant, the pattern of performance gains for
structured combinators is not entirely predictable. We did not observe clear correlations between
program size, the proportion of different reduction types, and performance across benchmarks like
braun, clausify, while, mss, and ordlist. As discussed in Section 3.3, the baseline code gener-
ation’s incompatibility with nested lambdas often leads to inferior performance compared to the
SKI approach.

Regarding heap allocations, the results exhibit a similar pattern to running cycles, with two
notable exceptions. First, the fib benchmark shows identical heap allocation results for all three
schemes, likely due to its simplicity. Second, the optimised scheme generates a non-negligible increase
in heap allocations (35%) for the mss benchmark compared to the SKI scheme. This suggests that

16 Y. Xie et al.

(a) Running clock cycles, normalised by MicroHs SKI code generation.

(b) Heap allocations, normalised by MicroHs SKI code generation.

Fig. 12: Runtime performance. Improved code generation versus baseline code generation.

reduced combinator counts and running cycles may not directly translate to lower heap allocations.
We hypothesise that compile-time combinator selection can significantly influence heap allocation
behaviour. As our primary focus in this paper is on reducing combinator count through compiler
design, the relationship between structured combinators and runtime heap allocations warrants
further investigation.

5.3 Hardware Implementation

The KappaMutor architecture is implemented on an Alveo U280 [2] UltraScale+ FPGA using
Xilinx Vivado 2023.1 for synthesis and implementation. Table 2 outlines the parameter settings for
the FPGA implementation. The reduction and update stacks are mapped to BlockRAM resources,
while the dual-port heap is mapped to UltraRAM resources provided by the UltraScale+ device.

KappaMutor 17

Table 2: Memory type and size of the implemented KappaMutor instance.
Memory unit Element Width Depth

Heap App 192-bit 64 k
Reduction stack Atom 32-bit 4 k
Update stack UpdateRecord 42-bit 512

Table 3 summarises the resource utilisation of KappaMutor. Look-up-table (LUT) and register
resources are primarily consumed by rotation logic in the reduction stack and the overall reduction
logic. BlockRAM resources are utilised by the two stacks. The utilisation of these resources is less
than 1%, highlighting the compact nature of our combinator-based machine. UltraRAM utilisation
is 5%, contributed by the 64k heap. These results suggest the potential for future scaling to a larger
parallel design with tens of KappaMutor cores. The maximum clock frequency of the design is 165
MHz, a respectable result for an FPGA implementation. The implementation result demonstrates
structured combinator’s hardware-friendly nature.

Table 3: KappaMutor resource consumption on Alveo U280.
Resource type Consumption Available Utilisation%

LUTs 7224 1303680 0.55
Registers 965 2607360 0.04
BlockRAMs 5 2016 0.25
UltraRAMs 48 960 5.00

6 Related Work

Turner demonstrated that combinators [19] had a practical application for implementing functional
languages [20]. This insight led to the development of early hardware architectures that supported
SKI combinators e.g. SKIM [6] and NORMA [18]. These architectures demonstrated the viabil-
ity of combinator architectures with an extremely simple run-time systems, even inspiring recent
hardware [15] and software (MicroHs) [3] implementations over 40 years later. SKI combinators,
in particular, are a small fixed set of operations, and their compiler’s job is to break down user
functions into graphs built from many of these fine-grained operations.

Diverging from the minimalism of fixed combinator sets, Hughes showed how user applications
could instead be compiled into coarser-grained supercombinators [8]. This insight led to supercom-
binator architectures e.g. Tim [7] and Flagship [21]. Because they supported user defined super-
combinators derived directly from user functions, fewer combinators are executed, often resulting
in much shorter runtimes [21]. The abstract G-machine [9] showed how to further specialise on user
functions by compiling supercombinators to instructions for ISA-based processors (both special-
purpose architectures e.g. GRIP [11] and PilGRIM [5], and general purpose CPUs e.g. GHC). Each
top-level function is compiled to a sequence of G-machine instructions.

18 Y. Xie et al.

Similar to supercombinator hardware, recent architectures Reduceron [14] and Heron [16] sup-
port a near direct execution of user-defined functions using template instantiation, without the
compiler doing too much heavy lifting (e.g., without splitting user functions into fine-grained SKI
combinators). These two projects have also demonstrated that simple, non-pipelined, stack-based
FPGA architectures are sufficient for reasonable performance — an approach that could be reused
to rapidly prototype other graph reduction architectures.

There is a spectrum of design choices spanning fixed SKI combinators and supercombinator
techniques. Structured combinators from [1] strike an interesting balance between a fixed set of
SKI combinators and user-defined supercombinators. They enable the representation and execu-
tion of supercombinator-like structures, while retaining much of the run-time simplicity and self-
optimisation properties of fixed set combinators.

7 Conclusion

This paper presents KappaMutor, a new graph reduction processor for Haskell. Its parallel memories
allows single-cycle execution of structured combinators. Its compiler generates less machine code
(fewer combinators) to execute versus fixed SKI-style combinators. The generated machine code
is smaller across all of our 13 benchmarks when compared with restricting the MicroHs compiler
to the SKI set. This results in reduced runtimes of between 11% and 58%. The simplicity of the
KappaMutor architecture uses a fraction of available resources on a modern Alveo U280 UltraScale+
FPGA, using 1% of BRAMs and 5% of UltraRAMs. It also clocks at a relatively high 165MHz.
The ample remaining hardware resources allows us to explore the design space for a multi-core
KappaMutor architecture. We also plan on adding garbage collection with the available resources.
Our recent work [17] gives us confidence that the latency of hardware-based concurrent collection
on modern FPGAs can be almost entirely hidden.

Acknowledgments. This work is supported by the HAFLANG project, funded by the Engineering and
Physical Sciences Research Council (EP/W009447/1).

References

1. Accetti, C., Ying, R., Liu, P.: Structured combinators for efficient graph reduction. IEEE Comput. Ar-
chit. Lett. 21(2), 73–76 (2022). https://doi.org/10.1109/LCA.2022.3198844, https://doi.org/10.1109/
LCA.2022.3198844

2. AMD: Alveo U280 data center accelerator card data sheet (ds963). https://docs.amd.com/r/en-US/
ds963-u280 (2023)

3. Augustsson, L.: MicroHs: A small compiler for haskell. In: Vazou, N., Morris, J.G. (eds.) Proceedings of
the 17th ACM SIGPLAN International Haskell Symposium, Haskell 2024, Milan, Italy, September 6-7,
2024. pp. 120–124. ACM (2024). https://doi.org/10.1145/3677999.3678280, https://doi.org/10.1145/
3677999.3678280

4. Bachrach, J., Vo, H., Richards, B.C., Lee, Y., Waterman, A., Avizienis, R., Wawrzynek, J., Asanovic, K.:
Chisel: constructing hardware in a scala embedded language. In: Groeneveld, P., Sciuto, D., Hassoun, S.
(eds.) The 49th Annual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June
3-7, 2012. pp. 1216–1225. ACM (2012). https://doi.org/10.1145/2228360.2228584, https://doi.org/10.
1145/2228360.2228584

https://doi.org/10.1109/LCA.2022.3198844
https://doi.org/10.1109/LCA.2022.3198844
https://doi.org/10.1109/LCA.2022.3198844
https://doi.org/10.1109/LCA.2022.3198844
https://docs.amd.com/r/en-US/ds963-u280
https://docs.amd.com/r/en-US/ds963-u280
https://doi.org/10.1145/3677999.3678280
https://doi.org/10.1145/3677999.3678280
https://doi.org/10.1145/3677999.3678280
https://doi.org/10.1145/3677999.3678280
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584

KappaMutor 19

5. Boeijink, A., Hölzenspies, P.K.F., Kuper, J.: Introducing the PilGRIM: A processor for executing
lazy functional languages. In: Hage, J., Morazán, M.T. (eds.) Implementation and Application of
Functional Languages - 22nd International Symposium, IFL 2010, Alphen aan den Rijn, The Nether-
lands, September 1-3, 2010, Revised Selected Papers. Lecture Notes in Computer Science, vol. 6647,
pp. 54–71. Springer (2010). https://doi.org/10.1007/978-3-642-24276-2_4, https://doi.org/10.1007/
978-3-642-24276-2_4

6. Clarke, T.J.W., Gladstone, P., MacLean, C., Norman, A.C.: SKIM - the s, k, I reduction machine. In:
Proceedings of the 1980 LISP Conference, Stanford, California, USA, August 25-27, 1980. pp. 128–135.
ACM (1980). https://doi.org/10.1145/800087.802798, https://doi.org/10.1145/800087.802798

7. Fairbairn, J., Wray, S.: TIM: A simple, lazy abstract machine to execute supercombinatorics. In: Kahn,
G. (ed.) Functional Programming Languages and Computer Architecture, Portland, Oregon, USA,
September 14-16, 1987, Proceedings. Lecture Notes in Computer Science, vol. 274, pp. 34–45. Springer
(1987). https://doi.org/10.1007/3-540-18317-5_3, https://doi.org/10.1007/3-540-18317-5_3

8. Hughes, R.J.M.: Super combinators: A new implementation method for applicative languages. In: Park,
D.M.R., Friedman, D.P., Wise, D.S., Jr., G.L.S. (eds.) Proceedings of the 1982 ACM Symposium on
LISP and Functional Programming, LFP 1980, Pittsburgh, PA, USA, August 15-18, 1982. pp. 1–10.
ACM (1982). https://doi.org/10.1145/800068.802129, https://doi.org/10.1145/800068.802129

9. Johnsson, T.: Efficient compilation of lazy evaluation. In: Deusen, M.S.V., Graham, S.L. (eds.) Pro-
ceedings of the 1984 SIGPLAN Symposium on Compiler Construction, Montreal, Canada, June 17-22,
1984. pp. 58–69. ACM (1984). https://doi.org/10.1145/502874.502880, https://doi.org/10.1145/502874.
502880

10. Jones, S.L.P.: The Implementation of Functional Programming Languages. Prentice-Hall (1987)
11. Jones, S.L.P., Clack, C.D., Salkild, J., Hardie, M.: GRIP - A high-performance architecture for parallel

graph reduction. In: Kahn, G. (ed.) Functional Programming Languages and Computer Architecture,
Portland, Oregon, USA, September 14-16, 1987, Proceedings. Lecture Notes in Computer Science,
vol. 274, pp. 98–112. Springer (1987). https://doi.org/10.1007/3-540-18317-5_7, https://doi.org/10.
1007/3-540-18317-5_7

12. Loidl, H.W., Hammond, K.: Graphing the future. In: International Workshop on the Implementation
of Functional Languages. Norwich, England (Sep 1994)

13. Marlow, S.: Haskell 2010 Language Report. Tech. rep. (2010), https://www.haskell.org/onlinereport/
haskell2010/

14. Naylor, M., Runciman, C.: The reduceron reconfigured and re-evaluated. J. Funct. Pro-
gram. 22(4-5), 574–613 (2012). https://doi.org/10.1017/S0956796812000214, https://doi.org/10.1017/
S0956796812000214

15. Pope, J., Seger, C.H., Valter, H.: Higher-order hardware: Implementation and evaluation of the
cephalopode graph reduction processor. In: 22nd ACM-IEEE International Symposium on Formal
Methods and Models for System Design, MEMOCODE 2024, Raleigh, NC, USA, October 3-4, 2024.
pp. 87–97. IEEE (2024). https://doi.org/10.1109/MEMOCODE63347.2024.00015, https://doi.org/10.
1109/MEMOCODE63347.2024.00015

16. Ramsay, C., Stewart, R.J.: Heron: Modern hardware graph reduction. In: The 35th Symposium on
Implementation and Application of Functional Languages, IFL 2023, Braga, Portugal, August 29-31,
2023. pp. 3:1–3:12. ACM (2023). https://doi.org/10.1145/3652561.3652564, https://doi.org/10.1145/
3652561.3652564

17. Ramsay, C., Stewart, R.J.: Cloaca: A concurrent hardware garbage collector for non-strict functional
languages. In: Vazou, N., Morris, J.G. (eds.) Proceedings of the 17th ACM SIGPLAN International
Haskell Symposium, Haskell 2024, Milan, Italy, September 6-7, 2024. pp. 41–54. ACM (2024). https:
//doi.org/10.1145/3677999.3678277, https://doi.org/10.1145/3677999.3678277

18. Scheevel, M.: NORMA: A graph reduction processor. In: Scherlis, W.L., Williams, J.H., Gabriel, R.P.
(eds.) Proceedings of the 1986 ACM Conference on LISP and Functional Programming, LFP 1986,
Cambridge, Massachusetts, USA, August 4-6, 1986. pp. 212–219. ACM (1986). https://doi.org/10.
1145/319838.319864, https://doi.org/10.1145/319838.319864

https://doi.org/10.1007/978-3-642-24276-2_4
https://doi.org/10.1007/978-3-642-24276-2_4
https://doi.org/10.1007/978-3-642-24276-2_4
https://doi.org/10.1007/978-3-642-24276-2_4
https://doi.org/10.1145/800087.802798
https://doi.org/10.1145/800087.802798
https://doi.org/10.1145/800087.802798
https://doi.org/10.1007/3-540-18317-5_3
https://doi.org/10.1007/3-540-18317-5_3
https://doi.org/10.1007/3-540-18317-5_3
https://doi.org/10.1145/800068.802129
https://doi.org/10.1145/800068.802129
https://doi.org/10.1145/800068.802129
https://doi.org/10.1145/502874.502880
https://doi.org/10.1145/502874.502880
https://doi.org/10.1145/502874.502880
https://doi.org/10.1145/502874.502880
https://doi.org/10.1007/3-540-18317-5_7
https://doi.org/10.1007/3-540-18317-5_7
https://doi.org/10.1007/3-540-18317-5_7
https://doi.org/10.1007/3-540-18317-5_7
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1017/S0956796812000214
https://doi.org/10.1017/S0956796812000214
https://doi.org/10.1017/S0956796812000214
https://doi.org/10.1017/S0956796812000214
https://doi.org/10.1109/MEMOCODE63347.2024.00015
https://doi.org/10.1109/MEMOCODE63347.2024.00015
https://doi.org/10.1109/MEMOCODE63347.2024.00015
https://doi.org/10.1109/MEMOCODE63347.2024.00015
https://doi.org/10.1145/3652561.3652564
https://doi.org/10.1145/3652561.3652564
https://doi.org/10.1145/3652561.3652564
https://doi.org/10.1145/3652561.3652564
https://doi.org/10.1145/3677999.3678277
https://doi.org/10.1145/3677999.3678277
https://doi.org/10.1145/3677999.3678277
https://doi.org/10.1145/3677999.3678277
https://doi.org/10.1145/3677999.3678277
https://doi.org/10.1145/319838.319864
https://doi.org/10.1145/319838.319864
https://doi.org/10.1145/319838.319864
https://doi.org/10.1145/319838.319864
https://doi.org/10.1145/319838.319864

20 Y. Xie et al.

19. Schönfinkel, M.: Über die bausteine der mathematischen logik. Mathematische Annalen 92, 305–316
(1924), http://eudml.org/doc/159074

20. Turner, D.A.: A new implementation technique for applicative languages. Softw. Pract. Exp. 9(1),
31–49 (1979). https://doi.org/10.1002/SPE.4380090105, https://doi.org/10.1002/spe.4380090105

21. Watson, P., Watson, I.: Evaluating functional programs on the FLAGSHIP machine. In: Kahn, G. (ed.)
Functional Programming Languages and Computer Architecture, Portland, Oregon, USA, September
14-16, 1987, Proceedings. Lecture Notes in Computer Science, vol. 274, pp. 80–97. Springer (1987).
https://doi.org/10.1007/3-540-18317-5_6, https://doi.org/10.1007/3-540-18317-5_6

http://eudml.org/doc/159074
https://doi.org/10.1002/SPE.4380090105
https://doi.org/10.1002/SPE.4380090105
https://doi.org/10.1002/spe.4380090105
https://doi.org/10.1007/3-540-18317-5_6
https://doi.org/10.1007/3-540-18317-5_6
https://doi.org/10.1007/3-540-18317-5_6

	KappaMutor: A Compact Structured Combinator Processor for Haskell

