
Two Dimensional Numerical Representations
An Adventure with Block Matrices

Michael Youssef1

Rhineland Palatinate Technical University Kaiserslautern-Landau, Kaiserslautern,
Germany

youssef@rptu.de

Abstract. Numerical representation is a technique for modelling datas-
tructures after number systems. Typically and historically, the method
was primarily used to derive one-dimensional datastructures. This paper
explores utilizing the technique for modelling two-dimensional datastruc-
tures instead, with insights into multi-dimensional ones. The aim of this
paper is to devise data structures for modelling block matrices. We look
into the different derivations and highlight some roadblocks that would
otherwise not be an issue in the one-dimensional case. The metrics at
considerations include dimensional-bias, ease of defining functions and
proving properties about them as well as the easiness of understand-
ing of the datastructure. Keypoint : Numerical Representations, Block
Matrices, Agda

Keywords: Block Matrices · Numerical Representations · Agda.

1 Introduction

Numerical representations are a well-established concept that has been around
for quite a while. Most notably, Okasaki [3] introduced a number of datastruc-
tures that are based on various number systems. Over the last three decades,
there has been a lot of work done to derive one-dimensional datastructures using
this method. What has not been explored much is using the same techniques for
two-dimensional datastructures. In fact, and as we show in some of the sections
of this paper, some of these datastructures are subtly hidden in recent works
and well-established ones alike. The aim of this paper is to highlight the differ-
ent challenges faced when transitioning to two-dimensional structures that would
otherwise not be an issue when dealing with the one dimensional structures, as
well as deriving a suitable datastructure for modelling block matrices which is
ideally easy to understand, and easy to work with and reason about.

Contributions This paper makes the following contributions.

– Explores the design space of two-dimensional numerical representation in
the context of block matrices.



2 M. Youssef

– Highlights the relevant design decisions when it comes to transitioning from
one-dimensional to two-dimensional structures.

– Reasons about a suitable implementation of block matrices with regards to
difficulty of proving and programming with the corresponding structure in
the context of semiring frameworks.

2 Numerical Representations

To start of, we recap the one-dimensional case. Deriving the datastructures can
be done in multiple ways. For example, Okasaki [3] does it in an ad-hoc fashion,
while some of the works that followed had done it more rigorously. Hinze [1]
used functor equations to derive numerical representation. While more recently,
Hinze and Swierstra [2] used isomorphism equational reasoning to derive such
representations using the laws of exponents. They also proposed that this method
can be used for deriving two or multi-dimensional representations. This paper
focuses on extending their work in that direction. For the purpose of this paper,
we use their framework.

To that end, we recap the main idea of the framework. The starting point is
defining a finite map from some finite set to an arbitrary type A.

sequence ∶ Index n → A

Index is some representation of a finite set and the entire function type
represents a finite sequence type of length n. The main idea is to vary the
representation of the Index implementation such that different number systems
can yield different representation of the sequence type itself.

For example, if we use the standard library’s finite sets Fin, we get vanilla
lists as the corresponding sequence type by solving the isomorphism equation
(Index n → elem) ≅ Array n elem between the function type and the correspond-
ing datastructure to be derived.

data Fin ∶ ℕ → Set where
zero ∶ Fin (suc n)
suc ∶ (i ∶ Fin n) → Fin (suc n)

data Array ∶ Peano → Set → Set where
nil ∶ Array zero elem
cons ∶ elem → Array n elem → Array (succ n) elem

2.1 From One to Two Dimensional Representations

The idea behind a two or multi-dimensional derivation is to use a multi dimen-
sional finite map instead. For example, if we solve the equation
(Index n → Index n → elem) ≅ PMatrix n elem. We can obtain a two-dimensional



Two Dimensional Numerical Representations 3

numerical representation based on the same index type modelling square matri-
ces.

data PMatrix ∶ Peano → Set → Set where
empty ∶ PMatrix zero A
block ∶ A → Array n A → Array n A

→ PMatrix n A
→ PMatrix (succ n) A

3 Exploration of The Design Space

In this section we explore some of the common and likewise, less common number
systems with regards to two-dimensional representations. We highlight some
considerations and how they affect the resulting datastructures. Since we intend
to use the matrices within semiring frameworks, the main focus will be about
square matrices, however, sometimes it is necessary to drop that restriction.

3.1 Row vs Column Major vs Neutral

One immediate method of approaching the two-dimensional datastructures is
to model them as one-dimensional ones with their element types again being
one-dimensional datastructures. In other words, we can solve the equations as
follows

(Index m → (Index n → elem))
≅
(Index m → Array n elem)

≅
Array m (Array n elem)

Although this approach always works for any number system, This is es-
sentially the naive approach which still exists in some main stream languages
that models matrices as sequences of sequences. The fundamental issue with
this approach is the dimensional-bias. In essence, row or column major oper-
ations could be substantially more difficult depending on which dimension we
favor. One such operation which would be non-trivial under both schemes, row
or column-major, would be the matrix transpose. Moreover, if we are to respect
dimensional constraints, such approach is only possible in a dependent setting,
since we can control the size of the inner sequence w.r.t to the outer one using
size indices.

3.2 Empty row or column size

Yet another roadblock is the empty sequence. In the one dimensional case, that
is not an issue, since there is a single numerical value representing the size of the



4 M. Youssef

datastructure, however, For the two dimensions case, considering some type of
matrices indexed by its row and column dimensions, the types Matrix 0 n elem,
Matrix 0 n elem and Matrix 0 n elem are different, yet model the same thing, the
empty matrix. We can opt to use nested datatypes to do away with the indices
while respecting the dimensional constraints similar to how Okasaki describes
top down and bottom up matrices [4], however, nested datatypes are not always
easy to comprehend and work with, specially if we move to a two-dimensional
setting.

Furthermore, this is not always an issue as we have briefly mentioned before
that we are primarily interested in square matrices, however, as we demonstrate
later on, some representations of square block matrices require rectangular sub-
matrices.

One way out of that is to use number systems that don’t admit a zero rep-
resentation. This would typically work in most applications since the base case
of a block matrix is usually assumed to be a scalar in many applications.

For example, an adjusted index based on the Peano numerals would be the
following

data AtMost ∶ Peano → Set where
izero ∶ AtMost n
isucc ∶ AtMost n → AtMost (succ n)

We will stick to non-emptiness for the remainder of the paper unless otherwise
stated.

3.3 Common Number Systems

Peano First of, we start with Peano numerals. The one-dimensional structure
we get using the index scheme described in Section 3.2 is simply, a non-empty
vanilla list. Similarly, the two-dimensional counterpart is not so different, we
essentially get two constructors for representing scalars as well as non-trivial
2 + n × 2 + n matrices.

data AMatrix ∶ Peano → Set → Set where
scalar ∶ elem → AMatrix 0 elem
block ∶ elem → Array m elem → Array m elem

→ AMatrix m elem → AMatrix (succ m) elem

This simple and easy to work with datastructure suffices for a lot of applica-
tions, however, it is not necessarily the easiest when it comes to proofs.

Leibniz Leibniz numerals are essentially a unique binary representation as op-
posed to standard binary numerals that allow for leading zeros and suffer from
a non-unique representation.

data Leibniz ∶ Set where
𝟘b ∶ Leibniz



Two Dimensional Numerical Representations 5

_𝟙 ∶ Leibniz → Leibniz
_𝟚 ∶ Leibniz → Leibniz

The one-dimensional derivations of Leibniz numerals give us Braun trees or
one-two trees (a.k.a. lazy Braun trees) As Hinze and Swierstra have shown [2].
In principle, Leibniz numerals distinguish between even and odd lengths, this
translates to a duplicity of constructors in the corresponding datastructure. For
example, for Braun trees, we get three constructors. Likewise, if we derive Braun
matrices, we get nine constructors...

data BM ∶ Leibniz → Leibniz → Set → Set where
scalar ∶ e → BM 𝟘b 𝟘b e
column1 ∶ BM l 𝟘b e → BM l 𝟘b e → BM (l 𝟙) 𝟘b e
column2 ∶ BM (lsucc l) 𝟘b e → BM l 𝟘b e → BM (l 𝟚) 𝟘b e
row1 ∶ BM 𝟘b l e → BM 𝟘b l e → BM 𝟘b (l 𝟙) e
row2 ∶ BM 𝟘b (lsucc l) e → BM 𝟘b l e → BM 𝟘b (l 𝟚) e
block21 ∶ BM (lsucc l1) l2 e → BM (lsucc l1) l2 e
→ BM l1 l2 e → BM l1 l2 e
→ BM (l1 𝟚) (l2 𝟙) e

block12 ∶ BM l1 (lsucc l2) e → BM l1 l2 e
→ BM l1 (lsucc l2) e → BM l1 l2 e
→ BM (l1 𝟙) (l2 𝟚) e

block22 ∶ BM (lsucc l1) (lsucc l2) e → BM (lsucc l1) l2 e
→ BM l1 (lsucc l2) e → BM l1 l2 e
→ BM (l1 𝟚) (l2 𝟚) e

block11 ∶ BM l1 l2 e → BM l1 l2 e
→ BM l1 l2 e → BM l1 l2 e
→ BM (l1 𝟙) (l2 𝟙) e

In this case of Braun matrices, we can’t opt to have square matrices only
since some of the sub-matrices have dimensions differing by one.

Unfortunately, when it comes to Leibniz numerals, the duplicity scales up as
we add more dimensions. For example, scaling up to a third dimension or more
would cause an explosion in the number of cases with this implementation.

Moreover, implementing matrix multiplication for Braun matrices, which is
arguably the most important matrix operation, would require a whopping 27
cases.

One way to tackle this issue is instead of having a single datastructure with
all possibilities of splitting rows and columns, we can have two mutually recur-
sive data structures instead. This approach typically yields more constructors
in total, but less per each datastructure. We will do demonstrate the approach
with one of the examples that follow.

3.4 Implementations Based on Leaf Trees
Perhaps a less obvious numerical representation is the usage of tree number
systems, particularly, leaf trees. A basic implementation of such datastructure is



6 M. Youssef

described using two constructors, one for the leaf itself and another for a binary
split. We model such datastructure as follows.

data Shape ∶ Set where
O ∶ Shape
B ∶ Shape → Shape → Shape

fromShape ∶ Shape → Peano
fromShape O = succ zero
fromShape (B x y) = fromShape x + fromShape y

This datastructure suffers from non-uniqueness. This is however not neces-
sary a major issue as the point here is to have flexibility when splitting a matrix
into blocks. A non-unique representation allows for such flexibility. On the other
hand, the resulting data structures are typically not easy to work with or reason
about.

The index type corresponding to this number system is the following.

data SIndex ∶ Shape → Set where
one ∶ SIndex O
left ∶ SIndex l → SIndex (B l r)
right ∶ SIndex r → SIndex (B l r)

Surprisingly, this is the most common two-dimensional numerical base for
already existing block matrix datastructures. We cover some possible derivations
below.

Q Trees Eriksson and Jansson [5] used a representation of block matrices based
on leaf trees to model the transitive closure operation using semirings and other
similar algebraic structures. The datastructure they used is the following.

data M ∶ Shape → Shape → Set → Set where
scalar ∶ elem → M O O elem
row ∶ M O c1 elem → M O c2 elem → M O (B c1 c2) elem
column ∶ M r1 O elem → M r2 O elem → M (B r1 r2) O elem
block ∶ M r1 c1 elem → M r1 c2 elem →

M r2 c1 elem → M r2 c2 elem → M (B r1 r2) (B c1 c2) elem

This implementation is quite flexible, row-column neutral and easy to under-
stand, however, doing any non-trivial proof requires substantial effort.

KD-trees We have previously noted before that in the two-dimensional case,
the number of constructors can increase substantially and pointed out that one
way to tackle this is to use mutual recursion. If we apply this idea to leaf trees,
we get a datastructure similar to KD-trees, or 2D-trees in the two-dimension
case.



Two Dimensional Numerical Representations 7

data KDTreeR ∶ Shape → Shape → Set → Set
data KDTreeC ∶ Shape → Shape → Set → Set
data KDTreeR where

single ∶ elem → KDTreeR O O elem
split-col ∶ KDTreeR O c1 elem → KDTreeR O c2 elem
→ KDTreeR O (B c1 c2) elem

split-row ∶ KDTreeC r1 c elem → KDTreeC r2 c elem
→ KDTreeR (B r1 r2) c elem

data KDTreeC where
single ∶ elem → KDTreeC O O elem
split-row ∶ KDTreeC r1 O elem → KDTreeC r2 O elem
→ KDTreeC (B r1 r2) O elem

split-col ∶ KDTreeR r c1 elem → KDTreeR r c2 elem
→ KDTreeC r (B c1 c2) elem

Of course, the main idea of KD-Trees is to have sparsity. We can solve this
by adding additional constructors. For example, we can augment the row-biased
KD-Tree by a sparse constructor as a constructor sparse ∶ KDTreeR m n elem
and similarly, sparse ∶ KDTreeC m n elem for the column-biased one. We can
additionally mark the sparse constructors with additional information. For ex-
ample, we could wish to have an identity sparse matrix as well as a zero sparse
matrix zero ∶ KDTreeR m n elem and id ∶ KDTreeR m m elem and similarly,
zero ∶ KDTreeC m n elem and id ∶ KDTreeC m m elem.

This scheme for modelling sparsity in a datastructure is simple, easy to un-
derstand and always works, however, we quickly stumble upon a major issue...
Propositional equality no longer works. At this point we may consider sacrific-
ing the clarity of this simple method over a clever way of representing sparsity,
nevertheless, we will address this problem using a different approach at a later
point.

Multiway Split The leaf trees we have chosen are actually binary leaf trees.
Generally speaking, nothing is preventing us from having ternary or even a multi-
way split instead. If we opt for a multi-way splitm, we can derive a datastructure
which allows for an arbitrary splitting scheme. This is perhaps as flexible as
it gets. We can split a matrix into an arbitrary number of sub-matrices with
arbitrary sizes.

For example, we can model a number system using multiway leaf trees using
vanilla lists and derive a corresponding index type as follows.

data Array (A ∶ Set) ∶ Peano → Set where
nil ∶ Array A zero
cons ∶ A → Array A n → Array A (succ n)

data Shape ∶ Set where
M ∶ Array Shape n → Shape



8 M. Youssef

data SIndex ∶ Shape → Set where
leaf ∶ SIndex (M nil)
here ∶ SIndex x → SIndex (M (cons x xs))
next ∶ SIndex (M xs) → SIndex (M (cons x xs))

The corresponding one-dimensional datastructure would be the following

data SArr ∶ Shape → Set → Set where
leaf ∶ elem → SArr (M nil) elem
cons ∶ SArr x elem → SArr (M xs) elem → SArr (M (cons x xs)) elem

In general, the leaf tree scheme allows us to model the datastructure by its
structural shape. The multiway leaf tree scheme is the least restrictive where the
shape itself it some sequence type based on how we instantiate the Array type
used in the multi-way split.

2D derivation WIP

3.5 Skew Binary

The motivation behind using Skew binary is simple, for most implementations of
Block matrices, the proofs are typically quite technically involved without much
insight into the core logic of the proof itself. To clarify, the vast majority of the
proof effort goes towards navigating the structure of the matrices themselves
rather than making any profound logical arguments. One implementation of
square block matrices where proofs are free of structural hurdles is the perfectly
balanced variant. The core idea is that we can embed any squad matrix into a
perfectly balanced square matrix of a larger size, then, we can simply restrict any
equational reasoning to perfectly balanced square matrices. This setting requires
a type of block matrices which has two properties.

– Can easily model perfectly balanced matrix subtypes.
– Has an easy implementation of padding.

In terms of number systems, the first requirement begs for a binary number
system based approach. As for the second, we first elaborate that padding is just
the two-dimensional variant of the cons operation in lists. In terms of number
systems, this would be the increment operation. A numerical representation
based on Peano naturals would be a good choice here, however, a skew binary
implementation is the obvious choice which satisfies both requirements.

To start of, we need a datastructure for skew binary numbers. Ideally, canon-
ical skew binary numbers. Myers REFERENCE proved that a variant of skew
binary numbers that only admit the first non-zero numeral to be a 2 is unique.
The following datastructure captures that.

data Skew1 ∶ Set where
0 b ∶ Skew1

_𝟙_𝟘s ∶ Skew1 → Peano → Skew1



Two Dimensional Numerical Representations 9

data Skew ∶ Set where
0 b𝟘 ∶ Skew
_𝟙_𝟘s ∶ Skew1 → Peano → Skew
_𝟚_𝟘s ∶ Skew1 → Peano → Skew

⟦_,_⟧1 ∶ Skew1 → Peano → Peano
⟦ 0 b , n ⟧1 = zero
⟦ x 𝟙 m 𝟘s , n ⟧1 = 2 ↑ (n + m) ∸1 + ⟦ x , succ (n + m) ⟧1

⟦_⟧ ∶ Skew → Peano
⟦ 0 b𝟘 ⟧ = zero
⟦ x 𝟙 m 𝟘s ⟧ = 2 ↑ (succ m) ∸1 + ⟦ x , succ (succ m) ⟧1

⟦ x 𝟚 m 𝟘s ⟧ = 2 ↑ (succ (succ m)) ∸2 + ⟦ x , succ (succ m) ⟧1

The corresponding index type we get is the following.

data TreeIndex ∶ Peano → Set where
Node ∶ TreeIndex h
L ∶ TreeIndex h → TreeIndex (succ h)
R ∶ TreeIndex h → TreeIndex (succ h)

data SkewIndex1 ∶ Skew1 → Peano → Set where
single ∶ SkewIndex1 0 b n
node ∶ TreeIndex (succ (n + x)) → SkewIndex1 (l 𝟙 x 𝟘s) n
rest ∶ SkewIndex1 l (succ (n + x)) → SkewIndex1 (l 𝟙 x 𝟘s) n

data SkewIndex ∶ Skew → Set where
scalar ∶ SkewIndex 0 b𝟘
T1 ∶ TreeIndex n → SkewIndex (l 𝟙 n 𝟘s)
Ts1 ∶ SkewIndex1 l n → SkewIndex (l 𝟙 n 𝟘s)
T2 ∶ TreeIndex n → SkewIndex (l 𝟚 n 𝟘s)
T3 ∶ TreeIndex n → SkewIndex (l 𝟚 n 𝟘s)
Ts2 ∶ SkewIndex1 l n → SkewIndex (l 𝟚 n 𝟘s)

This is quite a lengthy index type, however, it clearly highlights Okasaki’s
description of a one-dimensional sequence type: a sequence of trees where the
possible sole 2 numeral might introduce two trees instead of 1, hence the duplicity
in SkewIndex and SkewIndex1.

The one-dimensional variant we get is the following.

data Tree ∶ Peano → Set → Set where
scalar ∶ elem → Tree zero elem
Node ∶ Tree h elem → elem → Tree h elem → Tree (succ h) elem

data SRAL1 ∶ Skew1 → Peano → Set → Set where
scalar ∶ elem
→ SRAL1 0 b n elem

Node-𝟙 ∶ Tree (succ (n + m)) elem → SRAL1 l (succ (n + m)) elem
→ SRAL1 (l 𝟙 m 𝟘s) n elem

data SRAL ∶ Skew → Set → Set where
scalar ∶ elem → SRAL 0 b𝟘 elem



10 M. Youssef

Node-𝟙 ∶ Tree n elem → SRAL1 l n elem → SRAL (l 𝟙 n 𝟘s) elem
Node-𝟚 ∶ Tree n elem → Tree n elem → SRAL1 l n elem → SRAL (l 𝟚 n 𝟘s) elem

The two-dimensional square representation is the following.

data QT ∶ Peano → Set → Set where
scalar ∶ e → QT zero e
block ∶ e
→ Tree m e → Tree m e → Tree m e → Tree m e
→ QT m e → QT m e → QT m e → QT m e
→ QT (succ m) e

data SM 1 ∶ Skew1 → Peano → Set → Set where
scalar ∶ e → SM 1 0 b m e
block ∶ QT (succ (m + x)) e

→ SRAL1 l (succ (m + x)) (Tree (succ (m + x)) e)
→ SRAL1 l (succ (m + x)) (Tree (succ (m + x)) e)
→ SM 1 l (succ (m + x)) e → SM 1 (l 𝟙 x 𝟘s) m e

data SM ∶ Skew → Set → Set where
scalar ∶ e → SM 0 b𝟘 e
block𝟙 ∶ QT m e

→ SRAL1 l m (Tree m e) → SRAL1 l m (Tree m e)
→ SM 1 l m e → SM (l 𝟙 m 𝟘s) e

block𝟚 ∶ QT m e → QT m e → QT m e → QT m e
→ SRAL1 l m (Tree m e) → SRAL1 l m (Tree m e)
→ SRAL1 l m (Tree m e) → SRAL1 l m (Tree m e)
→ SM 1 l m e → SM (l 𝟚 m 𝟘s) e

For some representations, we require the non-matching dimensions even if
the end goal is to model square matrices. This is due to the fact that matrix
multiplication sometimes recursively requires multiplying two matrices of non-
matching dimensions. This is not a problem that occurs with the skew binary
representation.

4 Minimizing Proof Effort

We have demonstrated a few representations of block matrices. Furthermore, as
we have already pointed out, doing proofs with block matrices are usually very
tedious in terms of the technical detail related to the structure of the matrix,
rather than the core logic of the proof. For example, even proving something as
profound as associativity of matrix multiplication would require dozens, if not a
few hundred lines in Agda with some of the implementations mentioned above.

4.1 Isolating Proofs

We have pointed out the perfectly balanced block matrices are free of the struc-
tural nuances. Intuitively, if we are using a semiring algebra or any of its exten-
sions. We can interpret the matrix as a graph, or perhaps an automaton. Most



Two Dimensional Numerical Representations 11

properties that we would want to prove in this setting would still hold regardless
of the fact that we could add a vertex without any edges in graph terms, or a
dead node in automata terms.

What we are really trying to demonstrate here, in part, is that padding
preserves matrix addition and multiplication.

pad m1 + pad m2 ≡ pad (m1 + m2)
pad m1 ∗ pad m2 ≡ pad (m1 ∗ m2)

To achieve embedding of matrices, we require a few lemmas

B→A ∶ B → A
A→B ∶ A → B
iso-fro ∶ A→B (B→A a) ≈B a
≈-compatible ∶ a ≈ b → (A→B a) ≈B (A→B b)
≈𝐵-compatible ∶ a ≈B b → (B→A a) ≈ (B→A b)
embed-𝐼 ∶ B→A I B ≈ I
embed-+ ∶ B→A (a +B b) ≈ (B→A a + B→A b)
embed-∙ ∶ B→A (a ∙B b) ≈ (B→A a ∙ B→A b)

A and B can be any type in general as long as they satisfy the requirements,
however, for the task at hand, A is the type of square matrices of size 1 + n,
and B is the type of matrices of size n. ≈B and ≈ are equivalence relations over
both types. Similarly, for the task at hand, they would be the same equivalence
relation on matrices.

We can then prove that the reverse morphism B→A is an algebra homomor-
phism over the following expression signature.

data KExpr (Carrier ∶ Set) ∶ Set where
_a ∶ (a ∶ Carrier) → KExpr Carrier
I s ∶ KExpr Carrier
_ +s _ ∶ KExpr Carrier → KExpr Carrier → KExpr Carrier
_ ∙s _ ∶ KExpr Carrier → KExpr Carrier → KExpr Carrier

B→A-homo ∶ ∀ {x } → B→A (algB x) ≈ algA (fmap B→A x)
B→A-homo {atom a } = �-reflexive
B→A-homo {I s } = embed-𝐼
B→A-homo {e1 +s e2 } =

�-transitive embed-+ (+-congruent
(B→A-homo {x = e1 })
(B→A-homo {x = e2 }))

B→A-homo {e1 ∙s e2 } =
�-transitive embed-∙ (∙-congruent
(B→A-homo {x = e1 })
(B→A-homo {x = e2 }))



12 M. Youssef

It can be shown that Expr is a functor and algA and algB are evaluation
functions over Expr . The following proposition transfers equational proofs over
the two types.

↑AB ∶ ∀ {s1 s2 ∶ Expr B }
→ algA (fmap B→A s1) ≈ algA (fmap B→A s2)
→ algB s1 ≈B algB s2

↑AB {a } {b } algA[fmap_B → A_a] ≈ algA[fmap_B → A_a] =
algB a

≈ ⟨ ≈B −symmetric iso-fro ⟩
A→B (B→A (algB a))

≈ ⟨ ≈-compatible (B→A-homo {x = a }) ⟩
A→B (algA (fmap B→A a))

≈ ⟨ ≈-compatible algA[fmap_B → A_a] ≈ algA[fmap_B → A_a] ⟩
A→B (algA (fmap B→A b))

≈ ⟨ ≈-compatible (�-symmetric (B→A-homo {x = b })) ⟩
A→B (B→A (algB b))

≈ ⟨ iso-fro ⟩
algB b

∎

Obtaining a proof of matrix associativity for example would be the following
expression

↑AB {(a a ∙s b a) ∙s c a } {a a ∙s (b a ∙s c a)} ∙-associative

What remains is to instantiate this framework accordingly. The equivalence
relation can be instantiated by propositional equality or another custom equiva-
lence relation depending on our requirements. We instantiate A, B and the two
morphisms as follows.

A = SM (inc s) elem
B = SM s elem
B→A = pad
A→B = trim

pad and trim are the two-dimensional variants of cons and tail For cons,
we pad the matrix by the identity of multiplication precisely at M00 and the
identity of addition at M0i and Mi0.

What remains is to define pad, trim and prove that they satisfy the require-
ments mentioned before.

WIP

4.2 Sparse Matrices

TODO: Sparse matrices quotient types.



Two Dimensional Numerical Representations 13

5 Conclusion

We have demonstrated various two-dimensional numerical representations and
argued about them in the context of semiring frameworks. We set out to find
an implementation that is ideally easy to understand and work with, as well as
being easy to reason about. Furthermore, we minimized proof effort by exploiting
the convenient properties of a perfectly balanced block matrix. Additionally, we
have shown how to tackle sparsity in an easy and convenient way.

References

1. Hinze, R.: Manufacturing datatypes. J. Funct. Program. 11, 493–524 (09 2001).
https://doi.org/10.1017/S095679680100404X

2. Hinze, R., Swierstra, W.: Calculating datastructures. In: Komendantskaya, E. (ed.)
Mathematics of Program Construction. pp. 62–101. Springer International Publish-
ing, Cham (2022)

3. Okasaki, C.: Purely functional data structures. Cambridge University Press, USA
(1998)

4. Okasaki, C.: From fast exponentiation to square matrices: an adventure in
types. In: Proceedings of the Fourth ACM SIGPLAN International Conference
on Functional Programming. p. 28–35. ICFP ’99, Association for Computing
Machinery, New York, NY, USA (1999). https://doi.org/10.1145/317636.317781,
https://doi.org/10.1145/317636.317781

5. Sandberg Eriksson, A., Jansson, P.: An agda formalisation of the transitive closure
of block matrices (extended abstract). In: Proceedings of the 1st International Work-
shop on Type-Driven Development. p. 60–61. TyDe 2016, Association for Computing
Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976022.2976025,
https://doi.org/10.1145/2976022.2976025


