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Abstract. The development of propositional logics for quantitative met-
ric reasoning is a well established area of research. However, it remains
uncertain how to develop semantics for first-order logics that maintain
strong guarantees. A promising approach is to interpret quantifiers as
expected values on Lp-spaces. In this on-going project, we explore how
to formalize semantics for first-order quantitative logics using the Math-
ematical Components library in the Coq proof assistant. With this for-
malization, we seek to give strong semantics for quantifiers, verify their
behavior with respect to other logical connectives, as well as prove the
soundness and completeness of the resulting logics.

Keywords: Programming Languages · Machine Learning · Loss Functions ·
Differentiable Logics · Interactive Theorem Proving.

1 Motivation

Quantitative logics, i.e. logics that have semantic interpretations into interval
domains instead of the Boolean {0, 1} have been studied for decades, and date
back to the ideas of Kleene, Gödel and Lukasievicz at the start of the 20th
century [15]. Fuzzy logics [15], and the logics of Lawvere quantale [15, 4, 10] are
important examples of quantitative logics. To illustrate, let us have a toy syntax
with atomic propositions and conjunction, such that

Φ ∋ ϕ := A |ϕ ∧ ϕ (1)

Where A is interpreted in a domain D ∈ R ∪ {−∞,∞}. D varies among logics
and restricts the interpretation of connectives. For example, the Gödel logic has
an interpretation on [0, 1] with conjunctions interpreted as min.

Recently, there was a surge of interest in quantitative logics, stimulated by
the growing interest in safer machine learning [8]. Generally, it is considered
⋆⋆ Funded by the Advanced Research + Invention Agency (ARIA)
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to be desirable to be able to use machine learning algorithms in a way that
imposes certain logical specifications during training [14, 18]. Quantitative logics
have been shown to effectively translate arbitrary logical specifications into real-
valued functions. Such functions in turn can be used as loss functions in standard
gradient-descent algorithms. It has been shown that such specification-driven
loss functions help to improve the adherence of the resulting neural networks to
specifications [11].

Nevertheless, there is one fundamental problem that quantitative logics face
in this domain. Many specifications of interest for machine learning are first-
order, yet the majority of quantitative logic results concern propositional syntax
[16, 15, 4]. Generalising some sound and complete propositional fuzzy logics to
first-order logic often comes at a cost of either completeness or function continu-
ity. For example, among several known fuzzy logics [16, 15], the only first-order
extension that is sound and complete involves the Gödel logic, that interprets
conjunction as a min, disjunction as a max, and universal and existential quan-
tifiers via an infimum and supremum [3]. However, connectives of this logic are
not continuous and therefore not suitable for gradient-descent algorithms.

Recently, a promising solution was proposed by Capucci, interpreting quanti-
fiers as p-means [6], a generalization of p-norms over a probability space [5]. This
new semantics gives hope that the open problem of finding a suitable approach
to quantification in quantitative logics will soon find its resolution, and we can
soon find a logic that is sound and complete relative to this new quantitative
semantics.

It has been shown that verifying soundness and continuity of quantitative
logics results in laborious proofs that are prone error [7, 16, 1]. To overcome
these challenges, rigorous computer formalizations of propositional semantics
for quantitative logics have been proposed [1]. Extending these formalizations
to first-order logics is a non trivial challenge that is yet to be overcome. In par-
ticular, the new semantics proposed by Capucci presents a particular challenge
for formal verification, since, unlike the previous formalizations of quantitative
logics [1], it now also involves results from real analysis and probability. Most
notably, it involves formalisation of measure spaces, probability spaces, Lebsegue
integrals, as well as the use of results such as Jensen’s and Hölder’s inequalities
[13].

Coq’s Mathematical Components library (MathComp) [17], is a particularly
good fit for this task, due to its extensive mathematical libraries. Many of the
above mentioned standard, but by no means trivial, results from the measure
theory are formalized in the librarie’s modules on algebra and analysis. Yet some,
like the encoding of extended real numbers, still require further development.

In this extended abstract, we introduce the mathematical definitions under-
lying the novel approach to quantification proposed by Capucci in [6], explain
its relation to the available mathematical libraries in Coq, and report on our
current work on formalizing the novel semantics. With this formalization, we
will contribute towards developing the semantics for quantifiers in quantitative
logics. Tangentially, we will extend MathCompas necessary. In the long term,
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this formalization is expected to become part of a larger collaborative project
[2], that develops the novel first-order quantitative logic, and provides its full for-
malization in Coq, including the formalisation of the soundness and completeness
results for the logic.

2 Preliminaries

Here we introduce some useful concepts from measure theory. After some basic
definitions, we introduce the geometric mean, as well as the essential supremum
and infimum. We then use these definitions to define the p-mean, and lastly
introduce the dual operator [6], which will be present in the logical semantics.

The following definitions of measurable functions, measure and probability
spaces, as well as Lebesgue integral are standard [9] and already form part of
the analysis module of MathComp[17].

Definition 1 (Measurable Space. Measurable Function). Let S1, S2 be
sets and S1,S2 be σ-algebras. The pairs (S1,S1) and (S2,S2) are measurable
spaces.
f : S1 → S2 is a measurable function if and only if for every E ∈ S2 the
pre-image of E under f is in S1. That is, for all E ∈ S2

f−1(E) = {x ∈ S1 | f(x) ∈ E} ∈ S1 (2)

Definition 2 (Measure. Measure Space). Let S be a set and S be a σ-
algebra over S. A measure on (S,S) is a function µ : S → [0,∞] that satisfies

1. µ(∅) = 0
2. if {Ai : i ∈ I} is a countable, pairwise disjoint collection of sets in S then

µ

(⋃
i∈I

Ai

)
=
∑
i∈I

µ(Ai) (3)

The triple (S,S, µ) is a measure space.

Definition 3 (Probability Space. Random Variable). Let (S,S,P) be a
measure space. If P(S) = 1, then (S,S,P) is a probability space. A random
variable with values in T is a measurable function X : S → T .

Definition 4 (Simple Function. Lebesgue Integral). Let (S,S) be a mea-
surable space, I a finite index set, ai ∈ R for each i ∈ I and {Ai : i ∈ I}
a collection of sets in S that partition S. Then f =

∑
i∈I ai1Ai

is a simple
function.
If µ is a measure of (S,S) then:

1. If f =
∑

i∈I ai1Ai
is a nonnegative simple function. The Lebesgue integral

of f is ∫
S

f dµ =
∑
i∈I

aiµ(Ai) (4)
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2. If f : S → [0,∞] is a measurable function. The Lebesgue integral of f is∫
S

f dµ = sup

{∫
S

g dµ : g is simple and 0 ≤ g ≤ f

}
(5)

3. If f : S → R ∪ {−∞,∞} is a measurable function.
The Lebesgue integral of f is∫

S

f dµ =

∫
S

max(f, 0) dµ−
∫
S

max(−f, 0) dµ (6)

Assuming at least one of the integrals on the right is finite.

The following definitions relate specifically to the new quantifier semantics and
already form a part of our new Coq development.

Definition 5 (Geometric Mean). Let f : S → R∪{−∞,∞} be a measurable
function and (S,S, µ) a measure space. The geometric mean of f is

GM [f ] = exp

(
1

µ(S)

∫
S

ln |f |dµ
)

(7)

Definition 6 (Essential Supremum. Essential Infimum). Let (S,S, µ) be
a measure space, A ∈ S and f : S → R ∪ {−∞,∞} a measurable function.

1. Let U = {a ∈ R ∪ {−∞,∞} : µ({x ∈ X : a < f(x)}) = 0} and inf(U) be the
infimum of U. The essential supremum of f is

ess sup (f) = if U ̸= ∅ then inf(U) else ∞ (8)

2. The essential infimum of f is

ess inf (f) = − ess sup (−f) (9)

Definition 7 (P-mean). Let p be a real number, (S,S,P) a probability space
and f : S → R ∪ {−∞,∞} be a measurable function. The p -mean of f is

⟨f⟩S,p =


GM [f ] p = 0(∫

S
|f |pdP

)1/p −∞ < p <∞, p ̸= 0

ess sup (|f |) p = ∞
ess inf (|f |) p = −∞

When S can be inferred from the context, we write ⟨f⟩p.

Definition 8 (Dual Operator). Let a ∈ [0,∞]. Then the duality of a is

a∗ =


1/a a ∈ (0,∞)

∞ a = 0

0 a = ∞
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3 Proposed Semantics

We will introduce the main ideas for first-order quantitative logics through a
toy example, following closely [6]. We begin by defining a small formal language.
Let every probability space (S,S,P), simply denoted as S, be a context of the
language Φ(S). Let s, s′ ∈ S be either variables or constants, and A(s) ∈ A be
an atomic proposition. Let us have negation and disjunction, as well as universal
and existential quantifiers.

Φ(S) ∋ ϕ(s) :=

A(s) | ¬ϕ(s)
|ϕ(s) ∨ ϕ(s)
| ∀p(j ∈ J).ψ(s, j)

| ∃p(j ∈ J).ψ(s, j)

(10)

Where p ∈ [0,∞] and ψ ∈ Φ(S × J), for J another context.

We also derive implication as ϕ1(s) → ϕ1(s) := ¬ϕ1(s)∨ϕ2(s). Assuming an ora-
cle translates A(s) into a value in [0,∞], the translation function J·K : Φ→ [0,∞]
is defined as follows:

J¬ϕ(s)K := Jϕ(s)K ∗

Jϕ1(s) ∨ ϕ2(s)K := Jϕ(s)KJϕ(s)K
J∀p(j ∈ J).ψ(s, j)K := ⟨λj.Jψ(s, j)K⟩J,−p

J∃p(j ∈ J).ψ(s, j)K := ⟨λj.Jψ(s, j)K⟩J,p

(11)

This gives us a family of quantifiers parametrized by p. Note we can view the
previous translations as random variables. That is, for any ϕ(s) ∈ Φ(S) there
exists a measurable function f : S → [0,∞] such that

JϕK := λs.Jϕ(s)K = f (12)

As an example of the utility of these semantics, we can use them to construct
the softmax operator, used in machine learning to turn a vector of real numbers
into a probability distribution [12]. Let f : S → [0,∞] be a measurable function
such that JϕK = f for some ϕ(s) ∈ Φ(S). Then the softmax of f is the function

softmax(f)(x) :=
f(x)∫
S
fdP

= J∀1(s ∈ S).(ϕ(s) → ϕ(x))K (13)

4 Work in progress on the Coq formalization

In “Taming Differentiable Logics with Coq Formalisation” a formalization for sev-
eral quantitative logics was developed [1]. We seek to expand this formalization
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so it is suitable for reasoning about first-order quantitative logics, with p-means
as the semantics for quantifiers. So far, p-means have been encoded as follows:
Definition geo_mean P f :=

expeR (\int[P]_x lne (f x)).

Definition ess_supe f :=
ereal_inf ([set r | mu ([set x | r < f x]) = 0]).

Definition ess_infe f := - ess_supe (\- f).

Definition Pmean P p f :=
match p with
| p%:E =>

if p == 0 then geo_mean P f
else (\int[P]_x `|f x| `^ p) `^ p^-1

| +oo => ess_supe P (abse \o f)
| -oo => ess_infe P (abse \o f)
end.

Which corresponds to definition 7. Here the encodings of the geometric mean
and the essential infimum are novel, while the encodings of the p-mean and
the essential supremum are extensions of previous implementations able to take
functions that go to extended reals.

In the machine learning community there is a general consensus on the desir-
able properties of loss functions - convexity or continuity are widely considered
desirable [14]. From a logic perspective, there is no consensus as to how to define
soundness for quantitative logics. In the future, we intend to follow the general
approach applied by Ślusarz et al. That is, for a typed FOL, take provable FOL
formulae to characterize the set of true FOL formulae [16]. Moreover, Varnai and
Dimarogonas suggest characterizing quantitative logics in terms of their geomet-
ric properties, valuable for optimization tasks [18]. As for quantifiers, Currently
we are working to formalize and prove the following properties in Coq, which
were presented by Capucci [6].

Lemma 1 (Properties of Quantifiers). Let (S,S,P) be a probability space,
p ∈ R ∪ {−∞,∞} and f : S → R ∪ {−∞,∞} a measurable function. Then

1. ⟨f⟩1 equals the expected value of f .

2. ⟨f⟩−p = ⟨f ∗⟩ ∗p

This implies J∀p(j ∈ J).ψ(s, j)K = J¬∃p(j ∈ J).¬ψ(s, j)K.

3. Let a ∈ [0,∞], then ⟨af ∗⟩−p = a(⟨f⟩p) ∗

This implies J∀p(j ∈ J).(ψ(s, j) → ϕ(s))K = J(∃p(j ∈ J).ψ(s, j)) → ϕ(s)K.
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4. Let a ∈ [0,∞], then a⟨f⟩p = ⟨af⟩p

This implies Jϕ(s) → ∀p(j ∈ J).ψ(s, j)K = J(∀p(j ∈ J).(ϕ(s) → ψ(s, j))K.

5. Let g : S → R ∪ {−∞,∞} be a measurable function such that g ≤ f , then
⟨g⟩p ≤ ⟨f⟩p.

6. Let A ⊆ S then ⟨f |A⟩A,p ≤ ⟨f |S⟩S,p. Where f |A is f bounded to A.

7. ⟨f⟩p is continuous in p.

8. If 0 ̸= f or p ̸= 0 , then ⟨f⟩p is monotonic increasing in p.

9. limp→∞⟨f⟩p = ⟨f⟩∞

10. limp→−∞⟨f⟩p = ⟨f⟩−∞

Note, item 8 , item 9 and item 10 together imply that quantifiers are bounded
by the essential infimum and supremum of the input function. This gives the
interpretation a certain independence from the size of the domain.

In order to prove these properties in Coq, we are currently working on ex-
tending the analysis module of MathComp. In particular, Hölder’s inequalities
must be generalized to functions that go to the extended reals. In this process,
a bug in the encoding of the power function was found and is being corrected.

5 Conclusions

In this extended abstract we described our work in progress. We presented the
main ideas behind quantitative logics and explained their use in machine learn-
ing. We presented a promising translation for bounded quantifiers and introduced
some desirable properties for this translation, following closely [6]. We argued
for the usefulness of a computer formalization to tackle this challenge. Lastly,
we presented some preliminary progress in formalization of these results in Coq.
The main author is a first year PhD student.
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