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1 Introduction

Modern software is continuously maintained and refactored. But as code bases
grow, manually maintaining and refactoring code becomes challenging. An at-
tractive solution to this problem is to automatically refactor code, using auto-
mated transformation tools. For example, modern IDEs provide built-in support
for common refactorings; and dedicated transformation languages offer semantic
pattern matching capabilities [5, 6, 19].

Such automated transformation tools should ideally provide correctness guar-
antees, such as guaranteeing program well-boundness and well-typedness. How-
ever, such guarantees are rare. The binding model used by automated trans-
formation tools is rarely specified, and many tools are known to not preserve
program well-boundness and well-typedness. For code bases where it is crucial
that transformations only alter code in well-defined ways, and where fixing type
errors throughout a large code base is untenable, this is unsatisfactory.

It is theoretically well-understood how to verify that transformations preserve
well-typedness in languages with lexical scoping (e.g., lambda- and let-binding).
The problem is that modern languages generally provide features for “program-
ming in the large” that have a non-lexical scoping ; e.g., modules, classes, traits,
etc. The binding model behind such features is less commonly formalized.

By lexical scoping, we understand a name resolution semantics where names
resolve to bindings that are lexical parents of the name in the AST; e.g.:

λx. 1 + x

•

λx

+

1 x

Modules or classes have non-lexical scoping since they typically resolve names
to bindings that may not be lexical parents of the name in the AST; e.g.:
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module A {
def d = 2

}
module B {
import A
def c = d

}

•

module A

def d

2

module B

import A

def c

d

In this extended abstract, we propose a type-theoretic framework for defining
and verifying type-safe automated transformations for languages with non-lexical
binding. Our approach is based on the observation that type- and binding-
preserving transformations require fine-grained information about the scoping
structure that each AST node constructs, and about which other nodes rely on
that scoping structure. Based on this observation, we present an approach to
defining typing rules that precisely characterize the scoping structure that each
AST node in a program constructs and relies on.

This extended abstract gives an overview of the approach, the type system
of a core calculus for a language with modules and a functional core that uses
it, and describes a type-safe renaming transformation that avoids name capture
by synthesizing minimal qualifiers for affected names. For example, consider
the program with two modules, X and Y , in fig. 1. Say we want to rename
the definition of r to s in module X (left). Naively applying this renaming in
module Y (right) would rename r to s in the right-hand side of def t. However,
this causes name capture: the def s in Y shadows the renamed definition in
X. A better solution is to rename and qualify named references to avoid name
capture, as shown in fig. 2. We call X.s a qualified name, with X being the
qualifier of the name s. The qualifier X is minimal since it is the least qualifier
that preserves the name binding semantics of the original program. A selling
point of our framework is that it provides a semantics of such least qualification.

The name capture discussed above could also be avoided by renaming the
def s in Y to some other name. This approach is taken by, e.g., name-fix [2].
However, since names communicate intent, it is desirable that renaming trans-
formations preserve existing names insofar as possible. The renaming transfor-
mation we consider renames and resolves name capture conflicts by synthesizing
minimal qualifiers, when possible.

module X {
def r = 3

}

module Y {
import X
def s = 4
def t = r

}

Fig. 1. An example program with two modules, X (left) and Y (right)



Towards a Theory of Type-Safe Renaming and Refactoring 3

module X {
def s = 3

}

module Y {
import X
def s = 4

def t = X.s
}

Fig. 2. A renamed version of the program from fig. 1

The techniques we explore in this extended abstract are conceptually based
on scope graphs [1, 10, 13], with some adaptations. Our contributions are:

– A type and scope discipline for non-lexical name binding, which lets us reason
about and verify type- and binding-preserving transformations. We demon-
strate the approach on a module language with a functional core.

– A safe-by-construction renaming transformation based on the approach.

The paper is structured as follows. Section 2 gives an overview of our approach,
which we present formally in section 3. Then, in section 4 we present a type-safe
renaming transformation. Section 5 describes related work.

2 Overview: Representing and Transforming Name
Binding

Our approach relies on a binding model that precisely characterizes the scoping
structure that each AST node constructs and relies on. For languages with non-
lexical scoping, this structure typically forms a graph–i.e., a scope graph [1, 10,
13]. This section illustrates how, and illustrates their use for type-safe renaming.
Our notion of scope graph is based on existing work, with some adaptations that
we describe in this section.

2.1 Scope Graph of an Example Program with Modules

Figure 3 shows the scoping structure of the program from fig. 1. The nodes in
the graph represent scopes: • is the root scope, 0 is the scope of module X, 1 of
module Y , and 2, 3, 4 are the scopes of each definition in the program.

Names are resolved by traversing (labeled) edges in the graph. For example,
the dotted edges in fig. 3 represent a resolution path; i.e., a witness that the
name r in the right-hand side of def t in fig. 1 resolves to the binding in module
Y along the edge sequence 4-1-0-2.

Each edge in the graph encodes a scoping reachability relation. Unlabeled
edges represent lexical parent relationships: 0 and 1 are lexical children of the
root scope, and the definition sub-scopes (2, 3, and 4) are lexical children of the
module scopes they reside in. The direction of the unlabeled arrows encodes that
bindings in lexical parent scopes can be reached from lexical child scopes (but
not necessarily the other way around).
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The mod X and mod Y edges in the graph represent the declarations of
the two modules in the root scope. Each of these edges connect the root scope
to a module scope, such that bindings in module scopes can be reached from the
root scope via the declared name of the module.

The r, s, t : Int edges represent bindings of names of type Int, corresponding
to the members of each module scope.

2.2 Name Reachability and Visibility

In the scope graph in fig. 3, scopes can be reached reachable via multiple different
paths. Only some of these paths are semantically well-formed. Furthermore,
paths are ordered, and only the least paths are visible; other paths are shadowed.

Reachability and Path Well-Formedness Following existing work on scope
graphs, we define well-formed paths using a regular expression over path labels.
However, whereas existing work encodes bindings as data associated with nodes
in the graph, our notion of scope graph encodes bindings in labels. For that
reason, we augment our notion of regular expression to incorporate existential
quantification. Using this, a well-formed path in our module language is a path
that satisfies the following regular expression, for some name x and type T :

lex∗ · imp? · (∃X.mod X)∗ · (x : T )

Here lex represents lexical (i.e., unlabeled) edges in the graph. Thus the regular
expression says that a well-formed path may follow a sequence of lexical parent
edges, followed by at most one import edge, followed by a series of module edges
(representing qualifiers), followed by a binder. For example, the path 4-1-0-2
in fig. 3 is well-formed according to this regular expression, whereas the path
4-1-•-1-0-2 is not because it follows an imp edge after a mod edge.

While the examples discussed so far have not contained nested modules, our
module language allows modules to be nested. For example, in the program with

•

0 1

2 3 4

r

m
od
X

m
od
Y

imp

r
: I
nt

s
: I
nt

t : Int

Fig. 3. Scoping structure of example program from fig. 1
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module A {
module B {

def x = 42
}

}
def y = A.B.x

•

0 1

2

3

A.B.x

m
od
A y

: Int

m
od
B

x
: I
nt

Fig. 4. An example program with nested modules and its scope graph

•

0 1

2 3 4

s

m
od
X

m
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Y

imp

s
: I
nt

s
: I
nt

t : Int

Fig. 5. Scoping structure of example program from fig. 1 with r naively renamed to s

nested modules in fig. 4 we can reach x from the root scope via the qualifier A.B
and the dotted path shown in the scope graph.

Path Ordering and Visibility Programs may have multiple well-formed paths
that resolve to different binders. For example, fig. 5 shows the scope graph of the
program from fig. 1 where we have renamed def r to s and naively substituted
the name r by s in the right-hand side of def t. In this scope graph, there are
multiple valid resolution paths for s, such as the paths shown in the figure: 4-1-
0-2 and 4-1-3. In this case, we must decide which path is preferred; i.e., which
path is visible. To this end, we use the following partial path order. We prefer
names with fewer qualifiers. In case of names with the same number of qualifiers,
we prefer names from imports over names from the lexical context, as given by
the following path ordering. Let p and p′ be the path prefixes of the paths that
lead to two (qualified) names with an equal number of qualifiers. The path p is
shorter than p′ if (a) the labels of p is a prefix of the labels of p′; or (b) the labels
of p and p′ have a common prefix up until a step where p follows an import edge
and p′ follows a lexical parent edge.
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Comparing the two paths shown in fig. 2 using this path order, the path 4-1-3
is shorter, since the path prefix 4-1 is a prefix of 4-1-0.

2.3 Renaming Transformation

Let us now turn to the question of how to specify and implement the renaming
transformation illustrated in fig. 2. Informally, for a transformation that renames
a definition x : T to y : T , we approach this question as follows:

(I) Relabel the x : T edge in the graph with y : T instead.
(II) Identify potentially affected paths in the original program; e.g., paths whose

final step is an x : T edge or a y : T ′ edge, for some T ′.
(III) For each potentially affected name identified in step (II), check if there exists

a new least path in the relabeled graph from the source to the target scope.
These recomputed least paths correspond to the least qualified names that
preserve the binding semantics of the original program.

Applying these steps to fig. 5, we identify the path 4-1-3 in step (II) as potentially-
affected. Then, in step (III), we find the new least path that leads to scope 2,
namely 4-1-•-0-2. This path corresponds to the qualified name X.s.

This illustrates our approach to modeling name binding and typing for both
lexical and non-lexical scoping. That leaves the question of how this model arises
and relates to programs. We tackle this question next.

3 A Module Calculus and its Type and Scope Discipline

This section presents a type and scope discipline for a module calculus.

3.1 Scope Graphs and Fragments

Scope graphs and fragments are triples ⟨ζ; ϵ;ψ⟩ where ζ is a set of scopes, ϵ a
set of labeled edges between scopes in ζ, and ψ a set of paths that follow labeled
edges in ϵ. A scope fragment is a subset of the nodes, edges, and paths in a scope
graph. The scope graph of a program is given by the (disjoint) union of the scope
fragments each AST node constructs. The typing rules of the module calculus
we discuss in section 3.2 witness what scope fragments each AST node and its
children construct, using the following notion of typing:

G︸︷︷︸
Scope graph of
entire program

⊢ e︸︷︷︸
AST node (e.g.,

expression)
being typed

: T︸︷︷︸
Type

⊣ F︸︷︷︸
Scope fragment

that e constructs
and relies on

Figure 6 defines the syntax of scope graphs and fragments. The figure uses
the notational conventions discussed below. We consider scope graphs with only
integer- and function types, and with the labels we discussed in section 2. Besides
the meta-variables ζ, ϵ, and ψ discussed already, ℓ ranges over labels, w over
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T : Type ::= Int | T → T s : Scope ζ : Scopes ::= s

ℓ : Label ::= x : T | mod X | imp | lex ϵ : Edges ::= s
ℓ

_ s w : Word ::= ℓ

R : RegEx ::= ℓ | R∗ | R ·R | R+R | ∃x.R p : Path ::= ϵ · s ψ : Paths ::= p

F,G : Fragment ::= ⟨ζ; ϵ;ψ⟩

Fig. 6. Syntax of scope graphs

WF-Path-Empty

ϵ ⊢ [] · s : s []−→ s

WF-Path-Step
s1

ℓ
_ s2 ∈ ϵ ϵ ⊢ ϵp · s3 : s2

w−→ s3

ϵ ⊢ (s1
ℓ

_ s2, ϵp) · s3 : s1
ℓ,w−−→ s3

WF-Fragment
ζ′ ⊆ ζ ϵ′ ⊆ ϵ ψ′ ⊆ ψ(

∀(s1
ℓ

_ s2) ∈ ϵ′. s1 ∈ ζ ∧ s2 ∈ ζ

) (
∀p ∈ ψ′. ϵ ⊢ p : src p

word p−−−→ tgt p
)

⟨ζ; ϵ;ψ⟩ ⊨ ⟨ζ′; ϵ′;ψ′⟩

Fig. 7. Well-formed paths and well-formed fragments

words given by a sequence of labels, R over regular expressions augmented with
existential quantification, p over paths given by a target scope and a sequence of
edges, and F and G over fragments. By convention, we use G for scope graphs
(i.e., the disjoint union of all fragments that a program constructs), and F for
scope fragments.

Figure 7 characterizes well-formed paths and fragments. A well-formed path
is a sequence of connected edges. A well-formed fragment is a sub-part of the
scope graph where each fragment edge connects scopes in the graph and each
fragment path is well-formed. The projection functions src, tgt, and word in
WF-Fragment are for the source scope, target scope, and label sequence of a
path. Path ordering is defined in appendix B.

Notational Conventions. Here and throughout, we use x to represent a sequence
of xes. ‘,’ appends sequences and [] is the empty sequence. We overload notation
and write x1, x2 for the sequence with x1 prepended to x2, and x1, x2 for x2
appended to x1. [x] is the singleton sequence, [x, y] two-element sequences, etc.
x⊔y represents a disjoint union of two sequences. That is, x⊔y is a permutation
of x, y where no two elements in x and y are identical.



8 Bach, Miljak, and Corvino

3.2 Syntax and Typing Rules of a Module Calculus

The syntax of our module calculus is:

a : AExpr ::= es

e : Expr ::= n | ρ | a a | λx. a
m : ADecl ::= ds

d : Decl ::= def x : T = a | mod X { m } | import ρ

ρ : ARef ::= rp

r : Ref ::= r.x | x
P : Prog ::= m

AST nodes are annotated with scope information such that we can distinguish
and match on specific AST nodes. The transformation in section 4 exploits this.

The typing rules of our module calculus are provided in appendix A, fig. 8.
We assume the existence of a type checker that produces the annotated ASTs in
a way that respects these typing rules.

4 Type-Safe Renaming and Qualification

The type and scope discipline from section 3 lets us characterize safe renamings.

Definition 1 (Least path). A path is least when no other paths are lesser.

(∀p′. ϵ ⊢ p′ : src p′ word p′

−−−−→ tgt p′ =⇒ p ≤ p′)

ϵ ⊢ least p

Definition 2 (Safe renaming). Renaming a binder x : T to y : T is safe for
a program with scope graph G = ⟨ζ; ϵ;ψ⟩ when there exists a scope s, a function
f : Path → Path, and a graph G′ = ⟨ζ; ϵ′;ψ′⟩ for which the following holds:

ϵ = ϵ1 ⊔ s′
x:T
_ s ϵ′ = ϵ1 ⊔ s′

y:T
_ s∀p ∈ ψ.

src p = src (f p) ∧ tgt p = tgt (f p) ∧
ϵ′ ⊢ f p : src (f p)

word (f p)−−−−−−→ tgt (f p) ∧ ϵ′ ⊢ least (f p)


ψ′ = map f ψ

⟨ζ; ϵ;ψ⟩; f ;xs ⇝ y : T ; ⟨ζ; ϵ′;ψ′⟩

The first two premises in definition 2 say that the edges in the graph before
and after are the same, except for the renamed binder edge. The second premise
says that the mapping f preserves source- and target scopes and yields least
paths in the new graph. The final premise says that ψ′ contains the same paths
as ψ but with f applied to each.
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Using this, we can define a renaming function, whose definition we elide for
brevity, with the following type:

rename : (Path → Path)︸ ︷︷ ︸
Mapping paths in old
to paths in new graph

→ Name → Scope︸ ︷︷ ︸
Identifies binder

to rename

→ Name︸ ︷︷ ︸
New
name

→ Prog → Prog

Conjecture 1. If a renaming is safe, then the rename transformation preserves
program well-typedness.

G; f ;xs ⇝ y : T ;G′ ∧ G ⊢ P =⇒ G′ ⊢ rename f x s y P

Proof. We expect the proof to be straightforward. Verifying this is future work.

A prerequisite for definition 2 is the existence of a function that maps paths
in the graph before to least paths in the graph after. A naive approach to con-
structing this function could be to re-resolve (i.e., recompute) all paths in the
graph. More precise approaches could only re-resolve those paths for which it
is necessary, such that we do not re-resolve paths that are guaranteed to be
unchanged. For example, paths that resolve to entirely different names from the
ones affected by the renaming.

A benefit of our approach is that we can implement such heuristics and
verify them w.r.t. the specification in definition 2, independently of the renaming
transformation itself. It is a question for future work to explore and prove the
safety of such heuristics. Another question for future work is to explore structural
transformations for renaming modules, merge/split modules, move definitions,
and the extract method refactoring [3].

5 Related Work

Refactoring has a long and distinguished history, going back to the pioneering
works of Griswold [4] and Opdyke [11]. Here we focus on the most closely related
lines of work on building and verifying safe and trustworthy refactorings.

Closely related to our work is the work of Schäfer et al. [15] and Schäfer and
de Moor [17] who build and verify sound refactorings, and renamings in partic-
ular [15]. Their approach to sound renaming is closely related to our approach,
albeit they do not connect or base their approach on a formalized type disci-
pline. Instead, their refactorings are built using attribute grammars. In their
approach, qualified names are resolved (or “looked up” in their terminology)
by (non-lexically) traversing abstract syntax trees. Also similarly to us, their
renaming transformation preserves names and resolves name capture conflicts
by qualifying names. They guarantee [16] that their renamings produce soundly
qualified names, in the following sense. Schäfer et al. [15] defines sound qualifica-
tion by means of two functions, roughly typed as (we adjust their type notation
to match the type notation used in this abstract) lookup : Pos → Ref ⇀ Decl
and access : Pos → Decl ⇀ Ref , where Pos represents an AST position, Ref is a
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(possibly qualified) name, and Decl represents the AST position of a declaration.
They verify in Coq that these functions satisfy the following equality, for any
position p and declaration position d: lookup p (access p d) = d. Our renaming
transformation in section 4 satisfies a similar property. Specifically, our definition
of safe renaming (definition 2) guarantees that each path resolves to the same
declaration as before. Furthermore, unlike Schäfer et al. [15] and Schäfer et al.
[16], conjecture 1 formally states that renaming is a type-preserving transforma-
tion. In ongoing work, we believe that similar formal statements can be made
and proven for more ambitious refactorings, which (to the best of our knowledge)
no one has attempted to formalize to date.

Rowe et al. [14] also define a sound renaming transformation. They provide a
full formalization of the transformation and a type safety proof. Their approach
and proof relies on a denotational model of name binding for OCaml which they
invented for the purpose of characterizing sound renamings. The main difference
between their approach and the approach we explore in this abstract, is that their
semantics exists independently of the typing semantics of OCaml, in our type
and scope discipline, the semantics of name binding is the typing semantics. On
the other hand, while scope graphs have been demonstrated to subsume many
binding patterns, it is a question for future work whether our approach could
scale to a language like OCaml.

The work of Thompson and Li [19] and Thompson and Horpácsi [18] also ex-
plores trustworthy transformation tools for functional languages. Li and Thomp-
son [7] formalizes behavior preservation of a range of refactorings, including
refactorings for a module calculus. They prove behavior preservation of their
transformations with respect to an equational specification of the module cal-
culus. We consider only how to prove type preservation, using our type and
scope discipline. While the property we prove is a weaker one, this weakness
may be a strength for some applications, such as verifying transformations that
preserve well-typedness but not behavior. Furthermore, we expect that our dis-
cipline scales to more ambitious binding patterns than the ones considered in
our (deliberately) simple module calculus.

Our approach to verifying transformations is inspired by recent work by
[9] who present a methodology for proving that transformations preserve well-
typedness using scope graphs. Their work leaves open the question of how to
adapt paths and qualify names during transformation. We provide a solution to
this, using a different notion of scope graphs that provides a direct correspon-
dence between paths and qualified names.

Pelsmaeker et al. [12] describe a language-parametric framework for synthe-
sizing (qualified) names. Their framework uses the generic constraint solver for
the Statix language [1, 21] to re-qualify names to prevent unintended name cap-
ture, using only the typing rules of a language to synthesize qualified names. The
approach described in this paper uses a notion of scope graphs that provides a
direct correspondence between paths and qualified names. The typing rules in
our approach explicitly compose fragments, whereas Statix uses a separation
logic-inspired constraint syntax to handle such fragment composition implicitly.
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A Typing Rules

The typing rules of our module calculus are provided in fig. 8.
The rule Num asserts that a number is well-typed in any scope, it constructs

no scopes, edges, and it does not rely on any paths.
The first premise of the Ref rule uses the function reify : Path → Ref print

the (potentially qualified) name that a path corresponds to. The second premise
asserts that p is a well-formed path; the third that the labels of the path satisfies
the well-formedness constraint discussed in section 2.2; and the fourth that p
is the least path, using the path ordering also discussed in section 2.2. It is
worth noting that the Ref rule disallows names that do not correspond to a
least path; e.g., overly qualified names. This guarantees that names in programs
are “canonical”. For practical purposes, it may be desirable (and it is perfectly
possible) to give a more relaxed rule that allows names to be qualified even
though the qualification is not needed.

The rules for λs and application are mostly standard. Unlike standard typing
rules for λ, they propagate the disjoint union of the scope graph fragments that
each sub-term constructs. The Lam rule asserts that λs construct a lexical sub-
scope s2 of the current sub-scope, and a sub-scope s3 which is connected to s2
via an edge that declares the binder x : T .

The rule for Def is conceptually similar to the rule for Lam: it connects
a sub-scope to its lexical context, and declares a binder in an edge label. A
difference between the Lam rule and the Def rule is that the Lam rule has the
binder edge associated with the sub-scope (s2) of the current scope (s1), whereas
in Def, the binder edge is associated with the current scope (s1). The Mod rule
asserts (F1) that a module scope s2 is lexically connected to the current scope
(s1), and that the current scope has a mod X declaration edge which makes the
module reachable and visible in the graph. The scope fragments of each module
member is also propagated by the rule (in F2). The Import rule asserts that an
import is a well-formed and unique (potentially) qualified reference. The Prog
rule asserts that a program is typed w.r.t. a root scope •, and that the scope
fragments that the program constructs is exactly the scoping structure contained
in the scope graph G that the program is typed and scoped w.r.t.

B Path Ordering

Figure 9 defines the partial order we use on paths. Fewer prefers names with
fewer qualifiers over names with more. The rule uses the helper relation p1▷p2 ∼ p
to segmentize a path into an “initial” segment and a “qualified name” segment,
such that we can compare names modulo number of qualifiers. Same says that, in
case of names with the same number of qualifiers, we use the step-wise ordering
<step which prefers paths whose label prefixes are step-wise equal but one is a
prefix of the other, or, following the shared prefix, one traverses an import edge
(preferred) and the other a lexical parent edge.

The judgment p .
= p says that two paths are equal when neither is shorter

than the other.
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Num

G ⊢ ns : Int ⊣ ⟨[]; []; []⟩

Ref
r = reify p

ϵ ⊢ p : s
w−→ s′ w ∈ L

(
lex∗ · imp? · (∃X. mod X)∗ · ∃x. x : T

)
ϵ ⊢ least p

⟨ζ; ϵ;ψ⟩ ⊢ (rp)s : T ⊣ ⟨[]; []; [p]⟩

Lam

G ⊢ es2 : T2 ⊣ F1 F2 = ⟨[s2, s3]; [s2 _ s1, s2
x:T1_ s3]; []⟩

G ⊢ (λx. es2)s1 : T1 → T2 ⊣ F1 ⊔ F2

App
G ⊢ es1 : T1 → T2 ⊣ F1 G ⊢ es2 : T1 ⊣ F2

G ⊢ (es1 e
s
2)

s : T2 ⊣ F1 ⊔ F2

Def
G ⊢ es2 : T ⊣ F1 F2 = ⟨[s2]; [s2 _ s1, s1

x:T
_ s2]; []⟩

G ⊢ (def x : T = es2)s1 ⊣ F1 ⊔ F2

Mod
F1 = ⟨[s2]; [s2 _ s1, s1

mod X
_ s2]; []⟩

F =
[
F

∣∣ ∃ds2 ∈ ds2 . G ⊢ ds2 ⊣ F
]

F2 =
⊔

F∈F
F

G ⊢ (mod X { ds2 })s1 ⊣ F1 ⊔ F2

Import
r = reify p

ϵ ⊢ p : s
w−→ s′ w ∈ L

(
lex∗ · imp? · (∃X. mod X)+

)
ϵ ⊢ least p

⟨ζ; ϵ;ψ⟩ ⊢ (import rp)s ⊣ ⟨[]; [s
imp
_ s′]; [p]⟩

Prog
G ⊢ m• ⊣ ⟨ζ; ϵ;ψ⟩ ⟨•, ζ; ϵ;ψ⟩ = G

G ⊢ m

Fig. 8. Typing rules of a module calculus
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Segmentize
word p1 ∈ L(lex∗ · imp?)

word p2 ∈ L ((∃X. mod X)∗ · ((∃X. modX) + (∃x, T. x : T )))

p1 ▷ p2 ∼ p

Fewer
p1 ▷ p2 ∼ p p′1 ▷ p

′
2 ∼ p′ |p2| < |p′2|

p < p′

Same
p1 ▷ p2 ∼ p p′1 ▷ p

′
2 ∼ p′ |p2| = |p′2| p1 <step p

′
1

p < p′

Shorter

[] · s <step (s1
ℓ

_ s2, ϵ) · s′

Imp-Pref

(s1
imp
_ s2, ϵ) · s <step (s′1

lex
_ s′2, ϵ

′) · s′

Step
ϵ · s <step ϵ

′ · s′

(s1
ℓ

_ s2, ϵ) · s <step (s′1
ℓ

_ s′2, ϵ
′) · s′

p
.
= p′ ⇐⇒ p ̸< p′ ∧ p′ ̸< p

Fig. 9. Path ordering

C Renaming Function

rename : (Path → Path) → Name → Scope → Name → Prog → Prog
rename f x s ym = renamem f x s ym

renamem : (Path → Path) → Name → Scope → Name → ADecl → ADecl
renamem f x s y (def x : T = a)s1

=

{
def y : T = renamea f x s y a if s = s1

def x : T = renamea f x s y a otherwise
renamem f x s y (mod X { m })s1 = mod X { map (renamem f x s y) m }
renamem f x s y (import (rp))s1 = (import (reify (f p))f p)s1

renamea : (Path → Path) → Name → Scope → Name → AExpr → AExpr
renamea f x s y n

s1 = ns1

renamea f x s y (r
p)s1 = ((reify (f p))f p)s1

renamea f x s y (a1 a2)
s1 = ((renamea f x s y a1) (renamea f x s y a2))

s1

renamea f x s y (λx. e
s2)s1

=

{
(λy. (renamea f x s y e

s2))s1 if s2 = s

(λx. (renamea f x s y e
s2))s1 otherwise


