
Self-aware Program Analysis in stableKanren

No Author Given

No Institute Given

Abstract. This paper presents two improvements to stableKanren that
improve its compatibility and performance. miniKanren supports mono-
tonic reasoning, in which one program produces exactly one model. sta-
bleKanren extends miniKanren to nonmonotonic reasoning, where a pro-
gram can have zero to multiple models. The current overhead of support-
ing such nonmonotonicity in the stableKanren “run” interface creates two
issues. First, a miniKanren program with infinite answers could not pro-
duce an answer under stableKanren. Second, a stableKanren program
with the monotonicity property runs slower under stableKanren. These
two types of programs are subject to monotonic reasoning and produce
only one model. Therefore, the overhead for nonmonotonicity checking is
unnecessary for these two types of programs. We construct a “run-partial”
interface in stableKanren without nonmonotonicity checking. Using “run-
partial” resolves the two issues; however, it requires expert knowledge to
identify whether the program is monotonic or nonmonotonic and choose
the corresponding interface. We further introduce two program analyses
to the stableKanren “run” interface to identify the monotonic program
implicitly. We use a macro to handle the first issue at the syntax level,
so the “run” interface does not apply nonmonotonicity checking on the
diverge miniKanren program. Furthermore, we present four syntax-level
macros to create two smaller twins of the input program. We run these
two twins to resolve the second issue at the syntax and semantics level.
The twins of the monotonic programs produce identical outcomes, but
the nonmonotonic programs do not. The updated “run” interface can
identify monotonic programs at the syntax level; there is still more work
to identify such programs during execution.

Keywords: logic programming · miniKanren · stableKanren · macros.

1 Introduction

Friedman et al. build miniKanren to show a natural way to extend functional pro-
gramming to relational programming [1]. The core miniKanren implementation
introduces only a few operators to users: == for unification, fresh for existential
quantification, conde for disjunction, and a run interface. The reasoning capa-
bility provided by miniKanren is monotonic reasoning. Therefore, miniKanren
programs always have and only have one model. To support nonmonotonic rea-
soning, Guo et al. extend miniKanren to stableKanren [2], stableKanren adds
two more operators noto for negation and defineo for goal function definition. In



2 No Author Given

contrast to the programs under monotonic reasoning, nonmonotonic reasoning
programs can have zero to multiple models. For example, the following sta-
bleKanren program has no model because of its contradiction.

Listing 1.1. A contradiction program in stableKanren
(defineo (cut_hair) (noto (cut_hair )))

The program defines one simple goal function cut_hair. To make such a goal
succeed, the body of the goal function requires cut_hair to fail, which is a
contradiction. It is impossible to make cut_hair succeed and fail simultaneously,
so there is no model for such a program.

The missing optimal substructure property in nonmonotonic reasoning means
the partial result obtained during the resolution may not be part of the final re-
sult. In stableKanren, the resolution in the run interface continues to check other
goal functions using the partial result to ensure nonmonotonicity [2]. However,
this process is unnecessary for monotonic programs and creates two issues. We
present these issues in detail in Section 3. Firstly, monotonic programs with in-
finite answers could not produce an answer under stableKanren (Listing 1.4).
Secondly, monotonic programs run slower under stableKanren (Listing 1.5). We
introduce “run-partial” (Listing 1.6) to bypass the additional check on mono-
tonic programs. The “run-partial” interface resolves the issues but requires ex-
pert knowledge to identify the monotonic programs to choose the corresponding
interface. We want the “run” interface in stableKanren to detect monotonic pro-
grams automatically and decide to check nonmonotonicity implicitly.

In Section 2.1, we show that the input programs can be categorized as definite
programs (Definition 2), stratified programs (Definition 6) and normal programs
(Definition 4). The definite programs and the stratified programs are monotonic;
hence, there is no need for nonmonotonicity checking. This paper adds two pro-
gram syntax analyses to the “run” interface to identify definite programs and
stratified programs. We focus on the syntax elements in stableKanren when
creating macros. The definite programs have no negation (noto) in them. In
Section 4.1, we design a new macro has-negation? (Listing 1.7) to distinguish
definite programs. The stratified programs have negations, but the negations
do not show up in the loop (Definition 5). In Section 4.2, we construct smaller
executable twins (Listing 1.9, 1.10, 1.11) from the input program to analyze the
relationship between negations and loops. We run the executable twins inter-
nally and compare the outcomes. The twins of the monotonic programs produce
identical outcomes, but the twins of the nonmonotonic programs do not. As a
result, we can identify stratified programs. In Section 4.3, we show that the up-
dated “run” interface can identify monotonic programs to avoid nonmonotonic
checking. In Section 5, we propose future work to identify monotonicity during
execution.

2 Preliminaries

In this section, we review a few definitions, including definite programs (Defi-
nition 2), normal programs (Definition 4), and stratified programs (Definition



Self-aware Program Analysis in stableKanren 3

6). Then, we show a high-level overview of stableKanren and its nonmonotonic
checking. Lastly, we present the issues in stableKanren’s nonmonotonic checking.

2.1 Normal Programs

Let us define normal programs. To begin with, we use the definition of definite
program and normal program from Lloyd [3].

Definition 1 (definite program clause). A definite program clause is a clause
of the form,

A← B1, · · · , Bn

where A,B1, . . . , Bn are atoms1.

A definite program clause contains precisely one atom A in its consequent. A is
called the head and B1, . . . , Bn is called the body of the program clause.

Definition 2 (definite program). A definite program is a finite set of definite
program clauses.

Based on the definition of the definite program clause, we have the definition
of normal program clause and normal program.

Definition 3 (normal program clause). A normal program clause is a clause
of the form,

A← B1, · · · , Bn, not Bn+1, · · · , not Bm

For a normal program clause, the body of a program clause is a conjunction of lit-
erals instead of atoms; B1, · · · , Bn are positive literals and not Bn+1, · · · , not Bm

are negative literals.

Definition 4 (normal program). A normal program is a finite set of normal
program clauses.

According to Gelder et al., there are sets of atoms named unfounded sets in
a normal program that can help us categorize the normal programs [5].

Definition 5 (unfounded set). Given a normal program, the unfounded set
is a set of atoms that only cyclically support each other, forming a loop.

Considering the combinations of negations and unfounded sets (loops) in
normal programs, we have informal definitions of stratified program.

Definition 6 (stratified program). Given a normal program, it is stratified
if all unfounded sets (loops) do not contain any negation.

1 Atom is evaluated to be true or false.



4 No Author Given

2.2 stableKanren

stableKanren extends miniKanren to support nonmonotonic reasoning [2]. It
handles the negation and loop in normal programs. To support negation, sta-
bleKanren defines a set of internal macros and functions that implicitly transform
the positive goal from the user’s input into a negative counterpart. Then, the
positive and negative goals are unified under one goal function using defineo
macro. The negation counter (n) counts the number of noto and decides to use
a positive or negative goal during resolution. To resolve the loop, stableKanren
wraps local tabling (P) and call stack frame (cfs) around the unified goal func-
tion. The ext-p and expand-cfs extend the local tabling (P) and call stack frame
(cfs) respectively.

As a result, stableKanren can solve normal programs (Definition 4). For
example, Emden et al. introduce a two-person game [4]. The game is given a
directed connected graph, a peg on a starting node, and two players. Each player
takes a turn to move the peg to the adjacency node; the winning move in this
game is defined as there is a move that will make it so that the opponent has no
move. We give an example graph in Figure 1 and the stableKanren program to

Fig. 1. A playboard in two-person game

find the winning positions as follows.

Listing 1.2. Two person game in stableKanren
(defineo (move x y)

(conde [(== x ’b) (== y ’c)] [(== x ’a) (== y ’b)]
[(== x ’b) (== y ’a)] [(== x ’c) (== y ’d)]))

(defineo (win x) (fresh (y) (move x y) (noto (win y))))

In this example, the variable x of win unifies with values representing the winning
positions. A set of queries and outputs through run is shown as follows.
> (run 3 (q) (win q))
(c b a)
> (run 1 (q) (win ’c) (win ’a))
(_.0)
> (run 1 (q) (win ’b) (win ’a))
()

The run interface takes three parameters. The first parameter is the number
of answers we expect; the query returns answers no more than this number.
The second parameter is the query variable, which stores the answers found by
the query. The third parameter is the actual query. The first query generates
possible winning positions. The second query asks “Can node c and node a
both be the winning position?” It returns a list containing one element “_.0”,
a representation of anything in miniKanren and stableKanren. Anything can
let our queries succeed. So, a and c can both be the winning position. The last



Self-aware Program Analysis in stableKanren 5

query asks: “Can node b and node a both be the winning position?” It returns an
empty list, representing nothing in miniKanren and stableKanren. In this case,
nothing can let our queries succeed. Therefore, a and b can not be the winning
position simultaneously.

3 Problems

As Guo et al. mentioned, the partial result of the normal program (Definition
4) may not be the final result since the missing optimal substructure property in
nonmonotonic reasoning [2]. Inside defineo (Listing 1.3), the goal function adds
to a checking set (program-rules) for future nonmonotonicity checking.

Listing 1.3. A stableKanren defineo macro
(define -syntax defineo

(syntax -rules ()
((_ (name params ...) exp ...)

(begin
(set! program -rules

(adjoin -set (make -record ‘name
(length (list ‘params ...)))

program -rules ))
;;; Omitted other details.
))))

The resolution in the run interface continues to check other goal functions using
the partial result to ensure nonmonotonicity.

We notice that not all programs are required to check for nonmonotonicity.
In particular, nonmonotonic checking on monotonic programs creates two issues.
Firstly, definite programs that do not involve any negation are considered mono-
tonic reasoning. Applying nonmonotonic checking on definite programs with in-
finite answers does not terminate. For example, consider the following program
without using noto written in stableKanren in Listing 1.4.

Listing 1.4. A “revo” relation to determine two lists are reversed to each other
(defineo (revo xs sx)

(fresh (empty) (nullo empty) (rev -acco xs empty sx)))
(defineo (rev -acco xs acc sx)

(conde [(nullo xs) (== sx acc)]
[(fresh (h t acc1)

(conso h t xs)
(conso h acc acc1)
(rev -acco t acc1 sx ))]))

The revo determines if the two lists are reversed to each other. A simple query
on the two empty lists does not terminate.
> (run 1 (q) (revo ’() ’()))
; infinity loop

Secondly, stratified programs in which the loop does not contain any nega-
tion are considered monotonic reasoning. Applying nonmonotonic checking on
stratified programs slows down the running speed. For instance, consider the
strongly connected components (SCCs) of Figure 2. We will call an SCC a final
SCC if the only nodes reachable from nodes in that SCC are others in that SCC.



6 No Author Given

Fig. 2. A directed graph contains multiple SCCs

Now, given a node, we want to find all nodes that are reachable from that node
in the final SCCs. The solution in stableKanren is as follows.

Listing 1.5. An encoding of final-SCC problem in stableKanren
(defineo (edge x y)

(conde [(== x ’a) (== y ’b)] [(== x ’b) (== y ’c)]
[(== x ’c) (== y ’d)] [(== x ’d) (== y ’e)]
[(== x ’e) (== y ’c)] [(== x ’a) (== y ’f)]
[(== x ’f) (== y ’h)] [(== x ’f) (== y ’g)]
[(== x ’g) (== y ’f)] [(== x ’g) (== y ’k)]
[(== x ’h) (== y ’i)] [(== x ’i) (== y ’h)]))

(defineo (reachable x y)
(conde [(edge x y)]

[(fresh (z) (edge x z) (reachable z y))]))

(defineo (reducible x)
(fresh (y) (reachable x y) (noto (reachable y x))))

(defineo (fullyReduce x y)
(reachable x y) (noto (reducible y)))

To run a query on fullyReduce will produce all final-SCC pairs for us.
> (time (length (run* (q) (fresh (x y)

(fullyReduce x y) (== q ‘(,x ,y))))))
100

Getting 100 final-SCC pairs takes 32.81 seconds. We will see this is relatively
slower than running a query using “run-partial” (Listing 1.6).

As we have shown in Section 2.1, the definite programs and stratified pro-
grams have and only have one model since they have optimal substructure prop-
erties. So, the partial result of these programs is also a part of the final result. We
can use a “run-partial” interface in Listing 1.6 to bypass nonmonotonic checking.

Listing 1.6. A run-partial interface without unavoidable contradictions checking
(define -syntax run -partial

(syntax -rules ()
((_ n (x) g0 g ...)
(take n

(lambdaf@ ()
((fresh (x) g0 g ...
(lambdag@ (negation -counter cfs c : S P)

(cons (reify x S) ’())))
negation -counter call -frame -stack empty -c))))))



Self-aware Program Analysis in stableKanren 7

The run-partial has the extended lambdag@ (adding negation counter and call
stack frame) introduced by stableKanren but has no nonmonotonicity checking.
Using “run-partial” to query on Listing 1.4, the query can return a result. Also,
using “run-partial” to query fullyReduce on Listing 1.5, it produces 100 final-SCC
pairs in 0.01 seconds.

Although the run-partial resolves those two issues, it requires expert knowl-
edge to identify whether a program is monotonic or not. The user has to make
the right decision on which interface to run the query. We want to incorporate
expert knowledge into the “run” interface so that it can identify the monotonic
program implicitly.

4 Identify Monotonic Programs in stableKanren

The key idea is identifying negations and loops in stableKanren programs. The
syntax of stableKanren consists of only five elements, ==, fresh, conde, noto,
goal functions. Identifying negations is easy, a syntax analysis using macro can
achieve this. A goal function is definite as long as there is no negation (noto) in it.
Identifying loops requires more analysis of the relation between goal functions.
Instead of creating a dependency graph representation to the input program,
then have a stand-alone algorithm to analyze the graph. We use four macros to
construct smaller executable twins (Listing 1.9, 1.10, 1.11) from the input pro-
gram. These smaller twins are variants of stableKanren programs with different
semantics on the loops. Therefore, we can run the twins internally and compare
the outcomes. The twins of the monotonic programs produce identical outcomes,
but the twins of the nonmonotonic programs do not.

4.1 No Negation, No Problem

The stableKanren programs without using any noto (negation) operator, like
the one we see in Listing 1.4, are definite programs. This section introduces a
compilation time syntax analysis macro has-negation? to identify definite pro-
grams.

Listing 1.7. A syntax analysis to identify negation in the program
(define -syntax has -negation?

(syntax -rules (noto conde fresh)
((_ (noto g)) #t)
((_ (conde (g0 g ...) (g1 g^ ...) ...))

(or (has -negation? g0 g ...)
(has -negation? g1 g^ ...)
...))

((_ (fresh (x ...) g0 g ...))
(has -negation? g0 g ...))

((_ g) #f)
((_ g0 g1 ...)

(or (has -negation? g0)
(has -negation? g1)
...))))



8 No Author Given

The has-negation? iterates through nested conde and fresh until it reaches the
goal function level. If there is a negative goal function, it returns true, and vice
versa. We apply this syntax analysis to improve the defineo macro in Listing 1.8.

Listing 1.8. Improved defineo macro
(define -syntax defineo

(syntax -rules ()
((_ (name params ...) exp ...)

(begin
(if (has-negation? exp ...)

(set! program -rules
(adjoin -set (make -record ‘name

(length (list ‘params ...)))
program -rules )))

;;; Omitted other details.
))))

In the improved defineo, only a goal function that has negation will be added
to the nonmonotonic checking set. Goal functions with negations may not be
checked for nonmonotonicity if these negations are stratified.

4.2 Positive and Negative Twins

Identifying stratified programs requires more analysis of the relation between
goal functions. This section presents a new approach to constructing two smaller
executable twins, positive and negative, from the input program. Also, we reuse
the infrastructure in stableKanren to find loops, but we give the positive and
negative twins different semantics on the loops. Lastly, we identify the stratified
programs by running positive and negative twins and comparing the outcomes.

A smaller twin only captures the dependency between goals, so it does not
have any variables in the program. Also, it appends a suffix (+ or −) to each
goal function. Listing 1.9 shows how to create a negative twin.

Listing 1.9. Macro to transform the input program to a negative twin
(define -syntax negative -twin

(syntax -rules (conde fresh noto == succeed fail)
((_ (conde [(== a ...) ...] [(== b ...) ...] ...))

succeed)
((_ (fresh (x ...) g g0 ...))

(fresh () (negative -twin g) (negative -twin g0) ...))
((_ (conde [g g0 ...] [g1 g^ ...] ...))

(conde
[(negative -twin g) (negative -twin g0) ...]
[(negative -twin g1) (negative -twin g^) ...] ...))

((_ (noto g))
(noto (negative -twin g)))

((_ (== u v))
succeed)

((_ succeed) succeed)
((_ fail) fail)
((_ (p ...))

(eval ‘(,(sym -append -str (car ‘(p ...)) " -"))))
((_ g g0 ...)

(fresh ()
(negative -twin g) (negative -twin g0) ...))))



Self-aware Program Analysis in stableKanren 9

The negative-twin iterates through nested conde and fresh until it reaches the
goal function level. It appends a − to each goal function. Since it removes all
variables in the program, all unifications (== operators) are converted to suc-
ceed. The positive-twin does the same transformation except it appends a + to
each goal function.

We wrap the negative-twin and positive-twin with loop handling under differ-
ent semantics. Also, a suffix (+ or −) is appended to each goal function. Listing
1.10 shows the semantics for loops under negative twin.

Listing 1.10. Macro to create an executable negative twin
(define -syntax define -negative -twin
(syntax -rules ()
((_ name exp ...)

(eval
‘(define (,(sym -append -str ‘name "-"))

(lambdag@ (n cfs c : S P L)
(let* ([name - (sym -append -str ‘name "-")]

[signature (list name - ‘())]
[result (element -of-set? signature P)]
[record (element -of-set? signature cfs)])

(if (or (and result #t) (and record #t))
(unit c)
((fresh ()

(negative -twin exp ...) (ext -p name - ‘()))
n (expand -cfs signature n cfs) c)))))))))

The local tabling, and loop handling are infrastructures in stableKanren. The
local tabling is recorded on P and extended by ext-p, and the loop is tracked on
cfs and updated by expand-cfs. The define-negative-twin always succeeds on the
loops. Similarly, Listing 1.11 shows the semantics for loops under positive twin.

Listing 1.11. Macro to create an executable positive twin
(define -syntax define -positive -twin
(syntax -rules ()
((_ name exp ...)

(eval
‘(define (,(sym -append -str ‘name "+"))

(lambdag@ (n cfs c : S P L)
(let* ([name+ (sym -append -str ‘name "+")]

[signature (list name+ ‘())]
[result (element -of-set? signature P)]
[record (element -of-set? signature cfs)])

(if (and result #t)
(unit c)
(if (and record #t)

(let ([diff (- n (get -value record ))])
(if (= 0 diff)

; Positive loop (stratified negation)
(unit c)
; Negative loop (normal program)
(mzero )))

((fresh ()
(positive -twin exp ...) (ext -p name+ ‘()))

n (expand -cfs signature n cfs) c))))))))))

The only semantics difference between define-negative-twin and define-positive-
twin is that the define-positive-twin fails on the negative loops. Both define-



10 No Author Given

negative-twin and define-positive-twin are created in defineo as shown in Listing
1.12.

Listing 1.12. Extended defineo macro to create twins
(define -syntax defineo

(syntax -rules ()
((_ (name params ...) exp ...)

(begin
(if (has-negation? exp ...)

(set! program -rules
(adjoin -set (make -record ‘name

(length (list ‘params ...)))
program -rules )))

(define -positive -twin name exp ...)
(define -negative -twin name exp ...)

;;; Omitted other details.
))))

The extended defineo creates positive and negative twins from the user input
during compilation. It also uses has-negation? to avoid nonmonotonic checking
on definite programs. Lastly, we can run the twins internally using run-partial
(Listing 1.6) and compare the outcomes as follows,
(define (stratified ?)

(fold -left
(lambda (l r) (and l r)) #t
(map

(lambda (p)
(= (length

(run -partial #f (q)
(apply (eval (sym -append -str (get -key p) "+"))

‘())))
(length

(run -partial #f (q)
(apply (eval (sym -append -str (get -key p) "-"))

‘())))))
program -rules )))

As we have shown the semantics between positive twin and negative twin are
slightly different. Therefore, the twins of the monotonic programs produce iden-
tical outcomes, but the twins of the nonmonotonic programs do not.

4.3 Enhanced Run

This section uses the improvements we made to make the run interface auto-
matically identify monotonic programs. The enhanced run is as follows,
(define -syntax run

(syntax -rules ()
((_ n (x) g0 g ...)
(take n

(lambdaf@ ()
((fresh (x) g0 g ...
(lambdag@ (negation -counter cfs c : S P L)

(if (and (not (stratified ?))
(null? (nonmonotonic -checking )))

(mzero)
(cons (reify x S) ’()))))

negation -counter call -frame -stack empty -c))))))



Self-aware Program Analysis in stableKanren 11

It uses stratified? to avoid nonmonotonic checking on stratified programs. As a
result, using our updated defineo and run, the query on Listing 1.4 can produce
an answer, and the query on Listing 1.5 produces 100 pairs of final SCCs in 0.03
seconds.

5 Conclusion and Future Work

This paper presents two improvements to stableKanren, so it will not apply
nonmonotonic checking on monotonic programs. There are two types of pro-
grams, definite programs (Definition 2) and stratified programs (Definition 6),
which are monotonic programs. We add a syntax analysis macro has-negation?
(Listing 1.7) to stableKanren’s defineo to identify definite programs and avoid
checking nonmonotonicity. As a result, stableKanren can produce answers for
definite programs with infinite answers. We also introduce four macros to sta-
bleKanren’s defineo to transform the input program into two smaller positive
and negative twins. These twins help us distinguish stratified programs so that
stableKanren saves running time for stratified programs.

For future work, a normal program may behave like a stratified program
during the execution time, hence the nonmonotonic checking can be bypassed.
For example, from the syntax perspective the two-person game in Listing 1.2 is
a normal program as the negation appears in the loop. However, if the game is
played on a directed acyclic graph (DAG), the answer has optimal substructure
property and it is stratified negation. Currently, our smaller twins cannot capture
this runtime behavior as the variables are discarded during the twin creation.
Another issue is when a contradiction in Listing 1.1 coexists with other programs
in the same environment, the run interface cannot produce an answer even if the
query did not touch the contradiction part. We can still use run-partial (Listing
1.6) to produce the answers, but ideally, we want to enhance run to isolate the
contradiction implicitly.

References

1. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press,
MIT Press (2005). https://doi.org/10.7551/mitpress/5801.001.0001

2. Guo, X., Smith, J., Bansal, A.: Stablekanren: Integrating stable model semantics
with minikanren. In: Proceedings of the 25th International Symposium on Principles
and Practice of Declarative Programming. PPDP ’23, Association for Computing
Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3610612.3610617

3. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer
(1987). https://doi.org/10.1007/978-3-642-83189-8, https://doi.org/10.1007/978-3-
642-83189-8

4. Van Emden, M.H., Clark, K.L.: The Logic of Two-Person Games, chap. 12, pp.
320–340. Prentice-Hall, Inc., USA (1984)

5. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded seman-
tics for general logic programs. J. ACM 38(3), 619–649 (Jul 1991).
https://doi.org/10.1145/116825.116838, https://doi.org/10.1145/116825.116838


