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Abstract. Deep induction provides induction rules for deep data
types, i.e., data types that are defined over, or mutually recursively
with, (other) such data types. Deep induction was originally defined for
type-indexed types such as ADTs, nested types, and GADTs, but has
recently been extended to the term-indexed types known as inductive
families. Inductive-inductive types syntactically generalize the class of
IFs whose indexing types are inductive by allowing their (still necessarily
inductive) indexing types to be defined by mutual induction with the
type being indexed. In this paper we show how to further extend deep
induction to inductive-inductive types. More specifically, we extend to
inductive-inductive types the entire methodology for deriving sound
deep induction rules for inductive families, which itself extends that
originally developed for nested types and subsequently extended to
GADTs. We also include two non-trivial applications illustrating the
usefulness of deep induction for inductive-inductive types.
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1 Introduction

Indexed programming is the practice of programming with indexed types. Per-
haps the most common form of indexing indexes types by (other) types. Type-
indexed types are found in, e.g., functional languages such as Haskell [22] and
ML [I7]. The essential idea is that a type like List can be indexed by another type
that classifies the data it contains. For example, lists of integers, lists of booleans,
and lists of lists of data of type t can be modeled by the type-indexed types
List Int, List Bool, and List (Listt), respectively. More modern programming lan-
guages allow types to be indexed not just by types, but also by terms. The essen-
tial idea is that a list of type List, e.g., can be indexed by a term that represents
its length or a proof that it satisfies some property. For instance, lists of length 3
and lists that a proof term p proves are sorted can be modeled by term-indexed
types such as List 3 and List p, respectively. In both of these examples, the indexed
type is the type List of lists, whereas the indexing type, whose terms index lists,
is the type of natural numbers for the former and the type of proofs for the latter.
(Type- and) term-indexed types are supported as inductive families (IFs) [I0] in
dependently typed systems such as Agda [1I20], Epigram [I5I16], and Idris [I1].

Inductive-inductive types (IITs) [I8I9] syntactically generalize the class
of IFs whose indexing types are inductive. But whereas such an IF’s indexing
type must already exist in its entirety before its indexed type is defined, an IIT
allows its indexing and indexed types to be defined simultaneously by mutual
induction. IITs are thus simultaneously less general than arbitrary IFs because
the indexing types of II'Ts are required to be inductive while those of arbitrary
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IFs are not, but also more general than IFs whose indexing types are inductive
because those indexing types can be defined by mutual induction with the types
they index. Importantly, every IF whose indexing type is inductive can trivially
be seen as an IIT. IITs have been used, e.g., to define the syntax of Martin-Lo6f
Type Theory in itself [8l9] and to model Conway’s surreal numbers [G/T9].

Deep induction was introduced in [14] to give induction rules for type-indexed
data types that are deep, i.e., defined over, or mutually recursively with, (other)
such data types. Examples of type-indexed data types that can be deep include,
trivially, ordinary algebraic data types (ADTs) and nested types; data types,
like that of forests from [I4] (also called rose trees in [12]), whose recursive
occurrences appear below other type constructors; so-called truly nested types,
like that of bushes from [2] (also called bootstrapped heaps in [21I]), whose
recursive occurrences can appear below their own type constructors; and
generalized algebraic data types (GADTS) [4125], such as are found in Haskell
and Agda. Term-indexed types like IFs and IITs can also be deep, both in
their type indices and in the types of their term indices. Since the structural
induction rules currently generated by proof assistants for deep data types
induct only over their top-level structures, leaving any data internal to that
top-level structure untouched, proof assistants currently provide insufficient
support for inducting over deep data types. By contrast, deep induction inducts
over all of the structured data present in a data type, and thus opens the way for
incorporating automatic generation of truly useful induction rules for deep data
types — including deep IFs and II'Ts — into state-of-the-art proof assistants.

The recent paper [I3] showed how deep induction can be extended from
data types that allow type indexing only to those that also allow term indexing.
In fact, the entire methodology for deriving sound deep induction rules that was
developed for nested types in [I4], and extended to GADTs in [I2], was further
extended to IFs in [I3]. As observed there, an IF’s indexed type can always be
seen as an underlying (type-indexed) GADT obtainable by erasing all of the
IF’s term indices, together with an indexing type (which can in general also be
an IF) whose terms index that underlying type. The key innovation required
to extend deep induction to IFs in [I3] was therefore to appropriately track
satisfaction of predicates for a term-indexed type’s term indices.

In this paper we show how deep induction can further be extended, now from
IFs whose indexing types are inductive all the way to II'Ts. The mutual induction
in a proper IIT (i.e., in an IIT that cannot be seen as an IF) entails that there
is no separation of its indexing and indexed types — and thus no concept of an
underlying data type for it — as there is for IFs. As we show below, the main
task in extending deep induction to proper IITs is thus accommodating this
inseparability of their indexing and indexed types. Along the way we also observe
that more predicates can usefully be propagated over an IIT’s depth than can
be for IFs. As in [I3], we again extend the entire methodology for deriving sound
deep induction rules for the tower of “simpler” classes of data types — ADTs,
nested types, and GADTs, and IFs whose indexing types are inductive — to also
include IITs. The upshot is that deep induction for each of the simpler classes of
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data types in this tower can be seen as a special case of deep induction as
developed here for IITs.

The remainder of this paper is structured as follows. The rest of this section
discusses deep induction for IFs in the context of related work. Section [2] intro-
duces IITs via three canonical examples from the literature. Section [3| reviews
the current state of the art for deep induction for IFs. Proper IFs involve term-
indexing, so they are not simply (type-indexed) GADTs. But their (inductive)
indexing and indexed types are not mutually defined, so they are not proper
IITs either. In Section [d we present our general methodology for deriving deep
induction rules for proper IITs. The deep induction rules our methodology de-
livers generalize those for IFs with inductive indexing types, which are the only
kind of IFs we consider in the remainder of this paper. Each concrete instance
of a deep induction rule appearing in this paper — including those given in Sec-
tions [f] and [6] for the IITs of contexts and types and of sorted lists, respectively
— is derivable by instantiating the methodology in Section [ to the data type of
interest. Sections [5] and [7] contain applications of deep induction for the IITs of
contexts and types and of sorted lists, respectively, which are defined in Section[2]
below. Section [§] concludes and offers directions for future work. Our Agda im-
plementation containing all of the deep induction rules appearing in this paper,
proof terms that witness their soundness, and our applications of deep induction
from Sections [§| and [7] is available at https://cs.appstate.edu/johannp/.

Related Work Deep induction was introduced for nested types in [I4], ex-
tended to GADTS in [12], and further extended to IFs in [I3]. The methodology
for deriving deep induction rules developed in this paper further extends that
in [I3] from (inductively indexed) IFs to IITs. The relationship between our
results and those of [I2IT3[14] are discussed in detail throughout this paper. To
the best of our knowledge, other work on generating induction rules for IITs is
either restricted to structural induction (see, e.g., [BIZISITOITRIII]) or fails to ade-
quately account for depth in term indices. For example, both [23] and [24] derive
induction rules that are deep for nested types and some IFs whose underlying
data types and indexing types are containers. But since they generate only trivial
predicates for types such as the natural numbers, the derived induction rule for,
e.g., vectors (i.e., length-indexed lists), is reduced to that for their underlying
lists. Structural induction for IITs that are not IFs is treated in [I8II9]. As far as
we are aware, deep induction for such II'Ts has not previously been considered.

2 Inductive-inductive Types

To illustrate the difference between type-indexed types, the term-indexed types
known as IFs, and IITs, first consider the following familiar ADT of listsﬂ

dataList (a : Set) : Set where
[]:Lista (1)
_ ra— Lista — Lista

Here the type List is indexed over the type a of data elements that each list in
List a contains. A variant of the type List a that carries more information than just

1 We use Agda syntax for concreteness, but our results are not Agda-specific. We use
Agda’s facility for generalizing declared variables, so that, throughout the paper,
implicit occurrences of a and b have type Set, and those of m and n have type Nat.
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the type of the elements each of its lists contains is the following proper IF Vec
defining the data type of vectors taken (essentially) from Agda’s standard library:

data Nat : Set where data Vec (a : Set) : Nat — Set where
zero : Nat vnil : Vecazero (2)
suc : Nat — Nat veons : a — Vecan — Veca (sucn)

The data type Vec cannot be seen as an ADT. Not only is Vec indexed
by the type a of data elements that each list in Lista contains, but each
of its elements is also indexed by the term n: Nat that is its length. For
example, the vector vcons True (vcons False (vcons Truevnil)) is an element of
Vec Bool (suc (suc (suczero))). Since the data type underlying Vec — i.e., the
data type obtained from Vec by erasing its term indices — is the ADT List
from , we can think of a vector of type Vecan as a list of type Lista that is
indexed by its length.

The type Vecan is a proper IF, but it is not a proper IIT: its indexing
type Nat, while inductive, is not defined mutually with its indexed type. An
example of a proper IIT is the following IIT of contexts and types from [19].
This IIT, which is term-indexed but not type-indexed, may well be the most
important example of a proper IIT from the perspective of dependently typed
programming. It has been used, e.g., in [39] to define the syntax of Martin-Lof
Type Theory in itself. Its definition is:

mutual
data Ctxt : Set where
€ : Ctxt
- (F:Ctxt) = Tyl — Cixt (3)
data Ty : Ctxt — Set where
vl Cixt} — Tyl
M:{r:Cext} - (A:TylN) = Ty (F-A) = Tyl

The definition of Ctxt says we have an empty context e, and if we have any
context [ and a type A valid in I, then we can extend I' with a fresh variable
x: A to get a new context [ - A. The definition of Ty says that we have a base
type ¢ that is valid in any context, and if A is a type valid in context [ and B
is a type valid in context I - A, then the dependent function type MAB is also
valid in context . For the IIT of contexts and types, Ctxt is the indexing type
and Ty, which takes elements of Ctxt as arguments, is the indexed type.

Another example of a proper IIT is the following type- and term-indexed
IIT of (so-called) sorted lists:

mutual

dataSList (a : Set) {{orda : Ordered a}} : Set where
snil : SLista
scons : {x:a} — {xs: SLista} — x > xs — SLista

data > {a:Set}{{orda: Ordereda}} (x: a): SLista — Set where
triv : x > snil
extn: {y:a} — {ys:SLista} — (y>ys:y > ys) > x>y —

X > ys — x > (sconsy>ys)

(4)
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This IIT is both a small variation on, and a generalization of, the IIT of sorted
lists given in [I8II9]. It is a variation because it uses > rather than < as
in [I819], and it is a generalization because it allows list elements to be not just
natural numbers, but rather data from an arbitrary ordered type a (following
the nomenclature of [I819]), i.e., from any instance of the class

record Ordered (a : Set) : Set where
field
> ta—a—Set

of types supporting an arbitrary binary relation >. This binary relation is used
in the clause for extn of the indexed type >| in . Given an ordered type a, the
definition of SList says that the empty list is trivially sorted, and that if we have a
proof x>xs that x >| xs — i.e., that x : a is greater than or equal to every element
of the sorted list xs of elements of type a — then we can add x to the front of xs
to get a new sorted list sconsx>xs of elements of type a. Given an ordered type
a, the definition of >| says that every element x : a is trivially larger than every
element of the empty list, and that if y : a and ys: SLista are such that x >y
in a and, inductively, y > ys with proof y>ys, then x >| sconsy>ys. Note that
the type of extn makes sense even if the ordering > on type a is not transitive,
although the type of extn can be simplified when > is a partial or total order.
While it is very natural to think of an element of type SList a as a list of type
List a that is indexed by the ordering > defined mutually with it, a glance at the
types of SList and >| reveals that it is actually the type >| that is indexed by
terms of type SList. Properly identifying the indexing and indexed types of I1ITs
will be critical when we develop our deep induction rules for them in Section []
Our final example of a proper IIT is that of dense order completions [I8I19]:

mutual
data (—)* (a : Set) {{orda : TOrdered a}} : Set where
inj:a—a*

mid : {xy:a"} - x <"y = a"
(5)
data <* {a:Set} {{orda: TOrdereda}}:a" — a* — Setwhere
inj< :{xy:a} = x<y—injx < injy
l<mid : {xy:a*} = (x<'y : x <*y) = x <* (midx<"y)
mid<r: {xy:a"} = (x<"y : x <*y) = (midx<'y) <y

Here, a is an instance of the class

record TOrdered (a : Set) : Set where
field
< _ra—a—Set
<trans: {xyz:a} o x<y—oy<z—ox<z

of types that support a transitive ordering <. Given a type a that supports a
transitive ordering, the definition of (—)* says that an element of a* is either an
injected element of a, or it is the midpoint between elements x and y already in a*
and such that x is less than y in the extension <* of < to a*. Given a type a that
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supports a transitive ordering, the definition of the extension <* of < to a* says
that if x < y in a then injx <* injy in a*, and that if x and y are already elements
of a* and if x<*y proves x <* y, then x <* (midx<*y) and (midx<*y) <* y in a*.

The general form for IITs is given in [I8/19]. There, a (finite) axiomatization
of IITs is specified, together with a model that proves their elimination rules
(i.e., their structural induction rules) sound. In this paper we restrict our atten-
tion to IITs whose indexing and indexed types are given by inductive GADTs
of the form specified in [I2]. Note that each of the three IITs above is so given.

3 The State-of-the-Art: Deep Induction for IFs

To see the difference between structural induction and deep induction, consider
again the data type of lists from . The structural induction rule for lists is:

(P : Lista — Set) - P[] —
((x:a) = (xs: Lista) = Pxs — P (x :: xs)) — (6)
(xs: Lista) = Pxs

Since it uses a predicate P on entire lists, this rule essentially ignores the data
inside an element of type Lista. By contrast, the deep induction rule for lists
traverses not just the outer list structure with P, but also each element of that
list with a custom predicate Q:

(Q:a— Set) - (P :Lista — Set) - P[] —
((x:a) = (xs: Lista) = Qx — Pxs — P (x :: xs)) — (7)
(xs: Lista) — List" Qxs — Pxs

Here, the lifting List" lifts its argument predicate Q on data of type a to a
predicate on data of type Lista by asserting that List® Q holds of xs: Lista
precisely when Q holds for every element of xs. It can be defined in Agda by:

List" : (a — Set) — Lista — Set
List" Q[] = T (8)
List" Q(x :: xs) = Qx x List" Qxs

The structural induction rule for lists can be recovered by taking the custom
predicate Q in their deep induction rule to be the constantly T-valued predicate.

It is well known that the class of ADTs is subsumed by that of nested types,
and that the class of nested types is in turn subsumed by that of GADTs. More-
over, just as structural induction can be extended to nested types and GADTs,
so can deep induction [12/14]. However, as detailed in these works, polymorphic
predicates are needed to derive either kind of induction rules for either nested
types or GADTs. GADTs require, in addition, the use of Henry Ford encodings to
handle the non-uniformity in their type indices [12]. These two ideas can be used
together to derive deep induction rules for very general type-indexed types, such
as the GADT LTerm of typed lambda terms from [I2]. In addition to providing
clean solutions to complex applications involving GADTs, deep induction has
been used in [I4] to solve the long-open problem of giving structural induction
rules for truly nested types, such as the data type of bushes from [2]. It has also
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been shown in [I2] to give induction rules for deep GADTs, like LTerm, that are
more useful than the induction rules for them automatically derived by Rocq.

More directly relevant to the present paper is the extension of deep induction
from GADTS to IFs recently reported in [I3]. Since an IF allows term indices
as well as type indices, its deep induction rule must take as input not only
predicates on its type indices, but also a predicate on the type of its term
indicesﬂ Ultimately, all of these predicates must be appropriately propagated
to all of the data of their domain types in all of the IF’s data elements.

The predicate lifting for an IF performs exactly this propagation. As elab-
orated in [13], an IF’s lifting must perform three tasks. It must (i) ensure that
any new data used to construct a data element satisfy the predicates on their
types that either parameterize the clauses of D’s lifting or are obtained by lifting
these predicates, (ii) ensure that all of the data element’s recursive subdata also
satisfy the liftings for their types of the predicates from (i), and (iii) ensure that
the term index of every data element constructed using a data constructor of
D’s indexed type satisfies its predicate from (i) provided the term indices of that
element’s recursive subdata do. Performing each of these tasks for each data
constructor results in the following predicate lifting for the IF Vec from :

Vec” : (a — Set) — (Nat — Set) — Vecan — Set
Vec” {n = zero} Q, Qn vnil = Qu zero
Vec” {n = sucm} Q. Qn (vconsxxs) = Qs x x Vec" Qs Qn xs X (Qum — Qn(sucm))
(9)
The right-hand side of the clause for vnil comes from (iii). The components of the
right-hand side of the clause for vcons come from (i), (ii), and (iii), respectively.
The deep induction rule for any IF can now be obtained as in [I3] or, equiv-
alently, by specializing the construction for IITs given in Section [4] to IFs, with
the IF playing the role of an II'T’s indexed type. For Vec, e.g., doing either yields
the following deep induction rule:

(Qa :a — Set) = (Qn : Nat — Set) — (P : {n: Nat} — Vecan — Set) —

(Qn zero — Pnil) —

({n: Nat} — (x:a) = (xs: Vecan) — Qu (sucn) — Qax = Pxs — P (vconsxxs)) —

(xs: Vecan) — Vec" Q. Quxs — Pxs

(10)

With respect to the construction on page[J] the first line comes from Steps 1 and
2E|; the second and third are the induction hypotheses for vnil and vcons, respec-
tively, from Step 3; and the fourth is from Step 4. In the induction hypothesis for
vnil, the first type is from Step 3b (because zero is the term index of vnil) no types
come from Steps 3a or 3c, and the conclusion is from Step 3d. In the induction
hypothesis for vcons, the first three types are from Step 3a, the fourth and fifth
are from Step 3b, the sixth is from Step 3c, and the conclusion is from Step 3d.

2 For ease of exposition we assume throughout that IFs and IITs have exactly one
term index. Generalizing to more than one term index is straightforward, if tedious.

3 Since Vec is only trivially mutually defined with Nat, the counterpart to P for Nat is
not needed to define P or the deep induction rule that proves it. It is thus omitted.
Other simplifications are also made to arrive at the exact the rule from [13].
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Just as the deep induction rule for any GADT specializes to its structural
induction rule when the predicates on its type indices are constantly T-valued,
so the deep induction rule for any IF developed in [I3] specializes to its
structural induction rule from [I0] when, in addition, the predicate on the type
of its term indices is constantly T-valued. Moreover, the deep induction rules
— and thus the structural induction rules — for IFs conservatively extend the
corresponding rules for GADTs, which in turn conservatively extend those for
nested types, which themselves conservatively extend those for ADTs.

4 Deep Induction Rules for IITs

We now show how to extend deep induction from IFs to IITs. Unlike IFs,
whose indexing type must already exist in its entirety before the type it
indexes is defined, IITs allow mutual definition of their indexing and indexed
types. Modifying the construction from [I3] to account for the mutuality of
the definitions of an IIT’s indexing type and its indexed type is subtle and
requires care. This is in part because of the mutuality itself, but also because
the mutuality entails that a larger class of predicates can be lifted to, and thus
can parameterize deep induction rules for, II'Ts than IFs. The identification and
appropriate handling of these subtleties is the central contribution of this paper.

We construct our deep induction rules for IITs in such a way that they
specialize to the rules of [13] for those IITs that can be seen as IFs (and thus
specialize to the rules of [12] for those IFs that can be seen as GADTS, etc.). Such
specialization is a minimal success criterion for the rules we construct for IITs
because it ensures that our methodology for producing them is a conservative ex-
tension of all those that have come before. A second success criterion is that the
deep induction rules we construct for II'Ts specialize to the structural induction
rules of [I8TY] for them. This is shown, as usual, by taking all predicates param-
eterizing the clauses of an II'T’s deep induction rule for its indexing and indexed
types to be constantly T-valued. It is critical because the structural induction
rule for any data type should always be a special case of its deep induction rule.

The lifting for an II'T D has a clause for D’s indexing type and a clause for D’s
indexed type. These are defined by mutual induction. Each clause of D’s lifting is
parameterized over a predicate P on D’s indexed type, which is itself parameter-
ized over predicates on its type indices and an element of its indexing type. The
predicate P can either be obtained by lifting predicates on D’s type indices and
the type of its term indices, or not. (Those that are not are called primitive pred-
icates.) In the latter case, these predicates can themselves either be primitive or
obtained by lifting primitive predicates on their own type indices (if any). For the
IF Vec, e.g., a predicate P : {n: Nat} — Vecan — Set can be given as primitive
or obtained by lifting primitive predicates Q, on a and Qy on Nat. When an IITs
indexed type is not uniform (analogous to when an IF’s underlying data type
is a proper GADT), P must be a primitive predicate and the predicates on D’s
type indices cannot be factored out of P. But for all IITs in the literature they
can be, so we construct our liftings and deep induction rules below for uniform
IITs. Given the predicates to be lifted, the clause of D’s lifting for an element of
its indexing or indexed type constructed using data constructor c is obtained by:
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(i) ensuring that the data element being constructed and any non-recursive data
used to construct that data element satisfy the predicates on their types that
either parameterize the clauses of D’s lifting or are obtained by lifting them.
In this step, we lift only to types other than D’s indexed or indexing types.

(ii) ensuring that all of the data element’s (mutually) recursive subdata also sat-
isfy the liftings for their types of the predicates from (i). (If D’s indexing type
is not — or, rather, only trivially — defined mutually with its indexed type,
then, as an optimization, the checks on the term indices of the data element’s
recursive subdata can be omitted by the simplifications elaborated below.)

(iii) ensuring that the term index of every data element constructed using a data
constructor of D’s indexed type satisfies its predicate from (i) provided the
term indices of that element’s recursive subdata do.

In (i) and (ii), the italicized text is new relative to the same steps in [13].
The italicized text in (ii) is not needed in [I3] because there is no mutually
recursive subdata. The italicized text in (i) is not needed in [I3] because lifting
a primitive predicate on the indexed type of an IF always requires that the
primitive predicate holds for all elements of the indexed type (i.e., is trivial),
and is thus of no computational interest. For example, the lifting to Vec for the
primitive predicate P : {n: Nat} — Vecan — Set on vectors is:

Vec” : ({n: Nat} — Vecan — Set) — Vecan — Set
Vec” {n = zero} P vnil = P vnil (11)
Vec” {n = sucm} P (vconsxxs) = P (vconsxxs) x Vec" P xs

In the clause of Vec” for vnil the right-hand side comes from (i). Indeed, (ii) does
not contribute any types because vnil has no recursive subdata, and (iii) does not
contribute any types because there are no predicates on the indexing type Nat of
Vec alone. In the right-hand side of the clause for vcons, the first type comes from
(i) and the second comes from (ii). As above, (iii) does not contribute any types.
The resulting lifting for Vec is indeed trivial since the first types in each of its
right-hand sides ensure that P must actually hold for every vector. For this reason
attention is restricted in [I3] to predicates on Vec and other IFs that are obtained
by lifting predicates on their type indices and the types of their term indices. We
will, however, see in Section [5| below that lifting a primitive predicate on the in-
dexed type of an IIT can result in a predicate that is both non-trivial and useful.

Like the lifting for an IIT D, the deep induction rule for D has both a clause
for its indexing type and a clause for its indexed type, and these are defined
by mutual induction. Each such clause must be parameterized over the same
predicate(s) that parameterize(s) the clauses of D’s lifting. And, as is usual for
deep induction [I2IT3T4], these predicates must be carefully propagated to all
of the data of their domain types. Thus, given the lifting for a (uniform) IIT D,
we construct D’s deep induction rule as follows:

1. The first argument to each clause of D’s deep induction rule is a predicate
on D’s indexed type (or if the application requires that D’s lifting is param-
eterized by predicates on D’s type indices and on the type of its term index,
then those predicates are given as arguments instead).
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2. The next arguments to each clause are predicates on D’s indexing and
indexed types to be shown to hold for all elements of those types. The
predicate on each must be parameterized over the recursive data needed to
construct its argument type. Fach such datum must satisfy the Step 2 pred-
icate for its type. In particular, i) the predicate on D’s indexed type must be
parameterized over the term index of the element being constructed, and ii)
this term index must satisfy the predicate for its type introduced in this step.

3. The next arguments to each clause are induction hypotheses, one for each
data constructor of D’s indexing and indexed types. If c is a data constructor
for D’s indexing or indexed type, then the induction hypothesis for ¢ must:
(a) Take as its first arguments all of the ingredients needed to construct an

element of D using c.

(b) Take as additional arguments terms checking that the term constructed
using c, its term index (if any), and each ingredient from Step 3a that
is not the term index of a recursive subterm from Step 3a of the term
constructed using c satisfies the predicate for its type from Step 1.

(¢c) Take as final arguments terms checking that for each (mutually)
recursive ingredient from Step 3a that is not the term index of another
such ingredient, both it and its term index (if any) satisty (appropriate
instances of) the predicates for their types from Step 2. In the check that
any element of D’s indexing or indexed type satisfies its predicate from
Step 2, the induction hypothesis’ arguments checking that that element’s
recursive subdata satisfy their predicates from Step 2 must be used.

(d) Have as its conclusion that the term constructed using c satisfies the
predicate for its type from Step 2. If ¢ constructs an element of D’s
indexed type then, in the check that this element satisfies its predicate
from Step 2, it is the induction hypothesis’ argument checking that this
element’s term index satisfies the predicate for its type from part ii) of
Step 2 that must be used. If no such argument exists, then it is the induc-
tion hypothesis for this element’s index term, together with the (other)
arguments to the induction hypothesis for this term, that must be used.

4. The conclusion of the clause of D’s deep induction rule for its indexing
or indexed type is that, given an arbitary element of this type and the
ingredients needed to construct its type, if the element satisfies the clause
of D’s lifting for the Step 1 predicates parameterizing its clause of the deep
induction rule, then it satisfies the predicate for its type from Step 2. To
assert that an element of D’s indexed type satisfies its predicate from Step
2, it is the clause of the deep induction rule for the indexing type, together
with the proof projected out from the element’s lifting asserting that the
element’s term index satisfies its lifting, that must be used.

The italicized text above is new relative to [13]. Critically, the projection func-
tions referenced in Step 4 always exist: the inductive-inductive nature of D’s
definition ensures that it is always possible to project out from a proof that an
element of D’s indexed type satisfies its predicate (or the lifting to its type of the
predicates) parameterizing the clauses of the D’s deep induction rule both that
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i) each of the ingredients needed to construct that element satisfies its predicate
(or the lifting to its type of the predicates) parameterizing the clauses of D’s
lifting, and that ii) the same holds for the indexing term of that element.

We show how this construction gives deep induction rules for the IIT of
contexts and types in Section [5] and for the IIT of sorted lists in Section [6}

5 Deep Induction for the IIT of Contexts and Types

To illustrate the derivation of liftings and deep induction rules for IITs, we
begin by deriving both for the IIT of contexts and types from . The above
construction gives the following lifting:

mutual
Ctxt” : (T : Ctxt) — Tyl — Set) — Ctxt — Set
Cext" Qe=T

Ctxt" Q(M-A) =Ty " QI A x Ctxt" QT
Ty" : ((T: Cixt) — Tyl — Set) — (I : Ctxt) — Tyl — Set
TW'Qre=Qr: x Ctxt" QT
Ty QI (MAB) = QI (MAB) x Ctxt" QT x Ty" QI A x
Ty *Q(r-A)B x ((Ctxt" QT x Ctxt" Q (I - A)) — Cixt" QT)

The right-hand side of the clause of Ctxt" for € comes from the facts that
there are no parameterizing predicates on Ctxt alone, that € requires no new or
recursive subdata to construct it, and that the type Cixt is not term-indexed.
In the right-hand side of the clause of Ctxt" for - , both types come from
(ii). As in the previous clause, no types come from (iii) since the type Ctxt is
not term-indexed. In the right-hand side of the clause of Ty” for ¢, the first type
comes from (i) and the second comes from both (ii) and (iii), but only appears
once. In the right-hand side of the clause of Ty” for I, the first type comes from
(i), the next three types come from (ii), and the arrow type comes from (iii).
The observation at the end of the penultimate paragraph of the previous
section ensures that the following projection functions exist for the IIT of con-
texts and types. The function CTprojPrim asserts that if we can lift a predicate
Q to type A in context I, then we know that Q holds of I and A. The function
CTprojlndex asserts that if we can lift a predicate Q to type A in context I, then
we can lift Q to I'. For this IIT there are no further proofs to extract. We have:

CTprojPrim : {Q : (I : Ctxt) - Tyl — Set} — {I': Ctxt} — (A: Tyl —
TV QrA - QrA

CTprojPrim ¢ (Qt,"QlN) = Qv

CTprojPrim (A B) (QMAB, "QB) = QIAB

CTprojindex : {Q : (I': Ctxt) — Tyl — Set} — {I : Ctxt} — (A: Tyl —
Ty " QrA — Ctxt" QT

CTprojlndext (Qt,"Ql) = "Qr

CTprojlndex (MAB) (QMAB, "QB) = CTprojindex A (CTprojlndex B "QB)

(13)

We can use these functions to eliminate redundancies in the lifting in . Specif-
ically, in the second clause of Ctxt” the last term can be omitted since it is deriv-
able from Ty” QT A using CTprojlndex. Similarly, in the clause of Ty for 1 the
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arrow type can be omitted because its conclusion is already present as the second
type, and the second and third types can be omitted because they are derivable
from the fourth using CTprojindex. These simplifications give the following vari-
ant of the above lifting, which we use in the deep induction rule in Figure[I|below:

mutual
Cixt” : (I : Ctxt) — Ty — Set) — Citxt — Set
Ctxt*" Qe=T
Cixt" Q(r-A) =Ty " QrA (14)

Ty” : ((F: Cixt) — Ty — Set) — (I : Cixt) — Ty [ — Set
TV Qri=Qr. x Ctxt"Qr
Ty " Qr(MAB) = QT (MAB) x Ty" Q(F-A)B

While CTprojPrim is not used in the simplifications here, is used to construct
the inhabitants witnessing the soundness of the deep induction rule in Figure [}
Also, other simplifications of are possible, some of which do use CTprojPrim.

The deep induction rule for the IIT of contexts and types in Figure [I] is
now obtained as described starting on page [0] The predicate Q parameterizing
both clauses comes from Step 1. The predicates Pc and Pt come from Step 2.
In the induction hypothesis for hll, e.g., the first three types come from Step
3a, the next three come from Step 3b, the next four come from Step 3c, and
the conclusion comes from Step 3d. The induction hypotheses for the other
data constructors are obtained similarly. Proof witnesses inhabiting the types in
Figure[I]— and, thus, showing that the deep induction rule for the IIT of contexts
and types is sound — are given in the code file that accompanies this paper.

A small application illustrates the usefulness of deep induction for the IIT of
contexts and types. It uses the deep induction rule from Figure[I] to prove that a
type that is hereditarily left-simple is first-order. The predicates leftSimple and
firstOrder are defined as follows:

data nonFunction (I : Ctxt) : Tyl — Set where
nf. : nonFunctionl ¢

leftSimple : (I : Ctxt) — Ty — Set
leftSimple I ¢ = nonFunction T ¢
leftSimple I (M A B) = nonFunction A

firstOrder : (I : Ctxt) — Ty — Set
firstOrder '« = nonFunctionT ¢
firstOrder I (M A B) = nonFunction " A X firstOrder (I - A) B

(15)

Here, the definition of the type nonFunction captures the fact that only ¢ is
not a function type, the predicate leftSimple asserts that a type is left-simple
if it doesn’t have any lls nested on the left of a I, and the predicate firstOrder
asserts that a type is first-order if it doesn’t have any [1s nested on the left of
a 1 and is recursively first-order on the right. We can now precisely state and
prove our desired result — namely, that for any type formed in any context, if
that type is hereditarily left-simple then it is first-order — as in Figure

Note that this application of deep induction uses a non-trivial predicate
leftSimple on the indexed set Ty. But it also uses a trivial predicate on the index-
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mutual

CtxtDInd : (Q : (I : Ctxt) — Ty — Set) —

(Pc: Ctxt — Set) —

(Pt: (I: Ctxt) » Tyl — Pcl — Set) —

(he : Pce) —

(h-: (F: Ctxt) — (A: Tyl) — QT A — (Pcl : PcT) — PtT APl — Pc (- A)) —

(he: (M: Ctxt) > QT e — (Pcl : Pcl) — PtT ¢ Pcl) —
(hIT: (T : Ctxt) — (A: TyT) = (B: Ty (T -A)) » QA — Q(F-A)B — QI (NMAB) —
(Pcl : PcT) — PtT APCl — (PcFA : Pc(T - A)) — Pt(I - A)BPclA — PtT (MAB) Pcl’) —
(F: Ctxt) — Ctxt" QT — PcT

TyDInd : (Q: (I : Ctxt) — Ty — Set) —

(Pc : Ctxt — Set) —

(Pt:(I:Cixt) - Tyl = Pcl — Set) —

(he : Pce) —

(h-: (T : Cixt) = (A: TyT) = QT A — (Pcl : PcT) — PtTAPCl — Pe (M- A)) —
(he: (T : Ctxt) — QT ¢ — (Pl : PcT) — PtT ¢ Pcl) —
(hM: (T : Ctxt) — (A: TyT) = (B: Ty (T-A)) - QTA = Q(T-A)B — QI (MAB) —
(Pcl : PcT) = PtT APl — (PcTA : Pc (T - A)) — Pt (I - A)BPcTA — Pt (MAB)Pcl) —
(F:Ctxt) = (A: Tyl) — ("QA: Ty" QT A) —

Pt A (CtxtDInd Q Pc Pthe h- he hITT (CTprojindex A "QA))

Fig. 1. Deep induction rule for the IIT of contexts and types

ing type Ctxt so that a type of interest can be formed in any context. A second,
larger application of deep induction for IITs that uses non-trivial predicates on
both the II'T’s indexing type and on its indexed type is given in Section

6 Deep Induction for the IIT of Sorted Lists

The application in Section [5| uses a primitive predicate on the indexed type of
the IIT of contexts and types. We now consider the IIT of sorted lists from ,
whose indexing type and indexed type both have the same index type a. Both
clauses of both the lifting and the deep induction rule for the IIT of sorted lists
are thus parameterized over a predicate on a. We have:

mutual
SList” : {{orda : Ordereda}} — (a — Set) — SLista — Set
SList" Qsnil=T
SList" Q (scons {x} {xs} x>xs) = Qx x SList" Qxs x >{* Qx>xs
>{ : {{orda : Ordereda}} — (a — Set) — {x:a} — {xs: SLista} — x >| xs — Set
>0 Q{x}triv=Qx x SList" Qsnil
>0 Qextn {x} {y} {ys}y>ys x>ys) = Qx x Qy x SList" Qys x > Qy>ys x
> Qx>ys x (SList"Qys — SList"Q (sconsy>ys))
(16)
With respect to the construction on page [0] the right-hand side of the clause
of SList” for snil comes from the facts that there is no predicate that can be
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his=>fo : (I : Ctxt) — (A : TyT) — Ty” leftSimple [ A — firstOrder ' A
hls=fol" A hyp = TyDInd Q Pc Pthe h- he h[1T A hyp where

Q: (I:Ctxt) - Tyl — Set

Q = leftSimple
Pc : Ctxt — Set
Pcl=T

Pt: (I: Ctxt) - Tyl — Pcl — Set

Pt APcll = firstOrder ' A

he : Pce

he = tt

h-: (F:Ctxt) > (A: Tyl) - QT A — (Pcl: PcT) = PtT APcl — Pc (I - A)

h-T AQAPcl PtA = Pcl

he: (I: Cixt) = QI e — (Pl : Pcl) — Ptl Pcl

he T QuPcl = Qo

hM: {T: Ctxt} - (A: TylN = (B:Ty(lF'-A) - QrA—-Q(r-A)B —
QI (MAB) — (Pcl: Pcl) — PtIT APcl — (PcTA: Pc(l-A)) —
Pt (- A)BPcl'A — PtT (MAB)Pcl

hIM A B QA QB QMAB Pcl’ PtA PclT'A PtB = (QIAB, PtB)

Fig. 2. Application of deep induction rule for the IIT of contexts and types

applied to snil alone, no new data or recursive subdata is needed to construct
snil, and the type SList has no term indices. In the right-hand side of the clause
of SList” for scons, the first type come from (i), the second and third types come
from (ii), and no types come from (iii) since the type SList is not term-indexed.
In the right-hand side of the clause of >{* for triv, the first type comes from (i)
and the second type comes from both (ii) and (iii), but only appears once. In
the right-hand side of the clause of >{* for extn, the first two types come from
(i), the next three types come from (ii), and the arrow type comes from (iii).
We can use the following projection functions to simplify SList" and >{:

SprojPrim : {{orda : Ordereda}} — {Q :a — Set} — {x:a} —
{xs:SLista} — (x>xs : x > xs) =>{" Qx>xs — Qx

SprojPrim triv Qx = Qx

SprojPrim (extn __ x>ys) (_, Qx>ys) = SprojPrim x>ys Qx>ys

Sprojindex : {{orda : Ordereda}} — {Q :a — Set} — {x:a} —

{xs: SLista} — (x>xs : x > xs) —=>{" Q x>xs — SList"Qxs
Sprojindextriv_ = tt
Sprojindex (extn ) (Qy>ys, ) = Qy>ys

The function SprojPrim asserts that if an element x>xs satisfies its lifting, then the
primitive datum x used to construct it must satisfy Q. To define it, we capitalize
on the facts that > is inductive, and that the parameter x does not change in the
recursive calls in its definition, to project out Qx only once the data constructor
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triv is reached. The function Sprojlndex ensures that if an element x>xs satisfies its
lifting, then its indexing term xs also satisfies its lifting. The functions SprojPrim
and Sprojlndex are the analogues for the IIT of sorted lists of the functions
CTprojPrim and CTprojlndex for the IIT of contexts and types. Using SprojPrim
and Sprojlndex, the first and second types in the clause of SList" for scons are
derivable from the third and thus can be omitted. The second type in the clause
of >{* for triv simplifies to T and so can be omitted. The first three types in the
clause of >{* for extn can similarly be omitted, and the arrow type there can
be omitted because its conclusion SList” Q (sconsy>ys) simplifies to exactly the
fourth type. From these observations we obtain the following simplified version of
the lifting for the IIT of sorted lists, which we use in its deep induction rule below:

mutual

SList” : {{orda : Ordereda}} — (a — Set) — SLista — Set

SList™ Qsnil = T

SList" Q (sconsx>xs) = > Qx>xs

>{ : {{orda : Ordereda}} — (a — Set) — {x:a} — {xs: SLista} — x > xs — Set

>0 Q{x} triv = Qx

>0 Q(extny>ys _x>ys) = >{' Qy>ys x > Qx>ys

(18)

As for the IIT of contexts and types, other simplifications are possible here.

Once we have the lifting for the IIT of sorted lists in hand we can derive its
deep induction rule. This is given in Figure |3] It has two clauses, one for the
indexing type SList and one for the indexed type > . Both of these are parameter-
ized over a predicate Q from Step 1, as well as predicates Pl and P> to be proved
for SList and >\, respectively, from Step 2. Both are also parameterized over the
induction hypotheses hnil, hcons, htriv, and hextn for all of their constructors.
These induction hypotheses are obtained as described in Section 4 For example,
in the induction hypothesis hextn for extn, the first six arguments come from Step
3a, the next two arguments come from Step 3b, the next four come from Step 3c,
and the conclusion of the induction hypothesis comes from Step 3d. Note that
Step 3c gives two (potentially different) proof terms Plys1 and Plys2 of type Plys;
this is explained in the next paragraph. Moreover, in the type of P>yys the term
Plysl witnessing that ys satisfies Pl is used, as specified in Step 3c, and similarly
for Plys2 and P>xys. Also as specified in Step 3d, the conclusion that the term
constructed by extn satisfies P> uses the induction hypothesis hcons and the
arguments to hextn in its assertion that the term index sconsy>ys of the term
constructed using extn satisfies Pl. The induction hypotheses for the other data
constructors are derived similarly. Finally, note that the conclusion of > Dind
uses SListDInd and Sprojlndex, exactly as specified in Step 4 of our construction.

A particular subtlety of deep induction is this: proving that a predicate holds
for a term of the indexed type that has more than one recursive subterm indexed
by the same indexing term can involve more than one proof witness that the
predicate to be proved for the indexing type holds for that index. For example,
the proof witnesses Plysl and Plys2 for Plys in the type of hextn come from the
arguments y>ys and x>ys to hextn, respectively, both of which are indexed by
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mutual
SListDInd : {{orda : Ordereda}} — (Q:a — Set) —

(PI': SLista — Set) —

(P>: {x:a} — {xs:SLista} — x > xs = Plxs — Set) —

(hnil : Plsnil) —

(hcons : {x:a} — {xs:SLista} — (x>xs: x > xs) = Qx —
(PIxs : PIxs) — P> x>xsPlxs — Pl (sconsx>xs)) —

(htriv : {x:a} = Qx — P> {x} triv hnil) —

(hextn : {xy:a} — {ys:SLista} = (y>ys:y >Lys) = (x>y:x > y) = (xX>ys : x >L ys) —
Qx — (Qy: Qy) — (Plysl: Plys) — (P>yys : P> y>ysPlysl) — (Plys2: Plys) —
(P>xys : P> x>ysPlys2) — P> (extny>ysx>y x>ys) (hcons y>ys Qy Plysl P>yys)) —

(xs : SLista) — SList" Qxs — Plxs

> DInd : {{orda : Ordereda}} — (Q :a — Set) —

(PI': SLista — Set) —

(P>: {x:a} — {xs:SLista} = x > xs — Plxs — Set) —

(hnil : Plsnil) —

(hcons : {x:a} — {xs:SLista} — (x>xs : x > xs) = Qx —
(Plxs : PIxs) — P> x>xsPlxs — Pl (sconsx>xs)) —

(htriv : {x: a} = Qx — P> {x} triv hnil) —

(hextn : {xy:a} — {ys:SLista} = (y>ys:y >L ys) = (x>y :x > y) = (x>ys : x > ys) —
Qx — (Qy : Qy) — (Plysl : Plys) — (P>yys : P> y>ysPlysl) — (Plys2 : Plys) —
(P>xys : P> x>ysPlys2) — P> (extn y>ysx>y x>ys) (hcons y>ys Qy Plysl P>yys)) —

{x:a} — {xs:SLista} = (x>xs:x > xs) = (Qx>xs: >{* Qxxsx>xs) —

P> x>xs (SListDInd Q PIP> hnil hcons htriv hextn xs (SprojIndex x>xs Qx>xs))

Fig. 3. Deep induction rule for the IIT of sorted lists

the same element ys of SLista. But different proofs of Plys may have been used
in constructing the proofs P>yys : P> y>ysPlysl and its counterpart for x>ys,
so Plysl and Plys2 need not be identical. This issue also arises for deep induction
for IFs. But it never arises for structural induction since there is always exactly
one way to prove a predicate holds for a given term using structural induction.
As for the deep induction rule for the IIT of contexts and types, proof
witnesses inhabiting the types in Figure [3] — and, thus, showing that the
deep induction rule for sorted lists is sound — are given in the code file that
accompanies this paper. The deep induction rule for the IIT of dense order
completions is also given there. Deep induction rules for II'Ts whose indexing
and indexed types are non-uniform are far more complicated than than those for
the uniform IITs considered here, but these can be obtained by combining the
methodology presented here for IITs with the techniques developed in [T2/T3JT4].
When an indexed type’s indexing set is not inductive we do not necessarily
have a technique at the ready for proving a predicate holds for all of its elements.
But when it is, (structural or deep) induction becomes available. If the II'T’s
indexed type also has the same inductive structure as its indexing type, then its
lifting effectively embeds the deep induction rule for its indexing type. This can
make it possible to further simplify the IIT’s lifting and deep induction rule.
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7 Application of Deep Induction for the IIT of Sorted Lists

As another illustration of the usefulness of deep induction for IITs, in this
section we develop a second, larger application of deep induction that makes
use of non-trivial predicates on both an IIT’s indexing and indexed types.
Specifically, we show how the deep induction rule for the IIT of sorted lists from
Figure |3| can be used to prove that, if > is the built-in ordering on Nat, then
mapping a >- and evenness-preserving function over any list of even natural
numbers in strictly decreasing order results in another such list. We describe
this application in this section, and include our complete Agda solution in the
code file that accompanies this paper.

To prove the aforementioned theorem for sorted lists we require the following
ordering and predicates. As usual, the type Nat of natural numbers is that
from , the relevant ordering is the built-in ordering

instance
NatOrdered : OrderedNat
> {{NatOrdered}} = Nat. >

on Nat, and the predicate even on Nat is given by:

even : Nat — Set
evenzero = [

even (suczero) = L

even (suc (sucn)) = evenn

We also need to check that the sorted lists we are mapping over contain only even
natural numbers that appear in strictly decreasing order. The following mutually
defined functions do this. Although the ordering > on Nat below is transitive,
we define >| as we do in order to accommodate non-transitive orderings as well.

mutual
>SList : SList Nat — Set
>SListsnil = T

>SList (sconsx>xs) = >| x>xs

> {x: Nat} — {xs: SList Nat} — x > xs — Set
> triv=T
> {x} (extn{y}y>ys x>ys) =x >y X >| x>ys X >| y>ys

in the following functions defined using the lifting for sorted lists from :

NEven&DecrSList : SList Nat — Set
"Even&DecrSList xs = SList” even xs x >SList xs

"Even&Decr>|: {x : Nat} — {xs: SList Nat} — x > xs — Set
"Even&Decr>| x>xs = > even x>xs X >| xX>xs

Of course, if we happen to know that an element of SList contains only even
natural numbers and that these numbers appear in strictly decreasing order,
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then we can infer individually both that its elements are all even and that its
elements appear in strictly decreasing order:

"Even&DecrSList="Even : (xs : SList Nat) — "Even&DecrSList xs — SList” even xs
"Even&DecrSList="Even xs (evenxs, ) = evenxs

"Even&DecrSList=-Decr : (xs : SList Nat) — "Even&DecrSList xs —>SList xs
"Even&DecrSList=-Decrxs (_, decrxs) = decrxs

Similarly, if we happen to know that "Even&Decr>| holds for x>xs then we can
both lift even to x>xs and infer that >, x>xs holds:

"Even&Decr>="Even : {x: Nat} — {xs: SList Nat} — (x>xs : x > xs) —
"Even&Decr>| x>xs —>{" even x>xs
"Even&Decr>="Even x>xs (evenx>xs, ) = evenx>xs

"Even&Decr>=Decr : {x : Nat} — {xs: SList Nat} — (x>xs : x > xs) —
"Even&Decr>| x>xs — >| X>xs
"Even&Decr>=Decr x>xs (__,x>xs) = x>xs

These facts will be useful in proving the main result of this section in Figure
The functions to be mapped over sorted lists preserve both the ordering > on,
and the evenness of, natural numbers. The following predicates identify them:

evenPres : (Nat — Nat) — Set
evenPresf = (x : Nat) — evenx — even (f x)

>Pres : (Nat — Nat) — Set
>Presf = (xy: Nat) > x>y = fx>fy

To apply such functions to the elements of the IIT of sorted lists we need map
functions mapSList and map>| for SList and >| , respectively. But in order for the
applications of mapSList and map>| to a function f : a — b to have the expected
types Slista — SListb and > {a} — > {b}, respectively, f must preserve >.
We therefore map only functions f that are monotone over sorted lists:

monotone : {{orda : Ordereda}} — {{ordb : Orderedb}} — (f : a — b) — Set
monotone{a}f = (ala2:a) — al > a2 —fal >fa2

The map function for the IIT of sorted lists is then given by:

mutual
mapSList : {{orda : Ordered a}} — {{ordb : Ordered b}} —
(f: a — b) — monotonef — SLista — SListb
mapSList __ snil = snil
mapSList f monof (scons x>xs) = scons (map>_ f monof x>xs)

map>: {{orda : Ordered a}} — {{ordb : Ordered b}} —
(f :a — b) — (monof : monotonef) — {x:a} — {xs: SLista} —
x > xs — fx > mapSList f monof xs
map>L  triv = triv
map>L f monof {x} (extn {y} y>ysx>y x>ys) =
extn (map> f monof y>ys) (monof xy x>y) (map>_ f monof x>ys)
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To state our theorem we need the following auxiliary results establishing
that, for Nat, boolean equality == is interchangeable with Agda’s built-in
definitional equality =:

====:(m==n)=true>m=n
==== {zero} {zero} p = refl
==== {suca} {sucb} p = congsuc (==== p)

—===Z: (m==n) =false > m#n

~===% {zero} {sucb} p = 0£1+n

~===% {suca} {zero} p = 14+n£0

—===% {suca} {sucb} psuca=sucb = ~===-# p (suc—injective suca=sucb)

Here, cong asserts that its function argument preserves propositional equality,
suc—injective asserts that the data constructor suc for Nat is injective, 0£14n
asserts that the data constructor zero for Nat is not propositionally equal to a
successor natural number, and 14+n#0 asserts that no successor natural number
is propositionally equal to zero. These functions are all defined in Agda’s
standard library. We also need the fact that a function that preserves > on Nat
also preserves > on Nat. This can be coded in Agda as:

>Pres=Mono : (f : Nat — Nat) —>Presf — monotone f

>Pres=Monof >Presfal a2al>a2withal == a2inp

... [false = <=< (>Presfal a2 (S A#£=< al>a2 (E—sym (=== p))))
... | true rewrite ==== {al} {a2} p = <—reflexive refl

Here, <=< asserts that if m < n for m,n: Nat then m < n, <A#=< asserts
that < and # imply <, Z—sym asserts that not being definitionally equal is
a symmetric relation, and <-—reflexive asserts that < is a reflexive relation.
The keyword rewrite allows for the substitution of one expression in a given
type for another based on a given equality proof. More specifically, if g is a
term and q is a proof that | = r, then rewriteq = g convinces Agda to accept a
goal term g whose type is obtained from the original goal type by replacing all
occurrences of | by r. Thus, in the last clause of >Pres=-Mono, in which the term
==== {al} {a2} p of type al = a2 plays the role of g, the goal type fal > fa2
of >Pres=>Monof >Presfala2al>a2 is treated as though it were rewritten by
replacing each occurrence of al by a2. The end result is that Agda is convinced
to accept the goal term <—reflexiverefl, whose type is fa2 < f a2, rather than
requiring a goal term whose type is fal < fa2.
Our desired theorem can now be stated and proved as in Figure [4]

8 Conclusion and Directions for Future Work

This paper gives the first-ever deep induction rules for proper IITs and demon-
strates their soundness. The mutual definition of an II'T’s indexing and indexed
types requires considerably more finesse in defining liftings and deep induction
rules for them than doing so for IFs, in part because they can be parameter-
ized over a larger class of predicates than IFs can without giving trivial results.
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mapPres>&Even : (f : Nat — Nat) — (>Presf : >Presf) — evenPresf — (xs : SListNat) —
SList” even xs — >SListxs — “Even&DecrSList (mapSList f (>Pres=>Mono f >Presf) xs)
mapPres>&Even f >Presf evenPresf xs evenxs =
SListDInd even (Ays — >SListys — "Even&DecrSList (mapSListf ys))
(Ay>ys  — > y>ys — "Even&Decr>| (map>.f y>ys))
hnil hcons htriv hextn xs evenxs where

monof : monotone f
monof = >Pres=Mono f >Presf

mapSListf : SList Nat — SList Nat
mapSListf = mapSList f monof

map>f : {x: Nat} — {xs: SList Nat} — x > xs — fx > mapSListf xs
map>.f = map>. f monof

hnil :>SList snil — "“Even&DecrSList snil
hnil tt = tt, tt

hcons : {x : Nat} — {xs : SList Nat} — (x>xs : x > xs) — evenx —
(>SList xs — "Even&DecrSList (mapSListf xs)) —
(>L x>xs — "Even&Decr> (map>fx>xs)) —
>SList (scons x>xs) — "Even&DecrSList (scons (map>Lf x>xs))
hcons x>xs evenx Plxs P>xxs x>xs = P>xxs x>xs

htriv : {x : Nat} — evenx — > (triv {x = x}) — "Even&Decr>_ {f x} triv
htriv {x} evenx tt = evenPresf x evenx, tt

hextn : {xy : Nat} — {ys: SList Nat} — (y>ys:y > ys) = (x>y : xNat.>y) —
(x>ys: x > ys) — evenx — eveny —>
(>SListys — "“Even&DecrSList (mapSListf ys)) —
(>1L y>ys — "Even&Decr>| (map>(f y>ys)) —
(>SListys — "Even&DecrSList (mapSListf ys)) —
(>L x>ys — "Even&Decr>| (map>L f x>ys)) —
>L (extny>ys x>y x>ys) —
"Even&Decr>L (extn (map>(f y>ys) (monof xy x>y) (map>f x>ys))
hextn {x} {y} y>ys x>y x>ys evenx eveny Plysl P>yys Plys2 P>xys (x>y , x>ys, y>ys) =
("Even&Decr>="Even (map>f y>ys) (P>yys y>ys) ,
"Even&Decr>="Even (map>f x>ys) (P>xys x>ys)),
>Presf xy x>y,
"Even&Decr>=Decr (map>f x>ys) (P>xys x>ys),
"Even&Decr>1=-Decr (map>f y>ys) (P>yys y>ys)

Fig. 4. Application of deep induction for the IIT of sorted lists

But this paper actually delivers far more than deep induction rules for some
specific IITs. It actually gives a general methodology for deriving sound deep in-
duction rules for II'Ts that can be instantiated to particular ones of interest. This
methodology can serve as a basis for conservatively extending proof assistants’
generation of structural induction rules for II'Ts to the generation of deep induc-
tion rules for them, which we have demonstrated are significantly more useful.
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