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Abstract. Functional reactive programming (FRP) offers an expres-
sive programming paradigm for building reactive systems in a functional
style. In recent years, several FRP languages have introduced modal
types to ensure that programs are free from space leaks despite their
high level of abstraction. So far these modal FRP languages only offer
a data-driven (or push) execution model, where computation is driven
by discrete events triggered by the environment. However, many appli-
cations benefit from a demand-driven (or pull) execution model, where
computation is initiated by the consumer of data.

In this paper, we use Elliott’s push-pull evaluation model to build an
FRP library in a programming language with modal types. Addition-
ally, we propose and implement several refinements to Elliott’s push-pull
model to extend its expressiveness. We evaluate our push-pull approach
by implementing a GUI framework and a case study of GUI applications.
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1 Introduction

Functional reactive programming (FRP) is based on a simple but powerful prin-
ciple: It models dynamic behaviour using a first-class type of signals, which we
can manipulate using the expressive power of functional programming. How-
ever, finding an efficient implementation of such a first-class signal type is far
from simple. An attractive approach that has seen considerable development
in recent years is the use of modal types to capture the temporal aspects of
FRP [T2IT3IT5U3I45]. It uses the later type modality O to express that a value
of type (OA is the promise of a value of type A in the next time step. The type
systems of such modal FRP languages are able to keep track of when data is
available to ensure that all programs are operationally well-behaved and can
thus be implemented efficiently without introducing space leaks [I5/3].

Modal FRP languages typically define signals as streams of data where each
discrete step of a stream is separated by one time step using the () modality:

data Sig a = a::: O(Sig a)

Here, as in the rest of the paper, we use Haskell syntax, and we use ::: as an infix
constructor. That is, a signal of type Sig a consists of a value of type a now and
the promise of a new signal in the next time step.
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By its very nature, this model of signals is event-driven: A signal is updated
whenever a suitable event happens, which triggers the ‘next time step’ indicated
by the O modality. This event-driven (or push) model is suitable for many types
of systems. For example, most aspects of GUIs are indeed event-driven, where
discrete user interactions — such as button presses or keyboard inputs — cause
updates in the GUI. However, in other application domains, we would prefer
a demand-driven (or pull) model, where the consumer samples a signal. For
example, we need a demand-driven model for smooth animations where a signal
must be sampled according to the refresh rate of the display.

In this paper, we show that modal FRP languages can indeed support both
models. To this end, we implement a hybrid FRP library based on Elliott’s push-
pull FRP approach [9] in the modal FRP language Async Rattus [I1[5]7]. By
implementing push-pull FRP in Async Rattus, we can make use of the fact that
it is implemented as an embedded language in Haskell and thus has access to
Haskell’s library ecosystem. This allows us to test push-pull modal FRP by using
it to implement a small GUI library along with a small case study in the form of
several minimal GUI applications. The push-pull FRP library, the GUI library
built on top of it, and the case study is available in an online repositoryﬂ

The remainder of this paper is structured as follows: We give an introduction
to modal FRP in Async Rattus in Sect. [2] review Elliott’s Haskell-based push-
pull approach in Sect. and present a simple Async Rattus implementation of
this push-pull approach in Sect. We then revise this simple implementation
of modal push-pull FRP in Sect. [4] in order to extend its expressiveness. This
revised push-pull FRP library is then used in Sect. [f] to implement a simple
GUI library along with a simple example GUI. We conclude with an overview
of related work and a final discussion in Sects. [6] and [7] respectively.

2 Modal FRP

This section gives a brief introduction to the modal FRP language Async Rat-
tus [I1]. Readers familiar with the language can skip this section.

There are two major differences between standard Haskell and Async Rattus.
Firstly, Async Rattus is eagerly evaluated, in contrast to the lazy evaluation
semantics of Haskell. Eager evaluation is a central component in the prevention
of space leaks. Secondly, Async Rattus features a non-standard type system
with two type modalities, () and [, also called the ‘later’ and ‘box’ modalities,
respectively. The later modality expresses the passage of time at the type level.
This makes it possible to differentiate between the type A, which classifies values
that are available now, and the type ()A, which classifies values of type A that
are available in the future. The box modality ensures that values can be safely
and efficiently moved across time. A value of type [JA is a time-independent
computation that produces a value of type A, i.e., this computation can be
moved arbitrarily far into the future without causing space leaks. The most

! Available from https://github.com/pa-ba/AsyncRattus/tree/push-pull
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Fig. 1. Select typing rules for Async Rattus.

important typing rules for the Async Rattus language are shown in Fig. [I] We
describe the type modalities and the typing rules that govern them in more detail
below.

While Async Rattus is implemented as an embedded language in Haskell, this
embedding has to account for the fundamental differences in semantics and type
system. To this end, Async Rattus is implemented by a combination of a Haskell
library, which implements the basic primitives and types of the language, and
a compiler plugin. The compiler plugin transforms the code so that it matches
the eager evaluation semantics of Async Rattus, and it performs an additional
type-checking pass to enforce the stricter typing rules of the language. Async
Rattus also provides strict variants of Haskell’s standard data types such as list
(List a), product (a x b), and sum types (a & b).

A value of type (OA represents a delayed computation that will produce a
value of type A in the future. Conceptually, a value of type (OA is a pair (6, f)
consisting of a so-called clock 6 that tells us when the value of type A is available
and a delayed computation f that will produce the value of type A at the time
promised by 6. An Async Rattus program may receive data from several input
channels such as the keyboard or a button in a GUI. A clock 6 is a set of such
input channels, e.g., § = {Kkeyboards Kok_button > and a tick on § means that data
has been received on some input channel x € 6. This mechanism ensures that
delayed computations respect temporal causality, i.e., a delayed computation is
performed only when appropriate according to the ticking of its associated clock,
which in turn indicates that new data relevant to the delayed computation has
been received.

The two components 6 and f of a delayed computation of type (OA are
accessible via two functions cl:: Oa — Clock and adv :: Qa — a, respectively.
However, cl is not directly accessible to the programmer, and adv is subject to
the typing rule in Fig. [I} which we turn to shortly. Conversely, to construct a
delayed computation, we can use delay, which we can think of as having type
delay :: Clock — a — (Oa for now. That is, it takes a clock 6 and a computation
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f producing a and returns a delayed computation (8, f) that will yield the value
of type a once 6 ticks. While Async Rattus is eagerly evaluated by default,
delay does not evaluate its argument of type a, because it represents a delayed
computation that may only be performed once the associated clock 6 ticks.

Using these functions that interact with the later modality, we can implement
a function that takes a delayed integer and increments it:

incr :: OQlInt — Olnt
incr © = delay(,) (adv z + 1)

The function takes z :: ()Int as an argument and then calls delay using the clock
of z to produce a delayed computation. According to the typing rule for delay,
this changes the typing context from z :: OlInt to x :: OlInt, ;). That is, the
typing context contains the token v(j(,, which indicates that time has passed on
the clock cl(z) and that x is now one time step older. The presence of this token
Vd(z) in the typing context allows us to use adv, whose typing rule states that it
can only be used on an argument ¢ if the typing context contains a token v -
Moreover, t itself may only use variables that occur to the left of that ).

This interaction between delay and adv demonstrates that the former moves
ahead in time, indicated by the v token, whereas the latter moves back in time,
indicated by the removal of the v token. In addition, when we use adv, all vari-
ables that were available in the future — i.e., to the right of v'— are no longer
available once we move back in time again. This typing discipline is important to
avoid FRP programs that are non-causal such as the following function, which
makes a future value already available now:

now :: Olnt — Int -- Does not type-check since there is
now xr = adv z -- no token v{(,) in the context.

In the definition of incr we have included the clock annotation cl(z) on delay
only for the purpose of explaining the typing rule. The Async Rattus type checker
will infer the correct clock annotation if there exists one, so that the definition
of incr is in fact written as follows:

iner 2 Qlnt — Olnt
incr x = delay (adv z 4 1)

In addition to adv, Async Rattus also features select, which tries to advance
two delayed computations. As two delayed computations may have different
clocks, their delayed values may not be available at the same time. To account
for that, select returns a value of type Select that covers the three possible cases
of when two delayed values will arrive. Either the first one arrives first, the
second one arrives first, or both arrive at the same time:

data Select a b= Fst a (Ob) | Snd (Oa) b | Both a b

Signals are represented by the recursive type we have seen in the introduction:
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data Sig a = a ::: O(Sig a)

This type allows us to implement common combinators on signals such as map
to apply a function to a signal and switch to dynamically switch between two
signals. However, the naive implementation of map does not work:

mapLeaky :: (a — b) — Sig a — Sig b -- fis no longer in scope below
mapLeaky f (x ::: xs) = f x ::: delay (mapLeaky f (adv xs))

The problem is that functions may store time-dependent data in their closure
and thus moving functions into the future could lead to space leaks. Therefore,
function types like a — b are not considered stable types. Only variables that
have a stable type can be moved into the future. This can be seen in the typing
rule for variables. If a variable x :: A occurs to the left of a v"token in the typing
context, we can only use z if A is a stable type. All base types such as Int and
Bool are stable, as are product, sum, and recursive types that combine stable
types. By contrast, types of the form (Qa and a — b are not stable, as moving
values of this type into the future may cause space leaks. But we can turn any
type into a stable type using the O modality. In particular, O(a — b) is stable.

map :: O(a — b) = Sig a — Sig b
map [ (x ::: 2s) = unbox f z ::: delay (map f (adv s))

In this revised implementation, f is still in scope under the delay since it is of a
stable type. But we need to use unbox to turn f :: O(a — b) into a function of
type a — b before applying it to z :: a. The corresponding introduction form box
for (0 makes sure that its argument ¢ only references variables of stable type by
requiring ¢ to be typed in the modified context I'J. This context I'™ is obtained
from I" by removing all variables x :: A where A is not stable.

In addition to the 0 modality to construct stable types, Async Rattus also
has the Stable type constraint that allows us to restrict type variables to stable
types. For example, we can implement a buffer combinator that takes a signal
and moves it one time step into the future by keeping the current signal value
one time step longer:

buffer :: Stable a = Sig a — O(Sig a)
buffer (z ::: zs) = delay (z ::: buffer (adv zs))

The buffer function type-checks since type a is stable, and therefore z :: a is still
in scope under the delay.

Finally, Async Rattus features the monad C to accommodate limited side
effects, which is necessary due to Haskell’s purity. We can observe the current
time with time, and we can allocate channels with chan. In turn, a channel of
type ¢ :: Chan A can be used to receive data of type A. To wait for the arrival
of such data we write wait ¢, which gives us a delayed computation of type (A,
which will tick as soon as data is received on channel ¢. All channel types Chan A
are stable, and thus channels can be freely moved into the future. For example,
any channel gives rise to a delayed signal of the same type:
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chanSig :: Chan a — (O(Sig a)
chanSig ¢ = delay (adv (wait ¢) ::: chanSig c)

Due to the limited nature of the side effect encapsulated by C, Async Rattus
allows such computations to be run in the presence of a tick via the primitive
run:: O(C a) — Oa. For example, we can implement a combinator that allows
us to look up the time in any delayed computation:

withTime :: O(Time — a) — QOa
withTime df = run (delay (adv df (§) time))

In the above definition, we use the fact that any monad m is also a functor with
an application operator () ::(a — b) = m a — m b.

3 Simple Push-Pull FRP

Elliott’s push-pull FRP [9] combines discrete, event-driven FRP as exemplified
by the Sig type found in modal FRP systems with a continuous, demand-driven
version of FRP as exemplified by the Behavior type in the original work on
FRP [g]. In this hybrid approach, events represent discrete values and use push-
based evaluation, while behaviours represent continuous time-varying values us-
ing both push- and pull-based evaluation. We first review the essence of Elliott’s
approach in its original implementation language, namely plain Haskell, and then
show how it can be implemented in Async Rattus.

3.1 Push-Pull FRP in Haskell

Elliott’s push-pull approach features a type Reactive that corresponds to the Sig
type found in modal FRP but without the modal typing discipline. This type
forms the basis of the ‘push’ half of ‘push-pull’:

data Reactive a = a ‘Stepper‘ Future (Reactive a)
newtype Future a = Fut (FTime, a)

In this definition, Future plays the role that () plays in Async Rattus. It is a
pair (¢, v) consisting of a (lazy) value v and a time stamp ¢ indicating when the
value v is available.

Because Reactive is event-driven, it can be used to model discrete events:

type Event a = Future (Reactive a)

To model demand-driven behaviours, Reactive values are combined with func-
tion types:

type Behaviour a = Reactive (Time — a)

That is, similarly to classic FRP [8], a behaviour is a function from time to values.
But unlike classic FRP, these function can be updated by discrete events that
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produce new functions from time to values. That is, Behaviour a is isomorphic
to (Time — a) x Event (Time — a).

Finally, this type of behaviours is refined to allow limited forms of symbolic
representations of time functions that enable optimizations:

type Behaviour a = Reactive (Fun Time a)
data Fun t a = K a| Fun (t — a)

Using these simple building blocks, Elliott is able to implement a rich and expres-
sive FRP library. However, Haskell lacks the type system to ensure important
operational properties such as causality and absence of space leaks. For example,
we can implement the counterexamples now and mapLeaky from Sect. [2] which
Async Rattus rules out:

now :: Future a — a

now (t,z) =z

mapLeaky :: (a — b) — Reactive a — Reactive b

mapLeaky f (x ‘Stepper' xs) = f x ‘Stepper‘ (mapLeaky f (now zs))

3.2 Push-Pull FRP in Async Rattus

The type definitions of Elliott’s push-pull FRP can be translated directly into
Async Rattus by simply replacing Future with (). Moreover, in anticipation of
the refinements we introduce in Sect.[d] we rename the Fun type to Pull:

type Ev a = ((Sig a)
type Beh a = Sig (Pull a)

data Pull a = K a | Fun (O(Time — a))

In addition, we also revise the definition of Fun so that it uses a boxed function
type. We shall see an example of why this is necessary shortly.

Using this simple definition for behaviours and events, we can implement a
basic FRP library (cf. Fig.|[2)) that provides many of the signal combinators found
in modal FRP languages [TTI2I3/15]. However, compared to standard modal FRP
libraries, this library has a clear distinction between discrete and continuous
signals, which are now represented by Ev and Beh, respectively. Moreover, the
library can express arbitrary continuous behaviour using cont.

Events. Since events are just delayed signals, the three combinators that only
manipulate events — mapF, interleave, scan, and chanEv — can be implemented
in the same way as corresponding combinators on Sig. For example:

mapE :0(a = b) > Fva— Evb
mapE f xs = delay (let (z ::: 2s") = adv zs in unbox f x ::: mapE f xs’)
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mapE =0(a—b) > Eva— Evb

interleave :: J(a — a — a) > Eva — Eva— Ev a

scan 2 Stable b = 0(0b—a—b) —>b—Fva— Evb
chanEv :: Chan a — Ev a

cont = 0(Time — a) — Beh a

const ::a — Beh a

discr ita— Eva— Beha

mapB ::0(a — b) — Beh a — Beh b

zipWith  :: (Stable a, Stable b) = O(a — b — ¢) — Beh a — Beh b — Beh ¢
switch ~ :: Beh a — (O(Beh a) — Beh a

switchS  :: Stable a = Beh a — O(a — Beh a) — Beh a

switchR  :: Stable a = Beh a — Ev (a — Beh a) — Beh a

Fig. 2. Simple Async Rattus push-pull FRP library.

The interleave function interleaves the occurrences of two events using a
tie-breaker function for the case that both events occur simultaneously:

interleave ::0(a — a — a) > Fv a = Ev a — Fv a

interleave f xs ys = delay (case select zs ys of
Fst (z::as) ys' =z iz interleave f xs’ ys'
Snd  xs’ (y:ys') —y i anterleave f s’ ys’
Both (z ::: zs’) (y ::: ys’) — unbox f z y ::: interleave f xs' ys')

The select primitive of Async Rattus takes two delayed computations, zs and
ys, and advances whichever of the two arrives first or both if they arrive at
the same time. In the latter case, we use the tie-breaker function f and ap-
ply it to the values of the two values that we observe. For example, if we call
interleave (box (Az y — x)) evy eva, we bias the interleaving to always pick the
event occurrences from evy; whenever both ev; and evs fire.

The scan function is similar to Haskell’s scanl function on lists. For example,
we can us it to implement a function that sums up the integers received from an
event:

sum :: Bv Int — Fv Int
sum = scan (box (+)) 0

Behaviours. The simplest behaviours are produced by cont and const, which
use never :: (a to construct behaviours that never receive push updates:

cont :: O(Time — a) — Beh a const :: a — Beh a
cont f = Fun f ::: never const x = K x ::: never

The discr function turns any event ev into a behaviour that changes its value
every time the event ev fires and remains constant otherwise:
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discr ::a — Ev a — Beh a
discr initial ev = (K initial ::: mapE (box K) ev)

Similar to mapFE on events, we can pointwise apply boxed functions to be-
haviours via a corresponding mapB combinator, which in turn is implemented
by a corresponding mapP combinator on Pull:

mapB ::O(a — b) — Beh a — Beh b

mapB [ (z ::: x8) = mapP f x ::: delay (mapB f (adv xs))
mapP ::0(a — b) — Pull a — Pull b

mapP f (K a) = K (unbox f a)

mapP f (Fun t) = Fun (box (unbox f o unbox t))

Since behaviours are continuous and thus have a value at any point in time,
we can pointwise combine two behaviours similarly to the familiar list functions
zip and zip With. That is, given two behaviours, as:: Beh a and bs:: Beh b along
with a function f: O(a — b — ¢), zip With produces a new behaviour of type
Beh c that at each time t has the value unbox f a b, where a and b are the
values of as and bs at time t. To implement this combinator, we first, generalize
mapP to two Pull arguments:

mapP2 :: (Stable a, Stable b) = O(a — b — ¢) — Pull a — Pull b — Pull ¢
mapP2 f (K z) (K y) =K (unbox f z y)

mapP2 f (Fun x) (Fun y) = Fun (box (At — unbox f (unbox z t) (unbox y t)))
mapP2 f (Fun z) (K y) = Fun (box (At — unbox f (unbox z t) y))

(K z) (Fun y) = Fun (box (unbox f x o unbox y))

The last two equations of the definition above are the reason for requiring the
two types a and b to be stable: In the third equation, y :: b is moved into a box,
and in the fourth equation z :: a is moved into a box.

We can use mapP2 to implement our zip With function as follows:

mapP2 f

zip With :: (Stable a, Stable b) = O(a — b — ¢) — Beh a — Beh b — Beh ¢
zipWith f (z ::xs) (y i ys) =
mapP2 f x y ::: delay (case select zs ys of

Fst  xs' lys — zipWith | xs’ (y::: lys)
Snd lzs ys' — zipWith f (x ::: lzs) ys'
Both xs’ ys' — zipWith | xs’ ys')

In addition to requiring the Stable constraints on @ and b for the use of mapP2,
we also need them in order to move z :: Pull a and y :: Pull b into the delay so
that they can be used in the recursive call to zip With. Here we make use of the
fact that Stable a implies Stable (Pull a). However, this is only true because we
used the boxed function type O( Time — a) in the definition of Fun rather than
just the plain function type Time — a, which is not stable.

Finally, behaviours can be switched dynamically using the switch combinator:



10 L. Faurby Klausen et al.

switch :: Beh a — O(Beh a) — Beh a

switch (z ::: x8) d = x ::: delay (case select xs d of
Fst s’ d' — switch zs" d’
Snd _ d' —d
Both _ d' — d')

This implementation, is in fact the same as the switch combinator found in
asynchronous modal FRP libraries [BIT1I7] since the switching itself is essen-
tially event-driven. The switch combinator also has two variants: switchS allows
the new behaviour to depend on the last value of the original behaviour, and
switchR generalizes this further by allowing the second argument to produce
new behaviours several times instead of only once.

To implement switchS, we need two additional ingredients. First, we imple-
ment a helper function that allows us to sample a Pull value at a given time:

at :: Pull a = Time — a
at (Kz)_ =z
at (Fun f) t = unbox f ¢

Second, we need to obtain the current time so that we can sample the current
value of a behaviour. To this end, we use withTime :: O(Time — a) — Oa from
the end of Sect. [2] which allows us to read the time in the next time step:

switchsS :: Stable a = Beh a — (O(a — Beh a) — Beh a
switchS (z ::: xs) d = x =:: withTime (delay (At —
case select s d of Fst xs’ d' — switchS zs' d’
Snd — f = f(x‘at't)
Both — f — f (z‘at‘t)))

As soon as the delayed computation ticks and gives us a function f:: a — Beh a,
we apply f to the current value of the old behaviour (z ::: zs). We obtain that
value by sampling z :: Pull a at the current time. Unlike switch, the switchS
combinator requires a to be stable since we have to move z into the future when
f has arrived.

The generalization to switchR works in a similar manner. But instead of
just switching to the new behaviour for good, it switches anew whenever a new
function f :: @ — Beh a is produced by the event argument:

switchR :: Stable a = Beh a — Ev (a — Beh a) — Beh a
switchR (z ::: xs) ev = x ::: withTime (delay (At —
case select zs ev of
Fst zs’ ev' — switchR xs’ ev’
Snd _  (f ::ev') — switchR (f (z‘at' 1)) ev’
Both _  (f ::: ev’) — switchR (f (z ‘at‘ t)) ev'))
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filter ::0(a — Bool) — Ev a — Ev a

filterMap ::O(a — Maybe' b) — Eva— Evb

sample  :: Stable a = 0(a — b — ¢) = Eva— Behb— Fv b
stop ::0(a — Bool) — Beh a — Beh a

stopWith ::0(a — Maybe’' a) — Beh a — Beh a
derivative :: Beh Float — C (Beh Float)
integral  :: Float — Beh Float — C (Beh Float)

Fig. 3. Extended FRP library supported by the refined definition of Beh and Ewv.

4 Extended Push-Pull FRP

The simple push-pull modal FRP library from Sect. (summarized in Fig.
provides the basic combinators we expect to find. In order to support more
advanced combinators, we have to refine the definition of behaviours and events.
As a result, we can extend the FRP library from Fig. [2] with the combinators
listed in Fig.

4.1 Events

We first consider the filter combinator: An event filter p e only contains those
event occurrences of e that satisfy the predicate p. It is not possible to implement
this combinator with the simple definition of events. The issue is that we can only
consume a delayed computation — and thus check whether the value it produces
satisfies a predicate — if we also promise to construct a new delayed computation.
In other words, we cannot skip a () modality from an input. In particular, there
is no general operation of type O(Qa) — Qa. As a consequence, the filter
function must have a return type reflecting that some event occurrences may be
skipped:

filter :: O(a — Bool) — Ev a — Ev (Maybe’ a)
filter p = mapE (box (Az — if unbox p z then Just’ z else Nothing'))

This definition uses a strict variant of the standard Maybe type with constructors
Nothing’ :: Maybe' a and Just’ :: a — Maybe’ a.

An issue similar to the one for filter above also occurs when we try to im-
plement a sample combinator that samples a behaviour with an event. The best
we can do is give sample a return type Ev (Maybe' b) instead of Ev b:

sample :: Stable b = 0(a — b — ¢) — Fv a — Beh b — Fv (Maybe’ ¢)
sample f ev (x ::: xs) = run z ev zs where
run z ev xs = withTime (delay (At — case select ev zs of
Snd  ev’ (2’ ::: ") — Nothing’ zirun ' ev’ xs’
Fst (e::ev') as’ — Just’ (unbox f e (z ‘at‘t)) ::runax ev’ xs’
Both (e ::: ev') (z' i xs’) — Just’ (unbox f e (x' ‘at‘ t)) ::: run 2’ ev’ xs"))
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The event sample f e b samples b whenever e occurs and produces an occurrence
of the returned event using the function f. The issue is the case for Snd where
no event occurs, but the behaviour updates. Thus, we are forced to produce a
value even though the event has not fired, and therefore we should not sample
the behaviour. By making the return type use Maybe’, we can use Nothing’ in
the Snd case to indicate that we do not produce a sample.

To accommodate the intended semantics of filter and sample, we revise the
type Ev so that it can represent events that do not produce a new value each
time the clock of the delayed signal ticks:

data Ev a = Dense (O(Sig a)) | Sparse (O(Sig (Maybe’ a)))

That is, in addition to the old representation of events as ()(Sig a), we also
allow a sparse representation, which may not produce a value on each tick of
the clock associated with the delayed signal. Having separate dense and sparse
representations is not strictly necessary, but it allows for more efficient imple-
mentations of events that are constructed using only dense combinators such as
all those in Fig. 2] For example, mapFE is now implemented as follows:

mapE ::0(a = b) = Eva— Ev b
mapE f (Dense sig) = Dense (run sig) where

run:: O(Sig a) = O(Sig b)

run sig = delay (let z ::: zs = adv sig in unbox f z ::: run zs)
mapE [ (Sparse sig) = Sparse (run sig) where

run :: O(Sig (Maybe' a)) — O(Sig (Maybe' b))

run sig = delay (let z ::: s = adv sig in (unbox f (§) ) ::: run zs)

For a Dense event, the implementation is the same as in Sect. before, which
again yields a Dense event. The Sparse case works in a similar fashion and
produces a Sparse event. The other two event combinators interleave and scan
can be generalized in the same way as well.

More importantly, the revised definition of Fv allows us to implement fil-
tering of events and sampling of behaviours. For example, filtering can now be
implemented as follows:

filter :: O(a — Bool) — Ev a — Ev a
filter p (Dense ev) = Sparse (run ev) where
run ev = delay (let z ::: zs = adv ev
in (if unbox p = then Just’ x else Nothing’) ::: run zs)
filter p (Sparse ev) = Sparse (run ev) where
run ev = delay (case adv ev of
Nothing' ::: s — Nothing’ ::: run zs
Just' x i axs — (if unbox p = then Just’ = else Nothing’) ::: run as)

4.2 Behaviours

We now turn to behaviour combinators that cannot be expressed using the simple
representation from Sect. [3] namely stop, derivative, and integral from Fig. [3]
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We account for these combinators by generalizing the definition of Pull a so
that it no longer represents functions from Time to a but rather some form
of state machine. We will perform this generalization in two steps: The first
generalization allows us to halt a behaviour during its pull mode. We then further
extend this to more general state machines.

The behaviour stop p b first behaves like behaviour b, but remains constant
as soon as b has a value that satisfies the predicate p. This is useful for example
if b is a timer which should stop once it reaches its maximum value. The variant
stopWith p b is a slight generalization of stop: As soon as p produces a value
Just’ v, the behaviour stops and takes on the constant value v. To be able to
represent behaviours that may stop in between ticks of a clock, we only have to
extend Fun so that it allows us to return a Boolean flag indicating whether the
behaviour has stopped:

data Pull a = K a | Fun (Time — (a x Bool))
With this representation, we can implement stop as follows:

stop :: d(a — Bool) — Beh a — Beh a
stop p (K x ::xzs) = K z::if unbox p x then never else delay (stop p (adv zs))
stop p (Fun f ::: xs) = Fun (box (At — let (z X b) = unbox f ¢
in (z x (unbox p z V b)))):
:: delay (stop p (adv zs))

When stop encounters a constant, we stop the behaviour by just producing a
delayed behaviour that will never update. In the Fun case we update the Boolean
component of the return value. The stop With combinator is implemented in a
similar fashion. The old behaviour combinators from Fig. [2] have to be updated
to respect the Boolean stoppage flag.

We further generalize Pull so that it can represent state machines, which
allows us to implement combinators to perform derivation and integration. To
this end, we replace the Fun constructor with an SM constructor that takes two
arguments: The current state of some type s and a function that makes the state
machine perform one state transition. The Pull type is now defined using the
syntax for generalized algebraic data types so that we can existentially quantify
the type s and restrict it to the Stable type class:

data Pull a where
K :@:a— Pulla
SM :: Stable s = s — O(s — Time — (a x Maybe’ s)) — Pull a

Applying the function stored by SM to the current state and time, gives us
the current value of the behaviour and possibly a new state. If no new state is
returned, the behaviour stops. So this definition allows us to implement stop and
stop With along with the other behaviour combinators from Fig.

With this revised definition of Pull, we can still look up the current value of
a Pull element via the af function and construct continuous behaviours:
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at :: Pull a — Time — a

at (Ka) _=a

at (SM s f) t = fst’ (unbox f s t)

cont :: O(Time — a) — Beh a

cont f = SM () (box (A_t — (unbox f ¢ x Just’ ()))) ::: never

To implement a continuous behaviour we pick the unit type () as the state space
of the state machine, so that the state transition function simply applies the
given function f and remains in the () state.

To illustrate how we can make use of the state machine in Pull, we consider
the implementation of the derivative and integral combinators shown in Fig.
Note that instead of plain behaviours of type Beh Float both combinator produce
behaviours in the C monad, which we need to read the current time using
time:: C' (Time). The derivative requires timing information in order to compute
a numerical approximation of the derivative: Given an observed value v :: Float
at time ¢ :: Time and another value v’ :: Float shortly later at time ¢’ :: Time,
the value of the derivative at time ¢’ can be computed as (v' — v) / (¢ © )
where © :: Time — Time — Float computes the time difference between two
time points measured in seconds. Here we only consider Float behaviours, but
the definition can be easily generalized to any type representing a vector space.

The main work of derivative is performed by the der helper function which
takes two additional arguments: the previously observed value vy and the time
tp at which vy was observed. The C' monad of the derivative combinator is only
used to obtain the first such time stamp #;. The behaviour produced by der
uses the SM constructor so that it can use the state to store the last observed
value vy of the underlying behaviour and the time ¢, at which vy was observed.
In addition, if the underlying behaviour itself uses a state machine, the state
machine produced by der also stores the state s of the underlying state machine.

The implementation of integral uses a similar idea — with only two notable
differences: First, instead of keeping track of the last observed value vy from the
underlying behaviour, it keeps track of the last produced value ¢ of the integral
and uses that as the integration constant. Initially, this integration constant c¢
is the first argument provided to the integrate combinator. Second, in case the
underlying behaviour uses a state machine with state space s, it produces a state
machine with state space Float x Time x (s @ Float), where @ is the strict sum
type constructor. This is necessary to account for the fact that if the underlying
state machine stops and maintains a constant value v :: Float, the new state
machine needs to keep track of v instead of the state s of the underlying state
machine.

5 GUI Programming

Async Rattus provides a library for constructing GUISs using signals [7]. Since this
library uses signals, it only supports event-driven reactive programming. This
is sufficient for most applications, since GUIs are mostly event driven. But this
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derivative :: Beh Float — C (Beh Float)
derwative (x ::: 1) = (At — der (z ::: xs) (z ‘at’ t) t) (§) time where
der :: Beh Float — Float — Time — Beh Float
der (K z ::2zs) vo to = SM (vo X to) (box fun) ::: next where
next = withTime (delay (der (adv xs) z))
fun (vo X to) ' = (z —w) / (t ©to) X Just’ (z x t)
der (SM s f :::2zs) vo to = SM (vo X to X s) (box fun) ::: next where
next = withTime (delay (At — der (adv zs) (SM s f ‘at‘ t') t'))
fun (vo X to X 8) t' = case unbox f s to of
vx Just's' = (v—w) /(' Sto) x Just’ (vxt xs)
_ x Nothing’ — 0 x Nothing’
integral :: Float — Beh Float — C (Beh Float)
integral ¢ (Beh zs) = Beh (3) int zs ¢ () time where
int :: Sig (Pull Float) — Float — Time — Sig (Pull Float)
int (K a::xs) ct =SM () (box fun) ::: next where
next = withTime (delay (A\t' — int (adv zs) (c + a* (t' ©t)) t'))
funst' =c+ax(t' ©t)x Just' s
int (SM s f:as) ct=S8M (cxtx Left' s) (box fun) ::: next where
next = withTime (delay (A\t' — int (adv zs) (c + (SM s f ‘at* ') * (¢’ © ¢)) t'))
fun (ex t xIs) t' = ¢ x Just’ (¢/ xt' xs)
where ' =c+ovx (' ©Ot)
v X s’ = case Is of Right’ v — v x Right’ v
Left' Is'" — case unbox f Is’ t of
v X Nothing’ — v x Right’ v
v X Just s’ — v x Left' s

Fig. 4. Implementation of derivatives and integrals.

event-driven approach lacks means to express inherently continuous behaviour
such as smooth animations. A simple example of this is a progress indicator for
a timer, which should update smoothly rather than discretely.

5.1 A Simple GUI Library

In this section, we present an alternative GUI library for Async Rattus that is
built upon events and behaviours. To this end, we begin by first reviewing the
original, event-driven GUI library of Async Rattus, called Widget Rattus.

GUIs are implemented in Widget Rattus as nested widgets. Such widgets
include atomic UI elements such as text fields and buttons. In addition, some
widgets consists of other widgets such as a stack of widgets that are horizontally
aligned on screen. For example, buttons and text fields are represented by the
following types:

data Button = Button {btnContent :: Sig Text, btnClick :: Chan ()}
data TextField = TextField {tfContent :: Sig Text, tfInput :: Chan Text}

That is, a button consists of a signal that describes the text that should be
displayed on the button and a channel that will produce a value () every time
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the button is pressed. A text field has a similar structure, except that its channel
has type Chan Text since it produces the text that the user has written into the
text field.

Widgets can be combined into compound widgets such as a horizontal stack:

data HStack where HStack :: IsWidget a = Sig (List a) — HStack

The HStack type uses an existential type a to allow arbitrary types of widgets
to be combined. Importantly, a stack does not merely consist of a list of widgets
but rather a signal of a list of widgets, which means that the list of widgets may
change dynamically over time.

The design of the push-pull variant of the Widget Rattus library is very sim-
ple. It replaces signals with behaviours, so that the above widget types become

data Button = Button  {btnContent :: Beh Text, btnClick :: Chan ()}
data TextField = TextField {tfContent :: Beh Text, tfInput :: Chan Text}
data HStack where HStack :: IsWidget a = Beh (List a) — HStack

That is, the data made up by these widgets is described as time-varying data,
i.e., as behaviours. By contrast the channels associated with widgets give rise to
corresponding events. For example, each text field has an event that fires each
time the text of the text field is changed by the user:

tflnputEv :: TextField — Fv Text
tfInputEv tf = chanEv (tfInput tf)

Each widget provides smart constructors that allocate fresh channels using the
chan primitive of Async Rattus. For example, buttons are constructed as follows:

mkButton :: Beh Text — C Button
mkButton t = do ¢ < chan
return (Button c t)

As a simple example, consider the implementation of a primitive timer GUI
presented in Fig. |5l To aid readability, the let bindings use optional type anno-
tations for the constructed intermediate behaviours and events. The implemen-
tation constructs a behaviour startTime whose value is the time at which the
timer was started. To reset this start time every time the reset button is pressed,
we use sample, which samples the current time each time the button is pressed.
To save this sampled time we use discr. The timer value itself is then simply
calculated as the difference of the start time and the current time.

5.2 Implementation

The push-pull GUI library can be implemented with relative ease: All widgets
are implemented by translating them into a widget of the underlying Widget
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timeB :: Beh Time
timeB = cont (box id)
window :: C' VStack
window = do
resetBtn < mkButton (const "Reset timer")
now <— time
let resetEv B () = btnOnClickEv resetBtn
let startTimeFEv :: Ev Time = sample (box (A_t — t)) resetEv timeB
let startTime :: Beh Time = discr now startTimeEv
let timer = zip With (box (©)) timeB startTime
let tzt = mapB (box (At — "Current: " <> toText t)) timer

label <— mkLabel txt
mkConstVStack (label X resetBin)
main :: 10 ()
main = runApplication window

Fig. 5. Simple timer GUIL

Rattus library. In fact, the IsWidget type class, which is implemented by all
widgets, provides witnesses of such a translation function from push-pull widgets
to widgets from the underlying Widget Rattus library:

class WidgetRattus.IsWidget (DiscrWidget w) = IsWidget w where
type DiscrWidget w
mkDiscrWidget :: w — C (DiscrWidget w)

Each widget type w must provide a translation function to a corresponding
‘discretized’ widget DiscrWidget w. In turn, this discretized widget type must
be a widget type from the Widget Rattus library. For example, buttons are
implemented as follows:

instance IsWidget Button where
type DiscrWidget Button = WidgetRattus. Button
mkDiscrWidget (Button click txt) = do
tat’ < discretize tut
return ( WidgetRattus. Button tzt' click)

The type definition declares WidgetRattus. Button the corresponding type from
the underlying Widget Rattus library and the translation function performs this
translation by discretizing the behaviour that describes the button’s text into a
discrete signal. The implementation of this discretization is given in Fig. [0}

The discretize function samples a given behaviour in order to obtain a discrete
signal. To this end, discretize uses the C' monad to obtain the current time, which
is needed to sample any state machine SM s f that the given behaviour might
produce. To drive the discretization, we also need a delayed computation that
ticks at a desired rate, in this case 50 times a second, which is provided by
samplelnterval.
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samplelnterval :: O()
samplelnterval = timer 20000
discretizeT :: Beh a — Time — Sig a
discretizeT (K x ::: xs) — = x ::: withTime (delay (discretizeT (adv zs)))
discretizeT (SM s f ::: zs) t = cur ::: next where
(cur x ') = unbox f s t
next = case s’ of
Nothing' — withTime (delay (discretizeT (Beh (adv zs))))
Just" 8" — withTime (delay (case select zs samplelnterval of
Fst zs' _ — discretizeT zs’
Both zs' _ — discretizeT zs'
Snd beh’ _ — discretizeT (SM s" f ::: beh')))
discretize :: Beh a — C (Sig a)
discretize b = discretizeT b ($) time

Fig. 6. Discretization of behaviours to signals.

The discretizeT function is initialized with the current time and then recur-
sively traverses the given behaviour. The case for K is simple, as no sampling
needs to be performed. In the case of a state machine SM s f, we advance the
state machine by calling f with the current state s and current time ¢. If the
state machine stops, no further sampling is possible, and we therefore continue
with the tail of the behaviour. Otherwise, we need to recursively sample the
state machine again by using samplelnterval: If samplelnterval ticks before the
tail of the behaviour ticks, then must recursively sample with the new state s”.
Otherwise, we can continue with the tail of the behaviour.

5.3 Extended Example

We have used the GUI library to implement a number of small case studies,
including a calculator application and four examples of Kiss’ 7 GUIs bench-
mark [I4]. We include one of these case studies — an extended timer application
~ in abbreviated form in Fig. [7] Similar to the simple timer from Fig. [5] this
extended timer has a ‘reset’ button to reset the timer to zero, and it displays
the current time. In addition, the extended timer also has a slider with which to
set a maximum time that determines when the timer will stop. This maximum
is initially set to 5 seconds, which means that the timer stops after 5 seconds.

The basic behaviour of the timer is defined by the timeFrom function which
takes two time values (of type DTime, which represents time differences): the
maximum and the starting value for the timer. The slider has an associated event,
provided by the sliderEv :: Slider — Fv Int function, which fires every time the
value of the slider is changed by the user. We then use fromSec::Int — DTime to
turn the integer values into corresponding time values in seconds. The resulting
event mazValEv is turned into an event mazFEv of type

Ev (DTime x DTime — C (Beh (DTime x DTime)))
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stopTimer :: DTime — (DTime x DTime) — Maybe' (DTime x DTime)
stopTimer maz (a X _) | a > mar = Just' (maz X maz)
| otherwise = Nothing’
timeFrom :: DTime — DTime — C (Beh (DTime x DTime))
timeFrom d max = do dt < elapsedTime
let addTime = mapB (box (At — t 4+ d x max)) dt
return (stop With (box (stopTimer maz)) addTime)
inttialMaz :: Int
initialMar =5
timerGUI :: C' VStack
timerGUI = do

-- Slider
mazSlider < mkSlider initialMaz (const 1) (const 100)
let maxBeh :: Beh Int = sldCurr mazSlider

let mazValEv :: Ev DTime = mapE (box fromSec) (sliderEv mazSlider)

-- Reset button
resetBtn < mkButton (const "Reset timer")
let resetTrigger :: Ev DTime = btnOnClickEv resetBtn

-- Input events: Ev (DTime X DTime — C (Beh (DTime x DTime)))
let resetEv = mapE (box (A_ (= X maz) — timeFrom 0 maz)) resetTrigger
let mazEv = mapE (box (Amaz (cur x _) — timeFrom cur maz)) mazValEv
let updFEv = interleave (box (A_ m — m)) resetEv mazEv
elapsedTime :: Beh (DTime x DTime) < timeFrom 0 (fromSec initialMax)
let timer :: Beh (DTime x DTime) = switchRC' elapsedTime updEv

-- Output
text < mkLabel (mapB (box (A(¢t X _) — "Current: " <> toText t)) timer)
mazText < mkLabel (mapB (box (Amaz — "Max: " <> toText max)) mazBeh)
mkConstVStack (mazSlider x mazText X text X resetBtn)

Fig. 7. Timer GUI from Kiss [14].

which produces a function that takes the current state of the timer (consisting
of elapsed and maximum time) and produces the new behaviour of the timer,
namely the behaviour that now has a new maximum value. The same happens
with the click event of the reset button, for which we produce a new behaviour
with the elapsed time set to 0. The two events maxEv and resetEv are then
combined with interleave, and the resulting event updFv is used to define the
global behaviour of the timer using switchRC, which a variant of switchR that
allows the event to produce functions in the C' monad.

6 Related Work

Functional Reactive Programming offers a high-level paradigm for building re-
active systems, which has been explored in many ways since its original intro-
duction by Elliott and Hudak [§]. Numerous FRP systems have since emerged,
which can be split into two evaluation approaches: push- and pull-based.
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Previous work has primarily focused on push-based FRP approaches. How-
ever, to get the advantages of both approaches, a push-pull approach was pro-
posed by Elliott [9]. To our knowledge there have not been any implementations
of Elliott’s push-pull model in a modal FRP language. Elliott highlights Lula-
FRP [17], which shares many conceptual similarities with the semantics of push-
pull based FRP. Nevertheless, Lula-FRP is purely pull-based, making it suscep-
tible to pull-sampling latency issues. The most comparable implementation to a
push-pull based approach is Reflex [I8], which introduces distinct abstractions:
behaviour (pull), event (push), and dynamic (push-pull). The dynamic type in
Reflex combines the characteristics of behaviours and events, effectively serving
as a tuple that integrates both push- and pull-based functionalities.

The use of modal types in FRP has attracted attention due to its potential
to address the issues in traditional FRP, such as space-time leaks and causal-
ity [I5I3I5I2/4UT0)]. These issues arise from the high-level abstractions of FRP,
which, while powerful, make it challenging to predict and manage resource usage
in programs written in this paradigm. To mitigate these challenges, FRP lan-
guages require implementation strategies that eliminate space-time leaks [I5].
Widget Rattus [7] is based on such an FRP language, called Async Rattus [I1],
which implements a calculus that guarantees causality, productivity, and the
absence of space leaks.

Widget Rattus is an FRP GUI library that extends Async Rattus with two
new language features: first-class channels and continuous types. Besides Wid-
get Rattus there is a long history of using the FRP paradigm to implement GUI
frameworks in functional languages [TO/TIT6/6]. One such language is the Elm lan-
guage [6], which was initially implemented as an embedded language in Haskell
for FRP-based GUI programming, but has since abandoned this paradigm in
favour of the Elm Architecture.

7 Conclusion

We have explored Elliott’s push-pull approach to FRP [9] in the setting of an
asynchronous modal FRP language. Much of Elliott’s original implementation
can be translated into this setting, with only small adjustments to account for the
requirement of stable types for some combinators. This results in the addition of
Stable constraints, e.g., on zip With, and the use of the [J modality for function
arguments.

In addition, we also expanded upon Elliott’s work by proposing refinements
of the definition of events and behaviours. The addition of sparse events is only
needed to overcome one of the limitations imposed by Async Rattus’ () modality.
By contrast, the addition of state machines to behaviours extends the expressive-
ness of behaviours. This allows us to express finite continuous behaviours, e.g.,
via the stop combinator, and it allows us to implement integration and deriva-
tion combinators. While this refinement of the definition of behaviours comes
at the expense of the simplicity of the implementation, the user of the resulting
combinator library is not burdened by this additional conceptual complexity.
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