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Abstract. Boolean circuits and branching programs are two fundamen-
tal finite models of computation, and the asymptotic size and depth of
families of such objects are important resources in complexity theory.
We present a first-order functional programming language with tree-
structured advice that captures computability by families of boolean cir-
cuits and whose tail recursive fragment captures computability by fami-
lies of branching programs. In addition, the size and depth of each finitary
model is reflected in the size and depth of the advice in the correspond-
ing language. In this way are able to interpret the relationship between
two fundamental finitary models of computation as a recursion/iteration
distinction in a precise way.

Keywords: Boolean circuits · Branching programs · Cons-free compu-
tation.

1 Introduction

To the left is a boolean circuit, and to the right a branching program, each com-
puting the XOR function on the bits x1 and x2.
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What are the semantics of each model? Imagine that we have an assignment of
x1 and x2 to boolean values. Then,

– in the circuit, we compute a bit at each node by applying the operation
labeling that node to the bits computed by its predecessors—at source nodes
we query the value of the labeled bit—until we arrive at the sink;

– in the branching program, we start at the source, repeatedly query the value
of the bit labeled by our current node and follow the 0-edge or the 1-edge
depending on the result, until we arrive at a sink.
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A single circuit or branching program thus computes a relation on binary strings
of a fixed length; a family of these (one for each natural-number length) computes
a relation on all binary strings.

Notice that the semantics of boolean circuits is naturally expressed as a
divide-and-conquer recursion: to evaluate a circuit, evaluate the sub-circuits and
combine. Similarly, the semantics of branching programs is naturally iterative, or
equivalently tail recursive: to evaluate a branching program, ask a query, branch,
and repeat.

This iterative/recursive distinction is no coincidence. In the present paper,
we establish an analogy

branching programs : iteration
boolean circuits: recursion

(1)

by defining a simple functional programming language that captures computa-
tion by families of boolean circuits and whose tail recursive fragment captures
computation by families of branching programs. In so doing we establish a new
connection between two fundamental conceptual pairs, one from programming
languages and the other from complexity theory.

Nonuniformity. We establish (1) by constructing four compiling functions, viz.,

1. from boolean circuit families to programs,
2. from programs back to boolean circuit families,
3. from branching program families to tail recursive programs, and
4. from tail recursive programs back to branching program families.

But there is a mismatch: families of circuits/branching programs are a nonuni-
form model of computation, meaning there’s no a priori relationship between
circuits for different input lengths, whereas programs are uniform. So we either
have to impose uniformity on circuits or nonuniformity on programs. We choose
the latter by endowing programs with advice, an additional input that a program
may use during its computation. Advice is a well-known device in in complexity
theory; there it is string-valued, while ours takes the form of a labeled tree.

Thus, the programs in 1-4 should really be understood as programs with
advice: a program with a sequence of trees, one for each natural number, such
that the program can use the nth tree on strings of length n as an auxiliary
input. And this lets us state the real point, which is that

The size and depth of circuits and branching programs is tightly connected
to the size and depth of the advice trees for (nonuniform) recursive and
iterative programs respectively.

This is a gloss on Theorems 1 and 2, the main technical outcome of our work.
At first glance, this might seem entirely unremarkable. After all, the advice

trees in question look a lot like the circuits or branching programs they come
from. Why shouldn’t we expect their depth and size to be closely related as well?

This would be a fair point if we were working with just one or the other
model. The point is that we have located both models in a common setting. In
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circuit complexity, branching programs and boolean circuits are two different
models with two different theories. The fact that we can toggle between the two
by passing between full and tail recursion in some programming language is a
novel perspective on their relationship. The fact that both models are so directly
captured by the same type of advice thus becomes a feature, not a bug.

Related work. The present paper is foreshadowed by several earlier results relat-
ing recursion to time classes and tail recursion to space classes. Over finite or-
dered structures L is captured by (deterministic) transitive closure logic whereas
P is captured by least fixed-point logic [4]. This can be interpreted as an itera-
tion/recursion distinction. The direct ancestor of the present paper is Neil Jones’
seminal paper [5] identifying P and L relations as those computable by general
and tail recursive programs over a cons-free language over strings.

That paper can be viewed in the larger tradition implicit computational com-
plexity ; roughly, the enterprise of identifying various complexity classes as exactly
the set of functions or relations computed by programs in some (non-Turing com-
plete) language. In the cons-free framework, the original characterization of P
and L was extended upward to exponential-time classes [6, 7], downward to the
NC hierarchy [1], and sideways to classes of functions, not just relations [2].

Here we have presented a fourth extension: to certain nonuniform classes,
via the introduction of advice. For example, Theorems 1 and 2 give us charac-
terizations of P/poly and L/poly as the set of relations computed by cons-free
programs and tail recursive programs respectively in the presence of polynomial-
sized advice. As far as we are aware, we are the first to provide any implicit
characterizations of nonuniform classes.

2 An oblivious cons-free language with advice

Types We use four types in our language. We have two copies of boolean values,
viz.,

– a type 2 of booleans and
– a type 2obv of oblivious booleans, so called because they do not depend on

the bits of the input string.

Then we use two types which depend on a natural number n:

– A type Fin(n) = {0, 1, . . . , n− 1} of natural numbers bounded by n.
– A type Adv(n) of binary trees labeled by elements of Fin(n).

Additionally, each program has a single read-only input of type Str(n), binary
strings of length n. However, it makes for a cleaner presentation to suppress
explicit reference to this input from the syntax of the language, so we can avoid
having program terms of this type.

While our language uses dependent types, it can hardly be called a “depen-
dently typed language.” The natural number n is not visible to the program
(there are no program terms of type N) and is fixed through the duration of a
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single computation. There is no way to create new types, let alone define new
types from values.

Henceforth we suppress the dependence of the types on n for legibility, and
define the syntax of our language as if it were statically typed.

Primitive operations Our language is cons-free in the sense that any Str or Adv
object can only be read or destructed—there is no way to create new values of
these types. In particular, we have:

– tt, ff : 2obv (constants naming boolean values ⊤ and ⊥)
– bit : Str × Fin → 2 (What bit does the input string carry at a given index?

As mentioned above, we will omit explicit reference to the first argument of
bit, as there is only one string which it can be called upon..)

– The advice primitives:
• empty : Adv → 2obv (is the tree empty?)
• label : Adv → Fin (the label of the root of nonempty tree)
• left, right : Adv → Adv (the left and right subtrees)

Finally, what can we do to elements of Fin? As it happens, our results are com-
pletely independent of the set of primitive operations on this data type. So let
us simply fix an arbitrary set Φ of operations, each of type

Fin× · · · × Fin → σ,

where σ is either Fin or 2obv. This can include, for example, arithmetic opera-
tions like addition or multiplication, augmented somehow to handle overflow. It
can include relations like equality or comparison. But we emphasize that Φ is
completely arbitrary—it can even be empty!

Program terms First, our variables and recursive function symbols:

– We have a single variable C of type Adv and countably many variables of
type Fin.

– We have countably many recursive function symbols for each type of the
form Adv× Fin× · · · × Fin → σ, where there are zero or more inputs of type
Fin and σ ∈ {2, 2obv,Adv,Fin}.

Remark 1. The limitation to a single Adv-variable means, essentially, that we
maintain a single pointer to the initial Adv-object, and (since Adv-data can only
be destructed) that pointer can only move from the root to some leaf. In other
words, advice is not just read-only, it is read-once.

We impose this limitation because it makes some combinatorics easier, but
we are unsure whether it is essential. We will remark exactly where we use this
assumption below, and discuss what would happen were we to drop it in the
Appendix.

Next, our term constructors. Of course, each variable is a term of its respec-
tive type.
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– Each primitive operation and recursive function symbol applied to a term is
a term, with types behaving as they should. So, for example,

T : Fin
bit(T ) : 2

T : Adv
left(T ) : Adv

T1 : Adv T2 : Fin
f : Adv × Fin → 2

f(T1, T2) : 2
and similarly for all the other primitive and recursive function symbols. Note
how we suppress reference to the first Str argument of bit.

– We can take cases on values of the type 2obv, Fin, and Adv using oblivious
booleans, viz.,

T0 : 2obv T1 : τ T2 : τ
τ ∈ {2obv, Fin,Adv}

if T0 then T1 else T2 : τ

– We can convert oblivious booleans into booleans (but not vice versa), viz.,

T : 2obv
T : 2

(Notice that this means that tt, ff also name the values in 2.)
– Finally, we can take cases on booleans using booleans, viz.,

T0 : 2 T1 : 2 T2 : 2

if T0 then T1 else T2 : 2

Definition 1. A term is explicit in case it contains no occurrences of any re-
cursive function symbol. A term is tail recursive if it is produced by the following
context-free grammar:

T := E | f(E) | if E then T else T,

where E stands for any explicit term, and E for a tuple of explicit terms.

Programs A program consists of a collection {f0, . . . , fk−1} of recursive function
symbols plus, for each i < k, a line of the form

fi(C, xi) = Ti,

where (1) xi is a list of zero or more Fin-type variables, (2) fi(C, xi) and Ti

are terms of the same type, (3) the only Fin-type variables that occur in Ti are
contained in xi, and (4) the only recursive function symbols that occur in Ti are
contained in {f0, . . . , fk−1}. The head of the program is the term f0(C, x0).

Remark 2. For T0 and T1 to be terms of the same type, we mean that T0 : τ ⇐⇒
T1 : τ for any type τ . In particular, if we make a recursive definition f(x) = T
where T : 2obv, then f(x) must have type 2obv as well.

Definition 2. A program is tail recursive if each term that occurs inside it is
tail recursive.
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Semantics We adopt a strict, call-by-value semantics. The basic form of judg-
ment we define is

n, s, Γ ⊢p T → v,

where n ∈ N, s ∈ Str(n), Γ is an environment; i.e., a finite function from variables
to values, p is a program, T is a program term, and v is a value. Moreover,

– T occurs (as a subterm of some term) in p,
– every variable that occurs in T is a member of the domain of Γ ,
– if T has type τ , then v has type τ(n), and
– if a variable v in the domain of Γ has type τ , then Γ (v) has type τ(n).

Following are the rules. Since n, s, and p are fixed within a single proof tree, we
omit them below for legibility.

– In case T is a single variable:

Γ (v) = v
Γ ⊢ v → v

– In case T is φ(T1, . . . , Tn) for some primitive function symbol φ:

Γ ⊢ T1 → v1 . . . Γ ⊢ Tn → vn
φ(v1, . . . , vn) = v

Γ ⊢ φ(T1, . . . , Tn) → v

A particular case of this scheme is where φ ≡ bit. This is exactly where the
suppressed Str-input s becomes important:

Γ ⊢ T1 → v

Γ ⊢ bit(T1) → sv

– In case T is f(T1, . . . , Tn) for some recursive function symbol f:

Γ ⊢ T1 → v1 . . . Γ ⊢ Tn → vn ∆ ⊢ T f → v

Γ ⊢ f(T1, . . . , Tn) → v

where ∆ is the environment {x1 7→ v1, . . . , xn 7→ vn} and T f is right-hand
side of the recursive definition of f in p.

– And finally, in case T is if T0 then T1 else T2:

Γ ⊢ T0 → ⊤ Γ ⊢ T1 → v

Γ ⊢ if T0 then T1 else T2 → v

Γ ⊢ T0 → ⊥ Γ ⊢ T2 → v

Γ ⊢ if T0 then T1 else T2 → v

(The rules are identical regardless of whether we’re dealing with oblivious
or non-oblivious boolean values.)

Next, we name a specific class of programs which are comparable to families
of circuits or branching programs insofar as they compute subsets of strings.
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Definition 3. An advice sequence is a dependent function A :
∏

n:N Adv(n).
Instead of A(n) we will write An, by analogy with families of circuits, which are
typically written {Cn}n∈N.

Definition 4. An acceptor is an always-convergent program whose head has the
form f0(C) for some recursive function symbol f0 : Adv → 2. For an acceptor p,
define

[[p]] :
∑
n:N

Str(n)× Adv(n) → 2

as follows. For any s : Str(n) and C : Adv(n), [[p]](C, s) is the unique boolean b
such that

n, s, {C = C} ⊢p f0(C) → b.

Definition 5. A ready acceptor is a pair (p,A) where p is an acceptor and A
an advice sequence. (Here we use the word ready in an archaic sense that means
advised or counseled.) For a ready acceptor (p,A), define

[[p,A]] :
∑
n∈N

Str(n) → 2

by [[p,A]](s) = [[p]](An, s), for strings s of length n.

In other words, ready acceptors decide subsets of binary strings. The con-
vention in complexity theory is to call sets of strings languages, which is slightly
unfortunate (they are semantic objects after all) but we will follow this practice,
and trust that it will not cause too much trouble.

Questions about the relative power of ready acceptors vs. ready tail recursive
acceptors with approximately the same amount of advice often reduce to hard
open problems in complexity theory that we do not hope to resolve. However,
it is possible to construct a function computable by an acceptor but no tail
recursive acceptor; see the Appendix for details.

Oblivious types are oblivious. At some point, we are compelled to state the
obvious fact about terms of the “oblivious” types 2obv, Adv, and Fin—namely,
that their denotations are independent of the string input.

Lemma 1. Unless T : 2, the relation n, s, Γ ⊢p T → v is independent of s.

Proof (Proof sketch). In fact something stronger holds, namely that every rule
in the derivation of n, s, Γ ⊢p T → v is independent of s. The proof goes by
induction on the size of this derivation. If T is a single variable, then v depends
only on Γ . If T is if T0 then T1 else T2 or f(T1, . . . , Tn), then each of the
premises of n, s ⊢p T → v are independent of s. (In the latter case note that the
definition T f of f must also have oblivious type.)

The only thing left to check are calls to the primitives other than bit. But
these denote operations on either the type Adv(n) or the type Fin(n), so have
nothing do with s.
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3 General recursion and boolean circuits

The results in this section mimic the well-known compilations between boolean
circuit families on one hand and Turing machines with advice on the other.

A variation of the circuit model. For our purposes it will be useful to consider
a slight of boolean circuits, where we replace the boolean operations ∧, ∨, and
¬ by if-then-else branching plus boolean constants.

Definition 6. A boolean circuit on n inputs is a finite partial order of boolean-
valued variables P , Q, R, . . . such that each variable P is defined from its im-
mediate predecessors in one of three ways:

– P = if Q then R else S,
– P = tt, P = ff, or
– P = bit(i), for any i < n.

So each variable has either 0 or 3 immediate predecessors depending on its defi-
nition. Additionally, the partial order has a unique maximum (the sink).

Remark 3. The size of the circuit is simply the number of variables, and the
depth is the length of the longest chain in this partial order. Translating between
{∧,∨,¬}-circuits and if-then-else circuits increases the depth and size by at most
a constant factor, which for our purposes is inessential.

Definition 7. Given a boolean circuit with sink P on n inputs, we define the
denotation [[P ]] : Str(n) → 2 by cases as follows.

– If P = if Q then R else S, then [[P ]](s) is [[R]](s) or [[S]](s) depending on
whether [[Q]](s) is true or false (⊤ or ⊥) respectively.

– If P = tt or P = ff, then [[P ]](s) is true or false respectively.
– If P = bit(i), then [[P ]](s) is si, the ith bit of s.

Encoding circuits by Adv-objects. Any finite rooted partial order has a set of
immediate predecessors, which are themselves finite rooted partial orders. This
decomposition is the basic idea behind encoding a circuit as an Adv-object.

Of course the sub-circuits of a circuit are not necessarily disjoint, but we
ignore this for the purposes of the encoding: as our programs are cons-free and
purely functional, they cannot distinguish between two different occurrences of
the same sub-circuit in a circuit.

Definition 8. We define a map C 7→ C⋆ from boolean circuits on n inputs to
Adv(n)-objects as follows. If A and B are trees, then by (A,B) we mean the tree
with left subtree A and right subtree B, labeled by 0 : Fin(n). (This is a “dummy
labeling;” we need a label, so we put 0.)

– If C = bit(i), C⋆ is a single leaf labeled i.
– If C = if C0 then C1 else C2, then C⋆ is (C⋆

0 , (C
⋆
1 , C

⋆
2 ))
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– If C = tt, C⋆ is a root with a single left child. If C = ff, then C⋆ is a root
with a single right child.

Remark 4. The depth of C⋆ is bounded by twice the depth of C, plus some
constant, so

depth(C⋆) ∈ O(depth(C)). (2)

The size (number of distinct subtrees) of C⋆ is bounded by twice the size of C,
plus some constant, so

size(C⋆) ∈ O(size(C)). (3)

3.1 A circuit evaluator

The following program is an acceptor that correctly evaluates a given circuit
(encoded as an Adv-object C) on an (implicitly given) string input.

eval(C) = if isLeaf(C) then bit(label(C)) else

if isBool(C) then isTrue(C) else

if eval(ifBr(C)) then eval(thenBr(C)) else eval(elseBr(C))

where

– isLeaf(C) checks that both subtrees of C are empty,
– isBool(C) checks that exactly one subtree of C is empty,
– isTrue(C) checks that the right subtree of C is empty,
– ifBr(C) is left(C),
– thenBr(C) is left(right(C)), and
– elseBr(C) is right(right(C)).

We omit a proof of correctness, which wouldn’t add any insight over reading the
program.

3.2 Compiling recursive programs into circuits

In this section we fix a ready acceptor (p,A) and construct a family {Cn} of
circuits deciding the same language as (p,A).

Definition 9. A special pair is a tuple (Γ, T ) such that T is a 2-valued p-term
and Γ is an environment binding the Fin-typed variables of T to values in Fin(n)
and C to a subtree of An.

Definition 10. We define a circuit family {Cn}n∈N from p and A as follows.
For each special pair (Γ, T ) and n ∈ N, we define a circuit letter (Γ, T )⋄n of Cn

by the cases below. (We omit the fixed subscript n for legibility.)

– If T : 2obv, then (Γ, T )⋄ = tt or (Γ, T )⋄ = ff, depending on whether n, Γ ⊢
T → ⊤ or n, Γ ⊢ T → ⊥.
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– If T has the form bit(T0), then (Γ, T )⋄ = bit(v), where v : Fin(n) is the
unique value satisfying n, Γ ⊢ T0 → v.

– If T has the form if T0 then T1 else T2 then in Cn

(Γ, T )⋄ = if (Γ, T0)
⋄ then (Γ, T1)

⋄ else (Γ, T2)
⋄.

– Finally, suppose that T ≡ f(T1, . . . , Tn); then each Ti is either Fin- or Adv-
valued. Say that

f(x1, . . . , xn) = T f

is the recursive definition of f in p. Then in Cn, define

(Γ, T )⋄ = (∆,T f)⋄,

where ∆ is the environment binding xi to the unique value vi such that
n, Γ ⊢ Ti → vi.

Finally, the head of the circuit Cn is ({C = An}, f0(C))⋄.

Notice that this last two cases may introduce lines of the form P = Q in
the circuit, which was not part of our original syntax, and there may be (Γ, T )⋄

which are not accessible from the head of the circuit. But these may be easily
eliminated without increasing the size or depth of the circuit.

Correctness and efficiency. We can prove that

n, s, Γ ⊢ T → b =⇒ [[(Γ, T )⋄n]](s) = b

by induction on the size of the derivation of n, s, Γ ⊢ T → b. The proof is entirely
straightforward. It shows, moreover, that the circuit is genuinely acyclic—at least
the part accessible from the head, which is all we care about. Since the program
p always converges, we get the converse implication for free. This shows that
the ready acceptor (p,A) and the circuit family {Cn} compute exactly the same
language of binary strings.

The size of Cn is bounded by the number of special terms, which is again
bounded by a fixed polynomial (dependent only on p) in n (i.e., the size of Fin(n))
and the number of distinct subtrees of An (i.e., the size of An). This gives us

size(Cn) ∈ (n+ size(An))
O(1). (4)

Finally, let’s work on bounding the depth of Cn by the depth of An. A chain
in Cn is a linearly ordered subset of special terms. No special term (Γ, T ) may
occur twice in a chain, or else the computation would diverge. Notice that for
each subtree A of An, the number of special terms where Γ (C) = A is bounded
above by a fixed polynomial in n.

Moreover, if environments Γ and ∆ occur within are consecutive special terms
in a chain, it must be the case that ∆(C) is the denotation of some Adv-valued
term with respect to the environment Γ . This means that ∆(C) will be a subtree
of Γ (C), i.e., below Γ (C) as a node in An. Therefore, the set of subtrees that
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occur as Γ (C) for some (Γ, T ) in a single chain must all be contained within a
single root-to-leaf path in An. (This is where we use our limitation to a single
Adv-variable C; in the Appendix, we consider the consequences of loosening this
assumption.)

Hence for special terms within a single chain, there are at most depth(An)
values that occur as Γ (C), and for each of these there are at most polynomially
many special terms that bind C to that value. Therefore,

depth(Cn) ∈ (n+ depth(An))
O(1). (5)

The following theorem sums up equations (2)-(5). For a family F of functions
of type N → N to be polynomially closed, we mean that the sum or product of
any two functions in F is bounded above almost everywhere by another function
in F . By a size-F (or depth-F ) family of circuits or advice, we mean that, e.g.,
n 7→ size(Cn) is bounded above almost everywhere by a function in F .

Theorem 1. The following are equivalent, for any language L of binary strings
and polynomially closed families F,G of functions N → N containing the identity:

1. There is a size-F , depth-G family of circuits computing L.
2. There is a size-F , depth-G advice sequence A and an acceptor p such that

(p,A) computes L.

Remark 5. Theorem 1 gives us a characterization of P/poly by recursive pro-
grams with polynomial-sized advice. At first glance, the depth-G adjectives of
Theorem 1 seems not to be doing much, as the least such G is the class of
polynomials, and every language is computed by a polynomial-depth (indeed,
constant-depth!) circuit family.

However, notice that our bounds are simultaneously on size and depth. Not
every language may be computable in, for example, simultaneous polynomial-
depth and quasi-polynomial (2polylog(n)) size. Moreover, the transformations
above preserve uniformity. In other words, if we start with a computable ad-
vice sequence, we get a computable circuit family and vice versa—and being
definable in computable polynomial depth is a real restriction. (We could surely
say something much stronger if we cared to measure the complexity of the trans-
formation.)

Still: most interesting depth bounds are sub-polynomial, and it is a definite
limitation of our work that we do not have a characterization of, for example,
the nonuniform NC hierarchy. As programs with no advice whatsoever already
capture P, we need more restrictive assumptions if we want a tighter bound in
equation 9.

A natural candidate is to consider time-bounded classes of programs since,
in the absence of advice, these capture classes in the uniform NC hierarchy [1].
However, [7] cautions us that different extensions of the cons-free language may
not interact in predictable ways when combined.
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4 Tail recursion and branching programs

Encoding branching programs as Adv-objects. If a branching program B consists
of a single node, it is labeled by either tt or ff. In this case, define the Adv-
object B⋆ by either a root with a single left child, or a root with a single right
child, with “dummy labelings” of 0.

Otherwise a branching program is a single source labeled by some i < n
with a 0-labeled outgoing edge and a 1-labeled outgoing edge to other branching
programs B0 and B1 respectively, In this case define B⋆ to be the tree with root
labeled by i and left and right subtrees B⋆

0 and B⋆
1 respectively.

Remark 6. The depth of B⋆ is bounded by the depth of B plus 1, so

depth(B⋆) ∈ O(depth(B)). (6)

The size (number of distinct subtrees) of B⋆ is bounded by the size of B, plus
some constant, so

size(B⋆) ∈ O(size(B)). (7)

4.1 A branching program evaluator

The following tail recursive acceptor correctly evaluates a given branching pro-
gram (encoded as an Adv-object C) on an (implicitly given) string input.

eval(C) = if isBool(C) then isTrue(C) else

if bit(label(C)) then eval(left(C)) else eval(right(C))

where, as above,

– isBool(C) checks that exactly one subtree of C is empty and
– isTrue(C) checks that the right subtree of C is empty.

Again, we omit a proof of correctness.

4.2 Compiling tail recursive programs into branching programs

Just as in Section 3.2, fix a ready acceptor (p,A); assume additionally that p is
tail recursive.

Definition 11. We define a family {Bn}n∈N of branching programs. For each
special pair (Γ, T ) there is a node (Γ, T )†n of Bn defined as follows, omitting the
fixed subscript n for legibility:

– if T : 2obv, then (Γ, T )† is a single leaf labeled by the unique boolean value b
such that n, Γ ⊢ T → b,
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– if T ≡ bit(T0), then (Γ, T )† is the branching program

v

0 1

0 1

where v is the unique Fin(n)-value such that n, Γ ⊢ T0 → v,
– if T ≡ if T0 then T1 else T2, (Γ, T )† is defined by taking a copy of (Γ, T0)

†

and redirecting any arrows into 0-leaves and 1-leaves to, instead, the sources
in (Γ, T0)

† and (Γ, T1)
† respectively.

– if T ≡ f(T1, . . . , Tn), then both arrows out of (Γ, T )† point to (∆,T f)†, where
f(x1, . . . , xn) = T f is the recursive definition of f in p, and ∆ is the envi-
ronment binding xi to the unique value vi such that n, Γ ⊢ Ti → vi.

Finally, the source of Bn is the node ({C = An}, f0(C))†n. We may remove all
nodes not accessible from this source.

Correctness and efficiency. Just like the relationship between general recursion
and circuits, we have

n, s, Γ ⊢ T → b =⇒ [[(Γ, T )†n]](s) = b,

which can be proved by a straightforward induction of the size of the derivation
on the left-hand side. And just like before, this shows us that Bn is a well-defined
(acyclic) branching program, and we get the converse implication from the fact
that p never diverges.

The arguments bounding the size and depth of Bn in terms of the size and
depth of An are exactly like those for circuits. The size of Bn is bounded above
by the number of special pairs; hence„

size(Bn) ∈ (n+ size(An))
O(1). (8)

For any subtree A of An, there is a fixed polynomial-in-n upper bound on the
number of special pairs (Γ, T ) such that Γ (C) = A. If environments Γ and
∆ occur consecutively in a chain in Bn, then ∆(C) is the denotation of some
Adv-valued term with respect to environment Γ ; hence ∆(C) is below Γ (C) as
vertices in An. Therefore, if we look at environments Γ that occur within a
chain in Bn, the values Γ (C) occur within a chain in An. But there are at most
polynomial-in-n special pairs (Γ, T ) in that chain before Γ (C) must decrease, so

depth(Bn) ∈ (n+ depth(An))
O(1). (9)

Hence, collecting equations (6)-(9), we get the tail recursive analogue of The-
orem 1 Consequently, we obtain a characterization of L/poly by tail recursive
programs with polynomial-sized advice.

Theorem 2. The following are equivalent, for any language L of binary strings
and polynomially closed families of functions N → N containing the identity:
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1. There is a size-F , depth-G family of branching programs computing L.
2. There is a size-F , depth-G advice sequence A and a tail recursive acceptor

p such that (p,A) computes L.

As every language can be computed with a polynomial-depth (indeed, depth-n)
family of branching programs, our comments in Remark 5 apply here as well.

5 Future directions

There are two parts to this section. First, let us discuss specific technical im-
provements to the present paper. We are, in some sense, “as lazy as possible,”
doing as little as we need to showcase the core analogy (1). However, we antic-
ipate by working a little harder we can extend our capturing results along at
least three axes, viz.:

1. The uniformity of our advice sequences is certainly controlled by the unifor-
mity of our circuit families, but we do not bother to measure it. If we did,
we would capture circuit classes of variable uniformity, and possibly recover
the original characterizations of P and L as a special case.

2. The size and depth of our advice sequences is within a polynomial of the
size and depth of our circuit families, but we could probably tighten this by
paying attention to the running time of our programs. If we did, we might
capture interesting circuit classes like NC.

3. Finally, we only consider circuits and branching programs over boolean val-
ues, whereas one could consider arithmetic, algebraic, or even more general
data. If we did, we might capture arithmetic and algebraic analogues of the
complexity classes under discussion here.

Secondly, and more generally, let us discuss some connections suggested by
this work that are vague but tantalizing. In the uniform setting, circuit size
and depth are closely related to (Turing machine) time and space, whereas the
situation is reversed for branching programs [3, 10, 12]. While this is no longer
true in the nonuniform setting, this at least strongly suggests that space-time
tradeoffs in complexity theory might be related to recursion-iteration tradeoffs
in programming languages.

This is not completely out of the blue; for example, the (iterative) dynamic
programming implementation of a recursive scheme essentially trades time for
space. However nothing like a general account of such phenomena is known.
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Appendix

Here we collect two extended remarks.

General recursion is strictly more powerful than tail recursion for
acceptors. There is function of type

∑
n:N Str(n)×Adv(n) → 2 computable by

an acceptor but no tail recursive acceptor. Since nonuniform complexity classes
are captured by ready acceptors, this result does not obviously separate any of
them, but it is still worth recording here.

Definition 12. The leaf support problem is the following decision problem, pa-
rameterized by a natural number n: for any C : Adv(n) and s : Str(n), does s
have a “1” in an index that labels some leaf of C?

There is a general recursive program solving the leaf support problem; viz.,

f(C) =if isLeaf(C) then bit(label(C)) else

if f(left(C)) then tt else f(right(C)).

On the other hand,

Theorem 3. There is no tail recursive program solving the leaf support problem.

Proof (Proof sketch). Fix s to the length-2 string 01 : Str(2); then the leaf
support problem specializes to deciding, for C : Adv(2), whether C has a leaf
labeled by 1. Further specialize to C which have at most one (i.e., zero or one)
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1-labeled leaf. But this is already impossible: even restricted to these inputs,
we are forced to query every leaf of C, which requires time depth(C) in the
worst case. However, every tail recursive program will halt in time polynomial
in depth(C) over these inputs.

The inability of a tail recursive program to “view” each leaf of a read-only
binary tree is the oldest known extensional separation between recursion and
iteration, dating back to Paterson & Hewitt in 1970 [9]. An elaboration of the
above sketch can be found as the “Second Proof of Theorem 1” in that paper,
and a more modern treatment can be found in Theorem 2G.1 of Moschovakis
[8]. It is an open question whether this can help us separate complexity classes.

What if we dropped the read-once limitation on advice? Could we still
prove equation 6 if our programs had more than one Adv-valued variables? Each
such variable can be thought of as a pebble on (or pointer to) some location in
the advice tree. So suppose we have a finite rooted tree and a some finite number
of pebbles, which start at the root of the tree. Suppose there are two types of
moves: we can move a pebble from its current location to any child, or we can
move a pebble on top of any other currently occupied location.

We are interested in how long we can carry this out without repeating a
configuration, by which we mean an assignment of pebbles to locations. (Note
that the number of distinct configurations is the size of the tree raised to the
number of pebbles.) With a single pebble we are bound by the depth of the tree,
and this is exactly the combinatorial fact we use above. With two pebbles we
are bounded by the depth squared, and begin to feel hopeful.

Alas, with only three pebbles, we can find a sequence of distinct configura-
tions at least as long as the size of any tree. (Finding this is a nice exercise!)
Thus we might start to doubt that Theorem 1 fails in the presence of more
Adv-variables.

However such pessimism might also be premature: pebble games exploit only
one kind of limitation on programs. Speaking loosely, pebble games are played
by omniscient beings who can see the whole tree; a program, by contrast, has
limited memory, and only sees the parts of the tree in front of it. Exploiting
some sort of “information-theoretic” limitation might be enough to control the
length of any pebble game realized by an actual program by a polynomial in the
depth. We can see an example of exactly such a combination of tree pebbling
and information theory in Theorem 1 of [11], so it is quite plausible. However, for
the purposes of this paper, we desire the results in the simplest setting possible.


