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Abstract. We present a systematic derivation of a data-parallel imple-
mentation of two-level, static and collision-free hash maps, by giving a
functional formulation of the Fredman et al. construction, and then flat-
tening it. We discuss the challenges of providing a flexible, polymorphic,
and abstract interface to hash maps in a functional array language, with
particular attention paid to the problem of dynamically sized keys, which
we address by associating each hash map with an arbitrary context. The
algorithm is implemented in Futhark, and we characterise GPU execu-
tion performance on simple benchmark problems, where we find that our
hash maps outperform conventional tree/search-based approaches. Fur-
thermore, our implementation is compared against the state-of-the-art
cuCollections library, which is significantly faster for hash map construc-
tion, and to a lesser degree for lookups. We show that the performance
difference is partially due to low-level code generation limitations in the
Futhark compiler, but more significantly due to the data-parallel pro-
gramming vocabulary not providing the constructs necessary to express
the equivalent of the algorithms used by cuCollections. We end by reflect-
ing on the extent to which the functional array language programming
model could, or should, be extended to address these weaknesses.

Keywords: functional programming, parallel programming, hash table,
GPU

1 Introduction

Hash maps are a commonly used data structure for storing key-value pairs.
They are also well suited for data-parallel programming, just like arrays. As an
example, you can map over its values, or reduce the values to a single value.

A functional array language is a functional language with support for data-
parallel operations on arrays, typically intended for execution on parallel hard-
ware. When compared to general-purpose functional languages, functional array
languages are often very restricted. In particular, they usually have limited sup-
port for recursive data structures and functions.

Despite their general prevalence, hash maps are not commonly seen in func-
tional array languages. Although often used to implement certain constructs in
APL dialects, in those cases the hash maps are part of the interpreter (typically
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written in C), and not implemented in the language itself. In this paper we de-
scribe how to implement a parallel hash map in a functional array language in a
way that is asymptotically efficient, and also performs reasonably in practice. We
describe how such a hash map can be derived from a functional algorithm. Con-
cretely, we demonstrate how to implement the two-level hash set construction by
Fredman et al. in a functional array language. The key challenge is to adapt the
original algorithm, which uses recursion and irregular arrays1, to a data-parallel
programming model that supports neither. Furthermore, we demonstrate how
to interact with hash maps using an SML-style module system, in such a way
that it is possible to use the hash maps with irregular datatypes as keys.

Our specific contributions are as follows:

– We demonstrate how the two-level hash map construction of Fredman et
al [9] can be expressed in a data-parallel vocabulary, which requires nontrivial
segmented operations.

– We show how hash maps can be exposed in a modular and generic way in a
data-parallel language, using an ML-style module system, including how to
handle complicated key types such as strings.

– We perform a performance comparison demonstrating that data-parallel
hash maps running on GPUs outperform data structures based on binary
search on both integer and string keys, but that the achieved performance
still falls short of what is possible in CUDA.

This paper is structured as follows:

– Section 2 describes a functional algorithm for the two-level hash set con-
struction by Fredman et al. and how it can be flattened to a data-parallel
algorithm. The description will use SML-like pseudo code to describe the
algorithm with common array operations, which can be parallelised.

– Section 3 describes an interface for hash maps suitable for a functional array
language. Interfaces are written in Futhark’s ML-style module system.

– Section 4 describes the benchmarks used to compare the performance of our
hash map implementation against existing alternatives in array languages
written in Futhark and the cuCollections library.

2 Two-Level Hash Maps

There are many ways of implementing hash maps, but only a few are suitable
for a data-parallel functional array language. A problem that has to be solved
during construction of a hash map is accounting for collisions. One could imagine
using a chained hash map where we have two key-value pairs to be inserted at
the same index in the hash map in parallel due to a hash collision. In a low-level
parallel language, such as CUDA, we could use atomic operations to insert them
1 An irregular multidimensional array is one where the elements can differ in size, e.g.,
[[1,2], [3]] is irregular.
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into the hash map in some order depending on hardware specifics. In a functional
setting such a strategy is problematic, because it requires nondeterministic and
impure operations. One of the possible solutions could be sorting the keys by
their hashes and then inserting them in order into the hash map. Strategies based
on sorting, however, are inefficient and should be avoided as the performance will
drop to the performance of binary search trees or Eytzinger trees [18].

A solution to the collision problem is to use the two-level hash set construc-
tion by Fredman et al. [9] (FKS). This construction computes a hash function
that is collision-free, such that we do not have to consider the insertion order of
the keys. To use the algorithm efficiently on real world hardware, we need the
ability to compute histograms [12] using atomic operations. These are used to
efficiently determine hash collisions.

2.1 Prerequisites

This article assumes a basic familiarity with data-parallel programming and
functional programming. We will use a data-parallel vocabulary that is found in
Figure 1 to describe the algorithm. This is a common vocabulary found in array
languages with some specialized functions.

fst : (α, β) → α or : [n]bool → bool

snd : (α, β) → β segor : [m]int → [n]bool → [n]bool

map : (α → β) → [n]α → [n]β rep : int → α → [n]α

iota : int → [n]int scatter : [m]α → [n]int → [n]α → [m]α

zip : [n]α → [n]β → [n](α, β) sort : [n](int, α) → [n]α

unzip : [n](α, β) → ([n]α, [n]β) groupby : (m : int) → [n]int → [n]α → [m][]α

partition : (α → bool) → [n]α → ([m]α, [k]α) random : unit → [c]int

filter : (α → bool) → [n]α → [m]α hash : [c]int → α → int

presum : [n]int → [n]int hist : (n : int) → [m]int → [m]int → [n]int

sum : [n]int → int repiota : [n]int → [m]int

Fig. 1: The data-parallel vocabulary used for explaining the construction of two-
level hash maps.

The size of the arrays is denoted by n, m, and k and is used to denote
that the arrays have different sizes for a given function while c is a constant
size. The first projection of tuples is denoted by fst and the second by snd.
Applying a function on every element in an array is denoted by map. Producing
an array of integers from 0 to n − 1 is done by iota n. Constructing an array
of tuples from two arrays is done by zip and unzip is the inverse to λ(a, b) →
zip a b. For partitioning an array into two arrays based on a predicate we use
partition, the array in the first position of the result is for elements where
the predicate holds true and the second is for elements where it holds false.
Filtering every element in an array that does not satisfy a predicate is denoted
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by filter. The operation for computing a prefix sum of an array of integers
is denoted by presum. The operation for computing the sum of an array of
integers is denoted by sum. The operation for computing the logical or over
an array of booleans is or. A segmented scan using the logical or operation
can be computed using segor (i.e., a segmented-or). An expression rep n a
results in an array where the element a is replicated n times. The scatter

function takes an array to be written to, an array of indices, and an array of
values to write at the given indices. Sorting is denoted by sort, which sorts
the array by the first element and discards it (e.g., sort [(2, x), (1, y)] = [y, x]).
To group an array of elements by an array of indices is denoted by groupby,
which produces an irregular array of arrays (e.g., groupby 4 [2, 0, 2] [x, y, z] =
[[y], [], [x, z], []]). It is important to note the implementation of groupby in a data-
parallel language would be based on a integer sort. The function random produces
an array, of fixed size c, containing c random integers. This function must have
the property that returned values form a distribution such that when given as
constants to hash they form a universal family of hash functions [5] [23, p. 2].
The basic idea is to have the ability to generate random constants using random

to be used in hash such that it is possible to generate random hash function.
We treat the random function as impure, but it is readily implemented in a
functional language through conventional state passing mechanisms. Computing
histograms is denoted by hist n is vs, here n is the number of bins (initialized
to 0), is specifies what bucket a given value in vs belongs to (i.e., like scatter

but allows for duplicate indices where their values are summed). A replicated
iota [8] is denoted by repiota, which is like iota but where each integer in the
argument array determines the number of times an element is repeated (e.g.,
repiota [2, 3, 1] = [0, 0, 1, 1, 1, 2]).

2.2 The Construction

A hash set construction for a non-empty finite set of keys K (taken from a
universe U), with cardinality |K| = n, and parameterised over a constant c, is a
tuple

(const , consts) : ([c]int, [n][c]int)

which defines a hash function hash1 : U → int by the hash function hash2 :
U → int as follows:

hash1 k = offsets[hash2 k] + (hash consts[hash2 k] k mod shape[hash2 k])

hash2 k = (hash const k) mod n

shape = (map (λsize → size2) ◦ hist n (map hash2 K)) (rep n 1)

offsets = presum shape

We further say that such a hash set construction is well-formed and collision-free
if the following properties hold:

1. {hash1 k | k ∈ K} ⊆ {0, . . . , s− 1}, where s = sum shape
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2. |{hash1 k | k ∈ K}| = |K|

The goal now is, given a non-empty finite set of keys, to find a collision-free and
well-formed hash set construction. Given such a construction, it is then possible
to create an array arr of size s and place every key key at index hash1 k and
fill remaining indices with any key k ∈ K. To assert if for some a ∈ U (the
universe), we also have a ∈ K, we simply test if arr [min (s − 1) (hash1 a)] = a
holds true. Such a hash set can be extended to a hash map by storing the value
in an accompanying array where hash1 a is used for indexing.

k0 k1 k2 k3 k4Keys

k0, k3 k1 k2, k4

k3 k0 k1 k4 k2

Buckets

Subarrays

Fig. 2: Visualization of the two-level hash set when using hash1. Initially all keys
are hashed with hash2. Then each key lands into a bucket where offsets, shape
and consts can be accessed using the index of the bucket (i.e the hash returned
by hash2). Use the buckets hash function constant from consts and subarray
size from shape to hash a key into its subarrays size. Lastly add the offset from
offsets to the get keys index in the flat array. Here the flat array is the subarrays
concatenated together.

2.3 Functional Construction

The data-parallel variant of the two-level hash set construction can be derived
from a functional variant, which we now present. This variant comes from a
formulation of the construction described in the FKS paper [9].

We first define a function hashes for computing the hashes of an array of
keys and a function collision for detecting if the hashes of a set of constants
collide:

def hashes (const : [c]int) (keys : [m]α) : [m]int =

map ((modm2) ◦ hash const) keys

def collision (hashes : [m]int) : bool =

(or ◦ map (> 1) ◦ histm2 hashes) (repm 1)
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The top-level and the lower-level of the FKS construction are defined by the
two functions make1 and make2, as follows:

def make2 (keys : [m]α) : [c]int =

let const = random ()

let hs = hashes const keys

in if collision hs then make2 keys else const

def make1 (keys : [n]α) : ([c]int, [n][c]int) =

let const = random ()

let hashes = map ((mod n) ◦ hash const) keys
let consts = (map make2 ◦ groupby n hashes) keys

in (const , consts)

At top-level (i.e., the make1 function), the first step is to pick an array of random
constants for a hash function. This array is used to compute the hashes of keys.
Afterwards every key is grouped by its hash and then the make2 function is called
on each subarray of keys such that a collision-free hash set for every subarray
can be found. We consider every hash set made by make2 to be the second level
of the hash set. The function make2 continues to generate constants const for a
hash function until it finds constants that lead to a collision-free hash function.

We observe now that in the functional variant, the function make2 is mapped
over an irregular array of keys, which indicates that the variant is not immedi-
ately data-parallel, although it may provide a basis for a task-parallel variant.
To construct a data-parallel variant of the FKS construction, we shall set out to
perform a flattening-transformation of the functional variant of the algorithm.

Analysis Almost every line of make1 does O(n) work except for the mapping
of make2 over the grouped keys which creates consts. Grouping can be done in
O(n) work and make2 does O(n2

i ) work where ni is the size of the subarray. The
sum of every subarray of size n2

i has the expected asymptotic value of O(n) and
for any application of make2 on a subarray it is expected to do at most 2 trials
to find a collision free hash function (i.e., expected O(1) recursive calls) [1]. The
total work done by mapping make2 over every subarray has the expected work
of O(n) and so does the total work done by constructing the hash set.

2.4 Flattened Construction

Now we will start by flattening the functional formulation for constructing a
two-level hashset. This flattened version will be a step in the derivation of the
final formulation where sorting will be avoided.

We first have to concern ourselves with make1. It operates on an irregular
array of keys due to the use of groupby. The way we represent an irregular array
is by associating a flat array with a shape array where the elements represent the
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size of a subarray in the flat array. This representation allows us to implement
the groupby operation using a stable sorting algorithm, to sort the keys by their
hashes, and using a histogram to compute the shape. The second task is to
replace the call to make2, which maps over an irregular array, with a call to a
lifted version of make2, called segmake2, which operates on a flattened array of
keys along with the shape of the subarrays. Using this strategy, we can derive
the following flattened version of make1:

def make1 (keys : [n]α) : ([c]int, [n][c]int) =

let const = random ()

let hashes = map ((mod n) ◦ hash const) keys
let sorted keys = (sort ◦ zip hashes) keys

let shape = hist n hashes (rep n 1)

let consts = segmake2 shape sorted keys

in (const , consts)

To lift make2, the idea is to lift random, hashes, and collision individually
and then use these lifted functions to define segmake2. For the following lifted
functions, we will ignore an edge case where a subarray is of size 0 as such cases
can be handled later in segmake2 by filtering out zero-size subarrays. To lift
random we need to generate a constant for every subarray.

def segrandom (shape : [m]int) : [m][c]int =

(map random ◦ repm) ()

Now for hashes, we want to know the hash of every key but since this is the
lifted version, the hash is located at an offset that depends on what subarray the
key belongs to. So to lift hashes, we need to know the offsets of the flattened
array of squared subarray sizes. These offsets can be determined by taking the
prefix-sum of the square of every size in the shape array. Afterwards, the index
of what subarray a key belongs to is needed so the offset, constants, and size
of the subarray can be retrieved. Here we use repiota to produce an array of
indices that associates every key with its given subarray. From these building
blocks we can define the lifted version of hashes:

def seghashes (shape : [m]int) (consts : [m][c]int) (keys : [n]α) : [m]int =

let offsets = (presum ◦ map (λsize → size2)) shape

in (map (λ(k, j) →
let (offset , const , size) = (offsets[j ], consts[j ], shape[j ])

in offset + (hash const k) mod size2) ◦ zip keys) (repiota shape)

As one can see, the lifted version of hashes computes offsets and the keys sub-
array indices first. Then the keys are zipped with their subarray index and the
hash is computed for every key by retrieving the offset, constants, and size of
the subarray it belongs to.
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Finally, the collision function is lifted, which can be done by computing
the squared shape so every hash is an index into a flattened array. Then, us-
ing a histogram operation, the number of collisions for every subarray can be
computed, and the segmented-or can be used to determine if any subarray has
a collision. Here is the lifted version of the collision function:

def segcollisions (shape : [m]int) (hashes : [n]int) : [m]bool =

let shape squared = map(λsize → size2) shape

let flat size = sum shape squared

let counts = hist flat size hashes (rep n 1)

in (segor shape squared ◦ map (> 1)) counts

The next problem is how to translate the last conditional expression of make2
into a lifted version. The goal is to stop working on all subarrays where the
constants for the given hash function leads to zero collisions and then return its
constants. The problem here is that the subarrays may finish out of order. To
solve this issue, every subarray size in shape and resulting constant for a hash
function is associated with an index. This index can then be used to reorder
the constants at the end. For this part, a lifted version of the results and new
keys that will be passed along to the recursive call will be given. This is done by
partitioning the indices of the subarrays based on whether they have collisions
or not. The subarrays that are done can then be used to produce the resulting
constants and the remaining subarrays shape are worked on in the recursive call.
Furthermore, using the collisions array the keys that will be worked on in the
recursive call can be determined. This leads to the following two functions:

def segresult (is shape : [m](int, int)) (consts : [m][c]int)

(collisions : [m]bool) : ([](int, int), [](int, [c]int)) =

let is = map fst is shape

let (not done, done) = partition (λi → collisions[i]) (iotam)

let is consts ′ = map (λi → (is[i], consts[i])) done

let is shape ′ = map (λi → is shape[i]) not done

in (is shape ′, is consts ′)

def segkeys (shape : [m]int) (collisions : [m]bool) (keys : [n]α) : []α =

let collision keys = (map (λi → collisions[i]) ◦ repiota) shape
in (map snd ◦ filter fst ◦ zip collision keys) keys

Now we almost have all the building blocks to define the lifted version of make2.
We still need an auxiliary function that will give back an unordered array of
constants from the subarrays that are done. This function is called segmake′2
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and simply applies the lifted functions in order:

def segmake′2 (is shape : [m](int, int)) (keys : [n]α) : [](int, [c]int) =

if n = 0 then [] else

let shape = map snd is shape

let consts = segrandom shape

let hashes = seghashes shape consts keys

let collisions = segcollisions shape hashes

let (is shape ′, is consts ′) = segresult is shape consts collisions

let keys ′ = segkeys shape collisions keys

in is consts ′ ++ segmake′2 is shape ′ keys ′

It is important to note that the recursive function can be written in a tail-
recursive manner by using an accumulator for the constants or just using a
while-loop construct if the language supports it. This fact is helpful since this
function will map well to a GPU.

Now we can finally define the lifted version of make2 by removing empty
subarrays, applying segmake′2, and scattering the resulting constants into an
array to obtain the constants in the correct order. Here we achieve the final
function segmake2:

def segmake2 (shape : [n]int) (keys : [n]α) : [n][c]int =

let is shape = (filter ((̸= 0) ◦ snd) ◦ zip (iota n)) shape
let (is, consts) = (unzip ◦ segmake′2 is shape) skeys

in scatter (rep n (random ())) is consts

It is important to note is we give all empty subarrays the same random constant
since any constant will be collision-free for an empty subarray.

2.5 Sortless Construction

Now that we have a flattened variation of constructing the constants needed for
a two-level hash set the goal is now to avoid sorting. The idea to avoid sorting
is to associate every key with the index of the subarray it belongs to. Using
this index we can determine what subarray a key belongs to instead of sorting
and relying on repiota. To achieve this we will start off by modifying make1 by
simply removing the sorting step:

def make1 (keys : [n]α) : ([c]int, [n][c]int) =

let const = random ()

let hashes = map ((mod n) ◦ hash const) keys
let shape = hist n hashes (rep n 1)

let consts = segmake2 shape keys hashes

in (const , consts)
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Now we have to modify segmake2 to work without sorted keys. To avoid sorting
every key is associated with the offset of the subarray it belongs to by using the
hashes array. This results in the following modified version of segmake2:

def segmake2 (shape : [n]int) (keys : [n]α) (hashes : [n]int) : [n][c]int =

let offsets = (presum ◦ map ( ̸= 0)) shape

let sub offsets = map (λi → offsets[i]) hashes

let js keys = zip sub offsets keys

let is shape = (filter ((̸= 0) ◦ snd) ◦ zip (iota n)) shape
let (is, consts) = (unzip ◦ segmake′2 js keys) is shape

in scatter (rep n (random ())) is consts

Here sub offsets is every key’s subarray offset according to its hash and then
js keys is an array of tuples where every key is associated with its subarray
offset.

The next step is to modify seghashes since we no longer can rely on the keys
being in order according to their subarray. This is done by letting seghashes

use the subarray index associated with every key to compute its hash instead of
using the subarray indices created by repiota. Doing this leads to the following
modified version of seghashes:

def seghashes (shape : [m]int) (consts : [m][c]int)

(js keys : [n](int, α)) : [n]int =

let offsets = (presum ◦ map(λsize → size2)) shape

in map (λ(j, key) →
let (offset , const , size) = (offsets[j], consts[j], shape[j])

in offset + (hash const key) mod size2) js keys

The next problem is segmake′2 since now whenever keys and subarrays are re-
moved the offset associated with the key is no longer valid since the number
of subarrays have changed. This can be resolved by finding the keys new offset
after removing the done subarrays and then update the key’s offset to be the
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new offset. And so we arrive to the following modified version of segmake′2:

def segmake′2 (js keys : [n](int, α))

(is shape : [m](int, int)) : [](int, [c]int) =

if n = 0 then [] else

let shape = map snd is shape

let consts = segrandom shape

let hashes = seghashes shape consts keys

let collisions = segcollisions shape hashes

let key offsets = presum collisions

let (is shape ′, is consts ′) = segresult is shape consts collisions

let js keys ′ =

(map (λ(j , key) → (key offsets[j ], key))

◦ filter (λ(j , key) → collisions[j ])) js keys

in is consts ′ ++ segmake′2 js keys ′ is shape ′

Here the offsets are found by taking a prefix-sum of the collisions array to find
the key offsets after removing the done subarrays.

Analysis Once again almost every line of code in make1 is O(n) since every line
of code does at most O(n) work besides segmake2. It ends up doing the expected
work of O(n) since it works on every subarray of size n2

i and it is expected to
work on each subarray at most 2 times. And all the work done internally by
segmake2 is using functions which do at most the expected work of O(n). So in
total the algorithm has the expected work of O(n) hence it is work efficient.

For the span of the algorithm we see a segmented-or over the flattened array
which has an expected span of O(log n). No other operation has a worse span,
this means that the expected span of the algorithm is O(log n).

3 Interface

In this section we will describe our abstract programming interface for key-value
maps in a functional array language. The goal is to define an interface that can
allow keys of any type, as long a universal hash function and a total ordering
exists for the type, and values of any type. We will use the concrete syntax of
Futhark, including its ML-derived module system [7], but we will assume no
familiarity and describe the concepts as necessary. For a primer on the Standard
ML module system, see [24], although note that Futhark diverges somewhat in
syntax and nomenclature. The interface is condensed compared to our actual
implementation, in order to avoid cluttering the central ideas.
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3.1 Irregularly Sized Keys

One major technical challenge is how to handle keys of irregular size (e.g.,
strings), which is not directly supported in Futhark. The problem is that Futhark
does not support irregular arrays (sometimes called jagged arrays), meaning ar-
rays where elements can have different sizes. When strings are modeled as arrays
of characters, this prevents the key array from being representable, unless all the
keys happen to be strings of the same length—which is an unlikely case. While
our implementation is in Futhark, the requirement for regular arrays is a com-
mon limitation among functional array languages, such as Accelerate [6] and
SaC [22], and is ultimately rooted in fundamental issues the efficient representa-
tion of arrays in memory. The NESL language [4] does support irregular arrays
(through a flattening transformation), but the resulting representation, when
done completely automatically, tends to be rather inefficient. APL [14] supports
a form of irregular arrays by “boxing” the elements, essentially turning them
into scalars, but the resulting in-memory representation becomes an array of
pointers, which can lead to poor locality. Most of these languages are targeted
at numerical problems, where the inability to represent irregular arrays is less
of a problem, but it does pose a challenge when we wish to represent something
as basic as an array of strings.

One common solution, and the one we will use, is to represent a string as a
pair of an offset and a length into some other array of characters, which we call
the context (the choice of this term will be made clear shortly). The idea is that
the context essentially consists of the concatenation of all strings of interest, and
we slice it as necessary to obtain substrings. The context is not a string pool, as
we do not assume that a string is uniquely determined by its offset and length
- it may well be that two strings with different offsets actually correspond to
sequences of equivalent characters in the context.

In some languages, it would be possible for a string to contain a reference to
the context from which its characters are sliced. This is not possible in Futhark,
or most similar value-oriented array languages, as they do not support references
or other such pointer-like types, and a reference to the context would imply a
copy. Instead, the coupling between a string and its context is implicit, and for all
functions defined on strings—such as ordering or hashing—the caller must pass
the context as well. Passing the wrong context by accident is indeed a potential
source of errors, and one that Futhark’s type system is not sufficiently strong
to avoid. In our implementation of key-value maps, we mandate that all keys
stored in the map must use the same context (which we will also store in the
map itself), but when querying membership, the “needle” need not be.

3.2 The Map Interface

The abstract interface for our key-value maps, expressed as a module type (sig-
nature in Standard ML), is shown in Section 3.2. A module type specifies types,
values, and functions that must be provided by an implementation of the in-
terface. In the module type, all types are abstract, but an implementation will
often refine some of these types to be concrete.



Hash Maps in a Functional Array Language 13

The map module type comprises three abstract types: key denotes type of
keys (which an implementation will refine to be a specific type, e.g., i32), the
ctx is the context used for comparison and hash functions, and map [n] v is
the type of a map containing n key-value mappings to values of type v. The
[n] is a size parameter [3], which is used to document how the sizes of function
arguments relate to function outputs, although it is only of minor importance
to the present work. The map type is declared with the keyword type~, which
is Futhark notation for an abstract type that may internally contain arrays of
unspecified size—this implies that we may not construct arrays with elements of
type map, as this would essentially result in irregular arrays.

The map module type also specifies three API functions: from_array con-
structs a map from an array of key/value-pairs, from_array_nodup does the
same but assumes that no duplicate keys exist (saving us deduplication during
construction), and lookup retrieves the value corresponding to a specified key,
using an option type to handle the case where no such key exists in the map.

1 module type map = {
2 type key
3 type ctx
4 type~ map [n] ’v
5 val from_array [u] ’v: ctx -> [u](key , v) -> ?[n].map [n] v
6 val from_array_nodup [n] ’v: ctx -> [n](key ,v) -> map [n] v
7 val lookup [n] ’v: ctx -> key -> map [n] v -> opt v
8 }

Fig. 3: The map module type, which specifies the abstract types and functions of
the key-value API. This is a minimal API that elides many convenient functions
that are present in our full implementation, but are not interesting from a data-
parallel perspective.

3.3 The Key Interface

The map interface can be implemented in many ways, but an implementation is
always specialised for a given key type, as the map type itself is not polymorphic
in the keys, only in the values. Clearly it is not desirable to reimplement the
interface from scratch whenever we wish to use a new key type. We solve this with
parameterised modules (functors in Standard ML), which can be seen as module-
level functions that are applied at compile time to form new modules. Essentially,
we write a parameterised module that, given a module that provides a key type
and necessary operations on keys, constructs a module that implements the map
module type for the supplied key type.

We describe our requirements for keys in a module type key, shown in Fig-
ure 4. Three types are specified: ctx is the context as discussed above, key is
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the key type itself, and finally uint is the type of hashes. We also require three
value definitions: c is the number of constants passed to the hash function as
discussed in Section 2.1, hash is a function for hashing a value of type key, and
(<=) is the comparison operator. Both hash and (<=) are provided a context.
For the latter, two contexts are in fact used: one for each value, which is crucial
when performing lookups, as the “needle” key is likely to use a different context
than “haystack” keys.

Figure 4 also shows a binding of a module i32key that implements the key
module type where all types have been made concrete. The implementation has
been elided, but it is based on a universal hash function. Note that the context
type has been refined to the unit type, as no context is needed for integer keys.

1 module type key = {
2 type ctx
3 type key
4 type uint
5 val c: i64
6 val hash: ctx -> [c]uint -> key -> uint
7 val (<=): (ctx , key) -> (ctx , key) -> bool
8 }
9

10 module u8key: key with ctx = () with key = u8
11 with uint = u64 = ...
12

13 module i32key: key with ctx = () with key = i32
14 with uint = u64 = ...

Fig. 4: The key module type, which must be implemented for any type used
as a key, as well as a binding of modules u8key and i32key that declare they
implements a refinement of key with all abstract types made concrete.

Array Slices as Keys We can now define a representation of array slices that
implement the key module type. In Figure 5 we first define a module type slice
that specifies the rather simple interface for array slices: constructing slices from
offset and length, decomposing a slice into offset and length, and finally applying
the slice to a concrete array, returning another array of some unknown size k.
The type slice a denotes a slice of an array with element type a—in practice,
a is a phantom type. The implementation of the module type (as a module also
called slice) is straightforward and also shown in Figure 5.

The mk_slice_key parameterised module accepts a key module E and pro-
duces a key module for keys of type slice E.key, and context []E.key. Im-
portantly, the element type itself must not require any context. We elide the
implementation for brevity, but note that the implementation of a universal
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hash function for sequences is somewhat complicated, although unrelated to
data-parallelism and outside the scope of this paper.

1 module type slice = {
2 type slice ’a
3 val mk ’a: (i: i64) -> (n: i64) -> slice a
4 val unmk ’a: slice a -> (i64 , i64)
5 val get [n] ’a: slice a -> [n]a -> ?[k].[k]a
6 }
7

8 module slice : slice = {
9 type slice ’a = {i: i64 , n: i64}

10 def mk i n = {i, n}
11 def unmk {i, n} = (i, n)
12 def get {i, n} xs = xs[i:i + n]
13 }
14

15 module mk_slice_key (E: key with ctx = () with uint = u64)
16 : key with ctx = []E.key
17 with key = slice.slice E.key
18 with uint = u64 = {
19 ...
20 }

Fig. 5: The slice module type and module, as well as a parameterised module
mk_slice_key that constructs a key module for slices of arrays of some type,
given a module that implements key for the element type, with a unit context.

3.4 Constructing Maps

Now that we have established the key and map abstractions, we can defined
parameterised modules that produce implementations of map. Figure 6 sketches
an implementation that represents the mapping as a sorted array of keys and a
corresponding array of values. Construction then requires sorting (and possibly
deduplicating) the provided key/value-pairs, and lookup is implemented as a bi-
nary search. This is a fairly simple implementation, assuming that one has access
to an efficient sorting function. Note that with our definition of the key module
type, radix sorting is not possible (because we provide no way to decompose into
bits), so instead our implementation uses merge sort. As a locality optimisation,
instead of storing the keys in sorted order, we can use an Eytzinger layout that
essentially stores each level of the corresponding binary tree that is implicitly
formed when performing the binary search [25].

We show the implementation of lookup in order to demonstrate how con-
texts are passed around. We assume the existence of a function binary_search
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: (v -> v -> bool) -> []v -> v -> i64 that given a comparison operator
performs a binary search for the index of a provided needle in a sorted array,
and returns -1 in case the needle is not found. It is crucial that lookup provides
the right context to the K.<= operator. In particular, the x parameter is drawn
from the arraymap itself, while y is the needle. This means the former must be
paired with the ctx from the map, and the latter with the ctx provided by the
caller of lookup. Unfortunately these are both of type ctx, so mixing them up
will not cause a type error—we will instead obtain wrong results at runtime, and
somewhat insidiously, the issue will only occur for keys that actually make use
of the contexts, and not for the common case of, for instance, integer keys.

1 module mk_arraymap (K: key)
2 : map with key = K.key with ctx = K.ctx = {
3 type key = K.key
4 type~ ctx = K.ctx
5 type~ map [n] ’v = {ctx: ctx , keys: [n]key , vals: [n]v}
6

7 def lookup [n] ’v (ctx: ctx) (k: key) (m: map [n] v) =
8 let cmp x y = (m.ctx , x) K.<= (ctx , y)
9 in match binary_search cmp m.keys k

10 case -1 -> #none
11 case i -> #some m.vals[i]
12

13 ...
14 }

Fig. 6: Outline of the mk_arraymap parameterised module, which given an im-
plementation of key constructs an implementation of map. The value definitions
have been elided for brevity.

Of course, given the topic of the present paper, an implementation based on
binary search is not satisfactory. We therefore also define mk_hashmap, shown
in Figure 7, which is based on two-level hash maps following the approach of
Section 2. Note the complete equivalence with the interface in Figure 6.

While the definition of these modules is somewhat intricate, applying the
building blocks is straightforward, as shown in Figure 8. The resulting mod-
ules can be used without knowledge of module-level programming, and it is
straightforward to provide predefined modules for common key types in a li-
brary. Some of the generality in the underlying design does leak through in un-
desirable ways. For example, the type of i32hashmap.lookup is () -> i32 ->
i32hashmap.map [n] v -> opt v. The () parameter is the context, which is
the unit type for this module. It is not difficult to write wrapper definitions that
remove the need for passing a unit value to lookup, but it is somewhat tedious,
and requires replicating the entire map module type—which is significantly larger
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1 module mk_hashmap (K: key)
2 : map with key = K.key with ctx = K.ctx = {
3 type~ map [n] ’v =
4 ?[f][m].
5 { ctx: K.ctx
6 , key_values: [n](K.key , v)
7 , offsets: [f]i64
8 , level_one_consts: [K.c]uint
9 , level_two_consts: [m][K.c]uint

10 , level_two: [n][3] i64
11 , rng: rng
12 }
13 ...
14 }

Fig. 7: Outline of the mk_hashmap parameterised module, which given an imple-
mentation of key constructs an implementation of map based on two-level hash
maps as discussed in Section 2. We assume the presence of a type rng that is a
the state of a random number generator. The sizes f and m are internally bound
and not visible in the external type.

in a practically useful library than the subset we show in Section 3.2, although
the cost is entirely on the implementer of the module, not on the user.

1 module i32arraymap = mk_arraymap i32key
2 module i32hashmap = mk_hashmap i32key
3 module strkey = mk_slice_key u8key
4 module stringhashmap = mk_hashmap strkey

Fig. 8: Modules for various implementations of the map module type, where we
consider strings to be simply arrays of unsigned 8-bit integers.

4 Benchmarks

We have implemented two-level hash maps in Futhark, which is a functional
array language that can generate usually quite efficient GPU code [19,13,10].
To evaluate the performance of our hash maps, we have constructed a set of
benchmarks. They are all based around inserting n keys of two types (64-bit
integers and strings of 5–25 characters), with the values always being 32-bit
integers. The keys are uniformly distributed and generated such that there are
no duplicates. For various implementations of key-value maps, we benchmark
the time it takes to perform the following operations:

1. Construction of the map (e.g., building a hash map or sorting an array).
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2. Lookup of the value associated with every key in the map.
3. Membership testing of every key—this differs from lookup in that the value

is not retrieved.

We benchmark the following implementations:

1. Futhark, using two-level hash maps.
2. Futhark, using binary search.
3. Futhark, using binary search with an Eytzinger layout.
4. cuCollections [20], an implementation of hash maps in CUDA C++, which

is to our knowledge the state of the art in hash maps on GPUs. The static
hash map in cuCollections is not based on two-level hash maps, but rather
uses open addressing with linear probing.

We run our benchmarks on an NVIDIA A100 GPU, using Futhark’s CUDA
backend, and without disabling bounds checking (which adds about 5% over-
head [11]). The results are shown in Table 1. The most obvious result is that
cuCollections is vastly faster than Futhark in all cases; ranging from nearly 10×
speedup in the construction of the hash table, to 1.8× for membership testing.
We will return to this in Section 4.1. The results suggest that even in a data-
parallel language and for integral keys, hash maps bring meaningful speedup
compared to comparison/tree-based techniques. Because we assume unique keys,
constructing the hash maps is not even slower than sorting key/value arrays, al-
though this would not be the case if we had to perform deduplication of keys.

64-bit integer keys (n = 107) String keys (n = 107)
Construction Lookup Membership Construction Lookup Membership

Futhark (hash maps) 18.3 3.3 1.6 33.2 4.3 2.8
Futhark (binary search) 40.9 6.2 5.8 83.0 5.7 5.8
Futhark (Eytzinger) 42.3 4.3 2.4 85.3 5.3 5.3
cuCollections 2.7 1.1 0.9 2.7 1.3 1.2

Table 1: Benchmark results. All runtimes are in milliseconds.

4.1 Future Work

It is clear that the hash maps implemented in cuCollections significantly out-
perform the ones we have implemented in Futhark. This is not surprising—
cuCollections is developed by GPU experts with a track record of research into
GPU hash maps [15,17], and using a low-level language that allows tuning and
exploitation of hardware properties. It is unlikely that an implementation in a
high level and hardware-agnostic language can match this. Yet it may still be
possible to narrow the gap, and this may improve high-level implementations
of other algorithms, which may not already have been carefully implemented in
low-level languages by experts.

The fastest GPU hash map implementations are open addressing hash maps,
implemented as concurrent data structures, with multiple threads simultaneously
inserting elements [17,16], with synchronisation done through atomic operations.
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While open addressing hash maps can be implemented in Futhark (and we have
done so as an experiment), we find that the efficient implementations that are
possible in CUDA cannot be expressed using the available data-parallel vocab-
ulary, and they perform significantly worse than two-level hash maps.

The core problem is that although hash maps provide a deterministic inter-
face, their efficient (concurrent) implementation is internally nondeterministic—
for instance, when two threads compete for the same slots in an open addressing
hash map, it is nondeterministic who gets which slot, although the choice is
not externally visible. When implementing a data structure in a deterministic
data-parallel language, such as Futhark and most other array languages, we are
not at liberty to locally exploit nondeterminism and impurity the way we can
do in CUDA. Of course, the flip side is also that the language prevents us from
accidentally introducing nondeterminism—the race-freedom of cuCollections is
due to careful implementation and testing, rather than a guaranteed property
of CUDA itself. However, it does seem functional array languages are missing
a mechanism for locally exploiting nondeterministic operations, which can be
encapsulated in such a way that the nondeterminism can be localised, but it is
not clear what such a mechanism should look like. The Dex language uses an
effect system to allow local mutation of an array shared between multiple itera-
tions of a parallel loop [21], although the only effect allowed without hindering
parallelism is incrementing an array element. This is not sufficient for our needs,
and indeed the restriction to increments is what provides determinism.

Another point of view is that the language should provide hash maps as a
built-in type, which can then be implemented with low-level code in the language
implementation itself. The arrays in an array language are implemented this way,
so it is certainly conceivable that hash maps could be provided similarly—and
some APL dialects do indeed provide such built-in data structures. While prag-
matic, we do consider this approach less compelling from a research perspective,
and certainly less ambitious from an implementation perspective.

5 Related Work

There are several implementations of hash maps meant for GPUs. The warpcore
and warpdrive libraries [17,16] are written in CUDA and also has an implemen-
tation of open addressing hash maps. They do a similar parallel probing scheme
like cuCollections such that every thread in a warp works together to find a key
to achieve coalesced access patterns. The warpcore library also contains a bucket
list hash table, where each bucket contains a linked list of key-value pairs.

The consolidation of the aforementioned libraries are cuCollections [20]. The
library contains a fast implementation of open addressing hash maps and is used
for benchmarking in this paper.

BGHT [2] has static hash maps which both uses bucketed cuckoo hash ta-
bles and iceberg hashing. These hash tables are implemented in CUDA and are
designed to be used in a concurrent setting.
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The aforementioned libraries are all written in CUDA, but there also exists
an implementation of a hash map2 written in the high-level functional array
language NESL [4]. It is an open addressing hash map with quadratic probing,
what they roughly do is try to insert every key in parallel. All keys that lead
to a collision because the slot is already occupied, try recursively to insert the
keys into the next slot using quadratic probing. And if the slot is empty then
select one of the keys to insert into that slot, the remaining are then inserted
in the recursive call using the probing scheme. Such an implementation could
lead to nondeterminism depending on the implementation but you could also
use some rule to select which key to insert into the empty slot, like we do for
our open addressing hash map written in futhark. The reason for this not being
benchmarked against in the present paper is that no compiler is available for
NESL that can generate code for our GPUs.

6 Conclusions

We have shown in detail how to derive a data-parallel construction of two-level
hash maps by flattening a functional formulation. The resulting algorithm is
work efficient, meaning it has an expected work of O(n) and an expected span
of O(log n).

We describe how such key/value data structures can be provided in a generic
and abstract way, demonstrated by an implementation in the functional array
language Futhark. Our approach allows for irregular keys, such as strings, by
representing them as an offset and length into a context array of characters,
although the interface does allow mismanagement of said context that is not
detected statically.

Our performance evaluation shows that hash maps performs well compared to
a binary search based implementations, but is much slower than state of the art
GPU hash maps implemented in CUDA. The performance differences are partly
due to the CUDA implementations being carefully tuned to take advantage of
specific hardware properties, but also due to the CUDA implementation using a
more efficient data structure—open addressing hash tables—which are difficult
to implement efficiently in our data-parallel vocabulary. Furthermore, our two-
level hash maps use more memory than open addressing and will most likely
lead to two cache misses per lookup. Unlike open addressing which will most
likely only lead to one cache miss per lookup. Finally we have briefly discussed
the problems of implementing efficient concurrent data structures in functional
array languages, for which the central challenge seems to be allowing some forms
of controlled nondeterminism. While the two-level hash map construction can be
expressed using the data parallel vocabulary, it is inherently less efficient than
constructing an open addressing hash table. However, the efficient implemen-
tation of the latter requires nondeterministic operations that lie outside of the
available high level vocabulary.
2 The implementation can be found at https://www.cs.cmu.edu/afs/cs.cmu.edu/

project/scandal/public/code/nesl/nesl/examples/hash-table.nesl.

https://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/code/nesl/nesl/examples/hash-table.nesl
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/code/nesl/nesl/examples/hash-table.nesl
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