
Verification à la carte: A textbook on formally
verified OCaml programs

Pedro Gasparinho and Mário Pereira

NOVA LINCS, Nova School of Science and Technology, Portugal
p.gasparinho@campus.fct.unl.pt, mjp.pereira@fct.unl.pt

Abstract. Formal verification techniques have been gaining prominence
in both industry and academia. Modern tools have been used to certify
large and complex software. Despite the level of maturity shown empir-
ically, documentation and learning materials are scarce for such tools.
This negatively impacts the learning process of the future generations
of verification engineers. In this article, we present our design process
for the elaboration of a textbook on deductive verification. Our work
focuses on certified algorithms and data structures using Cameleer, an
automated deductive verification tool for OCaml programs with GOSPEL
annotations. Currently, the textbook includes 6 chapters, with a total of
47 case studies, 18 of which are exercises, and more than 1000 lines of
certified code.

Keywords: Deductive Software Verification · OCaml· Cameleer· GOSPEL

1 Introduction

The concept of formal software verification, i.e., mathematically proving the
correctness of a program, with respect to a logical specification of its behaviour,
is almost as old as Computer Science. However, it was only in the last two
decades that verification tools matured from simple academic artifacts to robust
and scalable software capable of verifying industrial-grade systems. This “late
arrival” can be partially explained by the lack of pedagogical works published
concerning Formal Verification. This is further evidenced when compared to
other areas of Computer Science, most notably Algorithm Design, where one
can easily find a plethora of such works, each with its own characteristics.

In recent years there has been a growing adoption of formal verification tools
in the industry, mostly due to the so-called SMT revolution. With this tech-
nology, automated proof systems became more expressive and scalable. This, in
turn, broadened the spectrum of problem classes that were possible to prove,
with minimal user intervention. However, almost paradoxically, in academic set-
tings it is possible to observe that interactive tools are still regarded as the
standard means to conduct research in the area of formal methods.

Part of this paradox can be explained, at least in our opinion, by the greater
quantity and quality of available documentation for proof assistants. The Soft-
ware Foundation [30] series, currently comprised by 6 volumes, is a paradigmatic

2 Pedro Gasparinho and Mário Pereira

example of this situation. Despite the demanding learning process associated
with the Rocq system (previously known as Coq), and proof assistants in gen-
eral [4], the existence of such manuals provides a more comfortable learning
experience, and, overall, usage.

In this work, we clearly want to break free from this tradition. Our goal
is ambitious: to write a textbook of formally verified algorithms, while also
achieving fully automated proofs. Our certified programs are written in OCaml,
a functional-first programming language, that also supports other paradigms.
This choice allows us to organize a broad and diverse set of algorithms, several
of which use the functional traits of OCaml. This variety also serves to sustain
the maturity of automated verification tools.

We invite the readers of this paper to visit the textbook’s website1. There,
one is able to read the latest version of the textbook, which was made publicly
available for free in PDF format. Additionally, we also provide a gallery contain-
ing all the certified algorithms and data structures found in the textbook.

2 Toolset

Functional programming is often forgotten in algorithmic textbooks. This is
quite puzzling, in our opinion, as there is no shortage of interesting techniques
associated with this style. Thus, not considering this paradigm would go against
our objective of a diverse range of examples. Naturally, our programming lan-
guage of choice must satisfy this prerequisite, in addition to having good support
for automated deductive verification. There are several possible options that fit
these criteria, namely verification-aware languages, such as Why3 [13], Dafny [19]
and Viper [23]. This class of programming languages is traditionally meant for
verification purposes only, as most are not fully executable. This limitation re-
duces their usability in industry for developing certified software, at least di-
rectly. Moreover, if good translation schemes do not exist, manually translating
a code base or creating a translation tool may discourage companies from adopt-
ing formal methods. Due to the reasons above, our focus shifts to mainstream
general-purpose programming languages. Out of these, we firmly believe that
OCaml is an adequate choice for the following reasons (not exhaustive): (1) it is
a multi-paradigm language (functional, imperative, and object-oriented), (2) has
a state-of-the-art optimizing compiler; (3) is a type safe language with one of the
most advanced type inference algorithms; and (4) has a powerful module system,
which enables abstraction and modularity for comfortable large-scale software
development.

To conduct our proof efforts, we rely on Cameleer [28], a deductive verifica-
tion tool for OCaml programs with GOSPEL [6] annotations. GOSPEL, in turn,
is a tool-agnostic specification language with a syntax based on OCaml. Inter-
nally, Cameleer uses the Why3 [13] platform by translating the annotated code
to WhyML. This platform is known to support multiple external provers, both

1 The textbook’s website: https://cameleerbook.github.io/CameleerBook/

https://cameleerbook.github.io/CameleerBook/

Verification à la carte 3

interactive and automated, as a means to guarantee more flexibility and proof
capability.

As previously mentioned, we want to achieve total proof automation, i.e. not
resorting to Why3’s internal tactics2. This led us to choose the following state-
of-the-art SMT solvers: Alt-Ergo [8], cvc5 [3], Z3 [22]. In addition, we have also
used Eprover [31] to discharge a few existentially quantified expressions, most
notably type invariants, where SMT solvers were not able to do so. This prover
is also used in an automated manner within the Why3 platform.

3 Chapters and Scope

Our idea was clear from the start: to write a textbook about verified algorithms
following a similar structure to what is found in classical Algorithm Design
works. Algorithms can be greatly beneficial, in our opinion, to the teaching
of Deductive Verification. Firstly, within the broader discipline of Computer
Science, formal methods are regarded as an advanced topic. It requires pre-
existing knowledge about programming, logic and algorithmic concepts. Thus,
by selecting a collection of mostly well-known algorithms and data structures, we
can reasonably expect readers to be vaguely familiar with a substantial portion of
this collection. Secondly, algorithms are inherently logical artifacts, due to their
nature as sets of instructions with well-studied properties. This allows them
to be expressed and reasoned about independently of the selected programming
and specification languages. Thirdly, algorithms and data structures are relevant
across every area of computing, from academic research to large-scale industrial
applications.

What was not so clear at the start, however, was which topics we wanted to
include. So, we carefully analysed several famous textbooks [10,11,17,27,32,33],
about algorithm design. We observed that most cover similar categories of prob-
lems, as expected. Commonly addressed topics include arithmetic, searching,
ordering, data structures, optimization techniques and graphs. Out of these top-
ics, we decided to dedicate an entire chapter to each one, except for optimization
techniques and graphs. These are out of scope for the first version of the text-
book. Nonetheless, we recognize their importance in classical works. This led
us to discuss optimization on several occasions within other chapters. Graph
algorithms, on the other hand, are reserved for future work.

4 Chapter Ordering

After selecting the contents of the textbook, a natural next step is to decide
the order of the chapters. The arrangement of the topics in a textbook plays a
crucial role in shaping the student’s learning experience. An inadvertent chapter
ordering can negatively impact their progression. To ensure a smooth and grad-
ual learning curve, both examples and chapters should increase in complexity at
2 Why3’s tactics: https://www.why3.org/doc/technical.html#transformations.

https://www.why3.org/doc/technical.html#transformations

4 Pedro Gasparinho and Mário Pereira

a consistent and manageable pace. Given the scope we have disclosed above, we
believe that the following chapter ordering is the most suitable for our objectives:

1. Introduction: We recognize that our tool set includes numerous technolo-
gies, each with its own installation process. Moreover, these are distributed across
several different sources and platforms. As such, we consider that compiling all
the necessary information in a single place would greatly streamline the process,
and, overall, improve the student experience. Before diving into the case studies,
we must ensure that readers are familiarized with Hoare Logic [15], and other
related topics including propositional and first-order logics. This will serve to
introduce the necessary theoretical background needed for this textbook. Fur-
thermore, despite having established that basic programming and algorithmic
concepts are a prerequisite to read this textbook, we cannot assume that readers
are proficient with, or even knowledgeable of, the OCaml programming language.
Thus, it is essential to summarize its fundamental constructs and characteris-
tics in the first place. Additionally, this chapter is the ideal place to introduce
our verification tool set. Namely, how one can use the Cameleer tool to conduct
proofs inside the Why3 platform and its IDE.

2. Arithmetic: The first set of algorithms discussed in our textbook stems
from arithmetical and mathematical problems. Several well-known problems of
this kind have been studied for centuries. These, often, have simple and histor-
ical solutions, that make for great beginner-level programming and verification
challenges. This is easily explained from the limited knowledge and computa-
tional power available at the time. In fact, most historical algorithms had to be
applied manually. These characteristics turn this class of problems into the ideal
candidate for the chapter after the introduction. In the context of our work,
this choice is further justified by the natural transition from the mathematical
definitions and logical properties to OCaml programs and GOSPEL annotations.
Within this problem class, we are targeting solutions that do not include aux-
iliary data structures, such as arrays. Such solutions may increase the difficulty
quite considerably for the first chapter, which is not our intent.

3. Searching: After arithmetical problems, and given the restriction mentioned
above, we believe that the next step should exactly be to study built-in data
structures, such as lists and arrays. Among the various problem classes associated
with these data structures, we argue that searching stands out as the most ac-
cessible, with multiple beginner-to-intermediate-level algorithms. The searching
problem consists in finding the first element that fits a given criterion, generally
equality. This characteristic, alongside the fact that these algorithms do not pre-
suppose, in principle, modifications to the contents of the data structure, makes
for a smooth introduction to the techniques used to verified linear data struc-
tures. Despite our focus on linear data structures, this chapter is also a suitable
place to introduce simple binary trees, i.e. non-ordered and non-balancing.

4. Sorting: Based on the traits of the previous chapter, we decided that the
next objective would be to introduce case studies that change the contents of a

Verification à la carte 5

data structure. This description by itself is quite vague, but a natural next step,
in our opinion, is the sorting problem. It involves reorganizing a potentially
unordered collection of elements into a specific, well-defined ordering, typically
ascending or descending according to an established comparison criteria. From
both the programming and verification perspectives, these algorithms represent
a slight jump in difficulty from searching algorithms. For this chapter, we set as
an objective to explore several variations of our selected case studies. Namely,
different programming styles and optimization techniques. Purely functional im-
plementations and tail recursion are important topics throughout the chapter.

5. Data Structures: Despite following a similar chapter ordering when com-
pared to classical Algorithm Design textbooks, one notable difference lies in
the placement of the data structures chapter. Although it may seem strange at
first, it was a well-pondered and deliberate choice. In many classical works, data
structures are introduced early on, due to necessity. The data structures there
presented usually play an important role in algorithms found in later chapters.
Moreover, if the data structures, themselves, are somewhat complex, then the
algorithms that make use of them are likely to be even more complex. Even sim-
ple data structures can have challenging proofs. These proofs often include more
advanced verification concepts, such as type invariants, refinement proofs [29],
and internal views, using ghost code [12]. Once more, to ensure a smooth learn-
ing curve, we believe the previous reason alone justifies the placement of this
chapter as the second to last in our textbook. Additionally, we expected data
structure case studies to be considerably longer than the previous one, since
these regularly include several operations to manipulate and traverse the data.
Refinement proofs are an important aspect of this chapter, since we want to
demonstrate that the same verified interface can have two very distinct certified
modules, both implementation and proof-wise.

6. Selected Topics: As we have previously mentioned, in this textbook we
concentrate on certified algorithms and data structures. However, we are not
necessarily limited to these topics. There are several other interesting ideas that
could be discussed in an introductory textbook about formal verification. As
such, we have decided to include a final chapter dedicated to selected topics.
One such idea is the collaboration between Cameleer and other verification tools.
The objective of the corresponding section is to demonstrate that by combining
different tools in a verification workflow, these can cover each other’s weaknesses.
Another topic is the verification of time complexities. Despite the mechanisms
for it are limited, we nonetheless consider it a curious case study. Additionally,
this chapter is also the perfect place to cover, even if briefly, topics that have been
left out, or revisit problem classes that were heavily restricted. In particular, we
are able to cover more complex arithmetic algorithms, for instance those that
use dynamic programming techniques to achieve their goal. By doing so, we
are laying the groundwork for a chapter exclusively dedicated to optimization,
although it remains as future work.

6 Pedro Gasparinho and Mário Pereira

5 Methodologies

An important aspect of creating a textbook, in particular one focused on being
practical, is defining the methodologies to gather the case studies. In our case,
this includes defining a strategy to find suitable implementations and proofs.
Moreover, it is important to define the methodologies related to the educational
aspects of the textbook.

Implementations: The primary goal with this work is not to reinvent the
wheel, but rather to build upon classical algorithms and data structures with
proofs of correctness. Accordingly, we prioritize reusing existing implementa-
tions for our selected case studies. In particular, we have preference for OCaml
code from scientific works. With this in mind, our biggest source of inspira-
tion is Apprendre à programmer avec OCaml [11]. This textbook teaches the
OCaml language through algorithms. It is considered to be accessible to com-
plete beginners3. Naturally, due to the proximity between this work and ours,
many implementations of the case studies found in our textbook are adapted
from here. However, it is important to note that our objective is not to fully
verify every single algorithm found in that textbook, nor it is limited by it. In
case we do not find an OCaml implementation of an algorithm that we want to
study, we may resort to manually translating a suitable implementation in an-
other language or pseudocode representation. For instance, Algorithms [32] was
an important reference to find implementations in the imperative style.

Proofs: Our aim extends beyond solely adapting, translating and compiling
existing formal proofs. We also intend to contribute to the scientific community
by proving algorithms that, to the best of our knowledge, have not yet been
verified using automated tools. Nonetheless, given the introductory nature of
our study, this goal remains secondary. Prioritizing a set of completely original
proofs would certainly lead to the exclusion of pedagogically interesting exam-
ples. Instead, we have opted to find a balance between well-known proofs, such
as iterative Fibonacci and fast exponentiation, and newly developed proofs. One
possible way to achieve these newly developed proofs is by exploring different
variations of an algorithm, that may not yet have been formally verified. Such
variations may include using a different paradigm, and/or optimization tech-
niques, such as tail-recursion. Additionally, there have been situations where we
expanded upon the existing proof, for example, new certified operations within
the context of a data structure. Our biggest sources of inspiration in this mat-
ter are proof repositories associated with our tools, namely: Cameleer’s example
directory found in its source code4, and a public repository with several proofs
in Why35.

3 List of OCaml books: https://ocaml.org/books
4 Cameleer’s gallery: https://github.com/ocaml-gospel/cameleer/tree/master/examples
5 Why3’s proof repository: https://toccata.gitlabpages.inria.fr/toccata/gallery/why3.en.html

https://ocaml.org/books
https://github.com/ocaml-gospel/cameleer/tree/master/examples
https://toccata.gitlabpages.inria.fr/toccata/gallery/why3.en.html

Verification à la carte 7

Education: As previously mentioned, our textbook takes the difficulty between
case studies and chapters, as a whole, in consideration to ensure a smooth learn-
ing experience. This is to be expected in introductory-level works. Another
important aspect of our methodologies, concerning education, is its focus on
practicality. When discussing practicality within the context of our work, it is
important to dissociate the discussions about Formal Verification theory, and
the theoretical contextualization necessary when presenting a given algorithm.
In that sense, case studies, on an individual level, may feature lengthy theoreti-
cal discussions, in order to thoroughly explain and motivate their specifications.
However, the former is best not presented all at once. Instead, theoretical con-
cepts are discussed as needed, and include small illustrative examples. We believe
that this makes for a more pleasant reading experience, compared to presenting
all the theory found in the textbook upfront. For instance, refinement proofs are
only used from the fifth chapter onwards. Hence, in our opinion, the best time
to introduce the theory behind refinement proofs is at the start of that chapter.

Exercises: Exercises are a fundamental part of textbooks. Students are encour-
aged to explore interesting problems on their own with the knowledge learned
from reading the textbook. The benefits of having exercises are undoubtable.
However, the inclusion of solutions is a much more controversial debate. In our
opinion solutions can be of benefit to the reader. Regarding our exercise design
process, these are, generally, placed at the end of each chapter, and are meant
to be open-ended exercises that contemplate both implementing and verifying.
To remain loyal to our motivations, these exercises must be comprised of algo-
rithmic problems, generally variations of the discussed topics, with at least one
automated solution. By providing our own set of candidate solutions, students
who come up with their own solutions can see and learn from the difference
between them. Moreover, the process of verifying a program can be quite frus-
trating, or if an exercise is unclear to a reader (we do try to avoid such scenarios),
solutions may help ease less positive experiences. However, it is up to each in-
dividual to use the solutions responsibly and positively. Solutions can also be of
great help to lecturers preparing their lab classes, lecture notes and lectures. As
previously mentioned, our exercises are, mainly, composed of open-ended prob-
lems that also contemplate implementing the program at hand. This choice can
be justified by our objective of letting students freely explore the problem first
and gain experience with the OCaml programming language.

6 Case Study Selection

In this section, we dive into several case studies found in the textbook. To ac-
company the case studies, we display illustrative code, at times, to reinforce our
points. The explanations here presented are directed towards functional pro-
gramming experts, the target audience of this article. These may not necessarily
reflect the discussions found in the textbook, which are directed towards begin-
ners. Furthermore, we are not able to discuss every case study in the same depth

8 Pedro Gasparinho and Mário Pereira

as in the textbook. Instead, we focus on the design and educational aspects be-
hind the selection of algorithms and data structures. At times, some case studies
may be grouped and presented simultaneously for conciseness.

6.1 Arithmetic

Extended Euclidean Algorithm: Choosing the first case study in a textbook
is not an easy task. It must balance simplicity and complexity quite carefully,
as it sets the baseline difficulty for the rest of the work. Additionally, we also
believe that it should not be too long, in order to ensure that the reader does
not get lost in the new concepts. As such, the algorithm that best fits this
description, in our opinion, is the extended version of the Euclidean algorithm.
From a verification perspective, using the extended version simplifies the proof
substantially. This is due to the use of Bézout’s identity6 as a post-condition,
rather the concept of greatest common divisor, which would require defining such
concept as an auxiliary logical function. Bézout’s identity is a strong property,
and its coefficients can be easily obtained using recursion:

GOSPEL + OCamllet rec extended_gcd x y =
if y = 0 then (1, 0, x)
else

let q = x / y in
let (a, b, d) = extended_gcd y (x - q * y) in
(b, a - q * b, d)

(*@ (a, b, d) = extended_gcd x y
requires x <> 0
variant abs y
ensures d = a*x + b*y *)

GOSPEL annotations are expressed inside special comments, ignored by the
compiler, in the form (*@ ... *). The requires and ensures clauses are used
to express pre-conditions and post-conditions, respectively. The variant clause
is used, in this case, to prove the termination of extended_gcd.

As observed, the extended Euclidean algorithm can be implemented and
proven in considerably small number of lines. This aligns with our goal of not
having a case study that is too long, despite having the necessity to explain the
mathematical reasoning on how to obtain the Bézout’s coefficients and why does
Bézout’s identity work as a post-condition. Fortunately, that can be achieved in
a couple of pages.

McCarthy’s 91 Function: While our definition of algorithm can be a bit
broad at times, this function7 serves the purpose of showing a tricky termination
proof, due to nested recursion, as seen in the mathematical definition and OCaml
implementation below:

6 Bézout’s identity: https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity.
7 McCarthy’s 91 Function: https://en.wikipedia.org/wiki/McCarthy_91_function

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/McCarthy_91_function

Verification à la carte 9

M(n) =

{
M(M(n+ 11)), if n ≤ 100

n− 10, if n > 100

OCamllet rec M n =
if n <= 100 then M(M (n + 11))
else n - 10

Additionally, with this example, we demonstrate two possible strategies to
deal with conditional properties:

GOSPEL + OCamllet rec M n =
(* ... *)

(*@ r = M n
variant 101 - n
ensures n <= 100 -> r = 91
ensures n > 100 -> r = n - 10 *)

GOSPEL + OCamllet rec M n =
(* ... *)

(*@ r = M n
variant 101 - n
ensures if n <= 100 then r = 91

else r = n - 10 *)

The specification on the left side uses the logical consequence operator, while
the one on the right side uses an if-expression.

Imperative Euclidean Division & Iterative Fibonacci: The first two case
studies were purely functional. Given our objective of having a set of diverse ex-
amples in terms of programming styles, we believe that the imperative paradigm
should also be introduced early on. Firstly, we introduce while loops and loop in-
variants with the Euclidean division algorithm. Secondly, we discuss an iterative
implementation, using the for loop, of the Fibonacci sequence. This example
also serves as an introduction to logical functions, in order to define the con-
cept of Fibonacci number, which can be defined and annotated, in GOSPEL, as
follows:

GOSPEL(*@ function rec fib (n: int) : int =
if n <= 1 then n
else fib (n-1) + fib (n-2) *)

(*@ requires n >= 0
variant n *)

Imperative Extended Euclidean Algorithm: The iterative way to calculate
Bézout’s coefficients is considerably more complex than the recursive approach.
It requires a total of 4 auxiliary variables to keep track of the coefficients. These
variables can be annotated as ghost variables, as a means to introduce the con-
cept of ghost code. In this case study, we also use the existential quantifier for
the first time:

GOSPEL + OCamllet gcd (x:int) (y:int) = (* ... *)
(*@ r = gcd x y

requires x >= 0
requires y >= 0
ensures exists a,b. r = a*x+b*y *)

This version represents a jump in difficulty. However, we believe that by hav-
ing already explored this example previously, it eases the difficulty. Moreover, it

10 Pedro Gasparinho and Mário Pereira

is one of the approachable examples using ghost code and existential quantifiers,
in our opinion.

Fast Exponentiation: The fast exponentiation algorithm is another common
example of logical functions. This time around, we need to define the power
function in GOSPEL. Although, the real educational value of this algorithm, in
our textbook, is the need to define and prove a lemma-function:

GOSPEL + OCamllet[@lemma] rec power_lemma (x: int) (n: int) =
if n > 1 then power_lemma x (n-2)

(*@ requires n >= 0
variant n
ensures mod n 2 = 0 -> power x n = (power (x * x) (div n 2))
ensures mod n 2 = 1 -> power x n = x * (power (x * x) (div n 2)) *)

This lemma is used to prove the fundamental mathematical property that
allows fast exponentiation to exist, that being:

For n ≥ 0, then: xn =

{
(x2)

n
2 , if nmod 2 = 0

x ∗ (x2)
n−1
2 , if nmod 2 = 1

For the implementation of this algorithm, we choose an imperative version.
Despite its functional counterpart being on the same level of difficulty, we decided
to leave that version to the exercises. We believe that students are, generally,
more used to the imperative paradigm, hence, we encourage them to practice
and experience the beauty of functional programming, by themselves.

Exercises: There are several interesting arithmetic problems that students
could tackle, by themselves. However, we decided to be more conservative, at
least for now, with the exercises in this chapter. Most are various of the previous
case studies: (1) Euclidean division that supports negative numbers, (2) func-
tional Euclidean division, (3) iterative factorial function, (4) tribonacci sequence,
(5) functional fast exponentiation.

6.2 Searching

Linear Search: This algorithm represents the first use of data structures in
our textbook, namely by searching for a value in an array. It also introduces
exceptions, on a programmatic level, as a means to stop iteration early in OCaml.

Binary Search & Ternary Search: After presenting the linear search algo-
rithm, a natural next step is discussing binary search. This algorithm is used to
briefly discuss optimization, when certain conditions are known, in this case if
the array is sorted. This case study marks the first use of a predicate in GOSPEL,
that being the concept of an array being sorted. Moreover, we also display dif-
ferent ways to encode values.

Verification à la carte 11

Ternary search is a variation of binary search that divides the array in three
roughly equal parts. From a verification perspective, this algorithm has interest-
ing experimental value. The same exact specification used to prove both binary
search and ternary search. In fact, it is applicable to the n-ary family of searching
algorithms. After this experiment, we also introduce a second implementation
of ternary search that raises an exception when the value was not found. This
example illustrates on how to deal with exceptions on a logical level.

Depth-first search for Binary Trees: This chapter focuses primarily on
searching algorithms applied to arrays. So, we felt the need to introduce a func-
tional example, and one that strays away from linear data structures. Thus, the
first algorithm that came to mind was exactly DFS for (simple) Binary Trees.

Exercises: We recognize that finding exercises for this chapter has been rather
difficult, and is one of our top priorities to expand upon. For now, we only have
two exercises: (1) backwards linear search, and (2) recursive binary search.

6.3 Sorting

Small Verification Library: To successfully verify a sorting algorithm, it is
often necessary to define the logical concept of a sorted collection of elements,
as well as the concept of being a permutation of another collection. Moreover,
one may need to define multiple lemmas on top of those logical definitions. This
led us define a common verification library, with the necessary logical objects
needed for the various algorithms that we address:

GOSPEL + OCamllet[@logic][@ghost] rec occ v =
(* number of occurrences omitted *)

(*@ predicate permut (l1 l2: int list) =
forall x. occ x l1 = occ x l2 *)

(*@ predicate rec sorted (l: int list) =
match l with
| [] | _::[] -> true
| x::(y::ls) -> x <= y && sorted (y::ls) *)

(*@ variant l *)

(* Lemmas are omitted *)

In particular, for the first part of the sorting chapter, the library and the fol-
lowing algorithms are geared towards focus on integer lists. This is due to tech-
nical restrictions, on Why3’s side, that limit the direct usage of polymorphism
in the presence of the equality operator (=). This operator is not polymorphic in
Why3, when used in non-logical environments.

Functional Selection Sort: Optimization was a valued detail that we wanted
to add in this chapter, namely tail-recursion. For now, we have considered four

12 Pedro Gasparinho and Mário Pereira

sorting algorithms: insertion, selection, merge and quick. Out of these four, we
wanted to start this chapter with one that had a “standard” tail recursive version.
This excluded both merge sort and quick sort, since these have two recursive calls.
Between selection sort and insertion sort, we find the functional version of the
former to be quite interesting. Thus, we decided to discuss selection sort first.
Before actually presenting its tail recursive version, we first verify the standard
functional version, and then compare both.

Functional Merge Sort: While it is possible to achieve a tail recursive merge
sort implementation using either continuation-passing style or defunctionaliza-
tion, neither was possible to present in this chapter. The former makes use of
higher-order logic, which is not available in Why3, and consequently Cameleer.
Proofs involving the latter are quite difficult and not adequate for this chap-
ter. Thus, we have decided to ignore tail-call optimizations for the merge sort
algorithm, focusing only on its standard version.

Functional Quick Sort: There are several possible quick sort optimizations.
On one hand, the previous techniques also apply to quick sort, but are not
adequate to our verification purposes. On the other hand, there are other simpler
techniques that we could use. Out of those techniques, we highlight two, using
a better pivot, namely the median of three, and the largest half tail-call. Given
that we are using lists in this section of the sorting chapter, accessing any other
element other than the head is not advisable due to the time complexity being
O(n) in the worst case. By contrast, the largest half tail-call is feasible, in this
context. This technique amounts to first checking which of the two sub-lists,
obtained from splitting the list based on its pivot, is the largest. Then, that
sub-list is called last, so that it can be the tail-call. This achieves logarithmic
stack space, since only half or less of the elements, are being used in a non-tail
recursive call. Similarly, to the selection sort case study, we first present the
non-optimized version, and the compare both.

Polymorphic Selection Sort: As previously mentioned, due to technical lim-
itation, we are not able to directly use polymorphism in the presence of the
equality operator (=), in non-logical environments. Instead, we can devise a veri-
fied signature (that does not need to be implemented) to encode polymorphism:

GOSPEL + OCamlmodule type OrderedType = sig
type t

val eq: t -> t -> bool [@@logic]
(*@ b = eq x y

ensures b <-> x = y *)

(*@ function le: t -> t -> bool *)
(*@ axiom reflexive : forall x. le x x *)
(*@ axiom total : forall x y. le x y \/ le y x *)
(*@ axiom transitive: forall x y z. le x y -> le y z -> le x z *)

Verification à la carte 13

val leq: t -> t -> bool [@@logic]
(*@ b = leq x y

ensures b <-> le x y *)
end

Type t can be seen as a generic type, containing an equality test and a
(non-strict) total order relation, akin to ≤. This signature can be used in a
parameterized module, as such:

OCamlmodule SelectionSort (O: OrderedType) = struct
type elt = O.t
(* Omitted *)

end

The remainder of the case study amounts to replacing instances of = and <=
by E.eq and E.leq, respectively, in the desired algorithm and the verification
library. For illustration and simplicity purposes, we have chosen selection sort.

Imperative Insertion Sort: Sorting arrays is substantially different from sort-
ing lists, even on a logical level. This is mostly due to mutability and in-place
sorting. Consequently, it requires completely redesigning the verification library.
In this textbook, we present the approach we have taken to verify a swap-based
imperative insertion sort. To achieve this it is crucial to have a strong post-
condition on the swapping function:

GOSPEL + OCamllet swap (arr: int array) i j =
let v = arr.(i) in
arr.(i) <- arr.(j);
arr.(j) <- v

(*@ requires 0 <= i < Array.length arr
requires 0 <= j < Array.length arr
ensures exchange arr (old arr) i j
ensures permut arr (old arr) *)

Namely, the exchange predicate, that states that an array is equal to another
array in every single position except two, which must have their values swapped:

GOSPEL + OCaml(*@ predicate exchange (a1 a2: int array) (i j: int) =
Array.length a1 = Array.length a2 &&
0 <= i < Array.length a1 &&
0 <= j < Array.length a1 &&
a1[i] = a2[j] &&
a1[j] = a2[i] &&
(forall k. 0 <= k < Array.length a1 && k <> i -> k <> j ->
a1[k] = a2[k]) *)

Exercises: For now, we have devised several exercises based on variations of
the case studies: (1) Functional insertion sort, (2) tail recursive insertion sort,
(3) polymorphic functional insertion sort, (4) further optimizations on tail recur-
sive selection sort (Using (::) instead of (@), and reversing at the end), (5) imper-
ative selection sort (swap-based), (6) polymorphic functional merge sort, (7) un-

14 Pedro Gasparinho and Mário Pereira

optimized tail recursive quick sort (tail call always goes the same side), and
(8) polymorphic functional quick sort.

6.4 Data Structures

Zippers: The zipper [16] is an iteration technique that can be applied to purely
functional data structures for more fine-grained traversal. This technique, usually
consists in finding an alternative representation to recursive data types. Such
types do not offer the possibility to go backwards, which may not be adequate
for some use cases. Hence, the zipper offers the possibility to revisit previous
nodes and explore other paths (when applied to trees, for instance). In this
chapter, we explore both the zipper applied to lists and to trees. The first serves
to introduce the concept of proofs by refinement and type invariants. Meanwhile,
the second is used to solve the same fringe problem using a modular approach.

Resizeable Array: With the first two case studies of the data structures chap-
ter being based around the functional paradigm, we decided to introduce an
imperative case study, this being resizeable arrays. Additionally, this example
introduces the concept of witness, and how to find and prove simple witnesses.
Witness are more of a technicality from the Why3 platform. Providing a witness
in WhyML is quite comfortable with the by construct. Whereas, in GOSPEL, such
construct is not available, and is much less comfortable to prove them. Hence,
in the following examples, the respective verification conditions were ignored.

Persistent Queue & Circular Queue: The queue abstract data type can
be implemented in several distinct manners. For instance, one may implement
a queue with purely functional techniques, to achieve amortized time complexi-
ties, or achieve efficient time and space complexities by limiting the number of
elements to a fixed number of memory blocks, using arrays. These two implemen-
tations could not be more different, yet are tied to the same set of operations,
which makes them look similar from an outside perspective (not exactly equal
due to the fixed size of circular queues). This common behaviour can be de-
scribed logically with almost identical certified signatures. These signatures only
differ in more concrete aspects, such as typing information on OCaml’s side and
to check invalid accesses on the circular queue. We believe that this similarity is
enough to demonstrate that the “same” certified interface can be used to prove
by refinement two completely opposite implementations.

Binary Search Tree & List: The penultimate case study in our data struc-
tures chapter is the binary search tree; the last is the list. Compared to the pre-
vious examples, binary search trees are often considered more complex, hence,
to ensure a gradual increment in difficult, it earns its place as the second to
last case study. Regarding the list, while its placement might seem strange, we
have greatly emphasized optimization in its implementation, via tail recursion.
Moreover, it is quite possibly our longest case study, since it adapts a realistic
set of operations in a list module. These factors combined make it a considerably
challenging proof.

Verification à la carte 15

Exercises: This chapter currently includes three exercises on the simpler side.
It shall be revisited on a later date. For now, the exercises are: (1) Queue using a
linked list, (2) Stack using a linked list, and (3) Set using a linked list. Operations
(mem, add and check if is subset).

6.5 Selected Topics

Advanced Arithmetic: Since arithmetic is the first problem class tackled in the
textbook, we are heavily restricted when selecting algorithms, in order to ensure
a difficulty level adequate to beginners. Therefore, we have decided to cover a few
more complex algorithms here. The two examples covered are Delannoy numbers
and binomial coefficients. In particular, we have used dynamic programming
approaches in these implementations. This is also in line with our objective of
covering optimization techniques, even if briefly.

Tools In collaboration: Each programming language has its own advantages
and disadvantages. Verification tools are no different in that regard. So, what
if we were able to explicitly combine multiple verification tools to prove one or
more programs within the context of a single case study? That is the question
we pose in this section of our Selected Topics chapter. Naturally, for this to be
possible, there has to be good intra-tool support. Fortunately, that is the case
within the OCaml verification sphere. It is possible to create a module in OCaml
with GOSPEL annotations that can be imported in WhyML. This opens the
door for many interesting applications. One such application, is to combine our
insertion sort implementation, from 6.3, with a binary search implementation in
WhyML:

WhyMLmodule Client
use int.Int
use int.ComputerDivision
use ref.Ref
use seq.Seq
use ocamlstdlib.Stdlib
use import insertion_sort.Insertion_sort as IS

let binary_search (a: array int) (v: int) : int
requires { IS.sorted a }
ensures { (* Omitted *) }

= (* Omitted *)

let main (a: array int) (v: int) : bool
ensures { result <-> Array.mem v a }

= IS.in_sort a;
0 <= binary_search a v < Array.length a

end

16 Pedro Gasparinho and Mário Pereira

Let us assume that we have a file named insertion_sort.ml, containing
the insertion sort implementation, and a file named client.mlw, with the com-
plete code from the previous (abbreviated) listing, in the same directory. Then,
insertion_sort.ml can be treated as a library in WhyML. To import this file,
in WhyML, one should write: use import insertion_sort.Insertion_sort
(Note that letter capitalization is important). The insertion_sort before the
dot (.), corresponds to the name of the file, without the extension. The following
Insertion_sort corresponds to an implicit module defined of the same name
of the file, without extension, except that the first letter is always capitalized.
Moreover, when dealing with arrays in OCaml, the use ocamlstdlib.Stdlib
import is necessary. In the context we have described, one may use the follow-
ing command in the terminal, when starting the Why3 IDE, to link the library:
why3 ide client.mlw -L . .

By analysing the previous client, one may see that the main function applies
our OCaml implementation of insertion sort to a potentially unsorted array,
which can then be applied to the binary search operation to find a given value
v. The binary_search function uses the sorted predicate defined in GOSPEL
as a precondition to check if the array is, in fact, sorted.

Time Complexity: Verifying against time complexity is possible in Cameleer.
Although there are no specific mechanisms for it, one can simulate time complex-
ity analysis by comparing a counter variable to the reference values. This counter
variable should be updated after significant operation Θ(1). Exact bounds (Θ)
can be calculated by using the equality (=) operator, while lower (Ω) and upper
bounds (O), can be obtained from using inequality operators.

7 Benchmarking

Previously, we have stated that our proofs are fully automatic, in the sense that
we do not use Why3 tactics. As such, it is important to demonstrate Cameleer’s
performance on our several case studies. To do so, we present below a table
containing benchmarking information regarding the different case studies and
exercises found in our textbook. This table is composed by four columns: (1) the
respective case study, (2) the number of verification conditions (VC) generated,
(3) the number of code, specification and ghost [12] lines, (4) average proof time.

The term ghost code refers to a commonly available feature in deductive
verification tools. Certain fragments of code, such as variables or functions, can
be declared as ghost. These fragments of code are meant for logical use only.
This means that they can not directly or indirectly impact the result of non-
ghost code. However, ghost code can be initialized and updated with non-ghost
code. Moreover, it can be used to simplify certain proofs, for instance, certain
existentially quantified expressions or type invariants. Given the logical and pro-
grammatic nature of ghost code, we decided to separate the line counting into
three categories: code, specification and ghost. If we were to omit the ghost cat-
egory, then a line of ghost code would have been counted as a line of code and
specification simultaneously.

Verification à la carte 17

Case Study #VCs LoC/ LoS / LoG Time (s)
Arithmetic

Functional Extended GCD 1 5 / 4 / 0 0.774
McCarthy’s 91 Function 2 6 / 7 / 0 0.770
Imperative Euclidean Division 1 8 / 8 / 0 0.664
Fibonacci Sequence 3 11 / 14 / 0 0.744
Imperative Extended GCD 1 14 / 9 / 6 0.744
Imperative Fast Exponentiation 3 12 / 15 / 2 7.762
Exercise 1 (Eudiv w/neg. numbers) 2 11 / 11 / 0 0.759
Exercise 2 (Functional Eudiv) 2 3 / 12 / 0 0.766
Exercise 3 (Factorial) 2 5 / 9 / 0 0.764
Exercise 4 (Tribonacci Sequence) 2 14 / 9 / 4 0.757
Exercise 5 (Functional Fast Exp.) 3 7 / 13 / 2 7.768

Searching
Linear Search 1 8 / 4 / 0 0.791
Binary Search 1 13 / 11 / 0 0.733
Ternary Search 1 15 / 11 / 0 0.771
Ternary Search (2nd version) 1 15 / 10 / 0 0.741
DFS Binary Tree 2 3 / 8 / 0 0.943
Exercise 1 (Backwards L. Search) 1 9 / 6 / 0 0.786
Exercise 2 (Recursive B. Search) 1 9 / 11 / 0 0.990

Sorting
Functional Selection Sort 25 31 / 38 / 16 7.828
Tail Recursive Selection Sort 28 29 / 42 / 16 5.243
Functional Merge Sort 37 32 / 42 / 16 6.321
Functional Quick Sort 26 28 / 38 / 16 3.787
Optimized Tail Rec. Quick Sort 68 35 / 51 / 16 51.459
Polymorphic Selection Sort 16 39 / 45 / 16 3.066
Imperative Insertion Sort 3 16 / 34 / 0 1.342
Exercise 1 (Func. Insertion Sort) 15 13 / 28 / 4 3.283
Exercise 2 (Opt. Tail Ins. Sort) 30 30 / 41 / 21 22.191
Exercise 3 (Poly. Insertion Sort) 6 22 / 36 / 4 1.864
Exercise 4 (Opt. Tail Sel. Sort) 29 34 / 43 / 21 6.191
Exercise 5 (Imp. Sel. Sort) 3 17 / 33 / 0 1.397
Exercise 6 (Poly. Merge Sort) 29 40 / 50 / 16 5.950
Exercise 7 (Tail. Quick Sort) 37 29 / 48 / 16 24.845
Exercise 8 (Poly. Quick Sort) 15 36 / 49 / 16 3.586

Data Structures
Persistent Queue 17 53 / 48 / 4 3.507
Circular Queue 24 72 / 96 / 17 3.191
List Zipper 18 50 / 76 / 4 2.493
Tree Zipper (Same Fringe) 6 31 / 26 / 0 1.063
Binary Search Tree 15 52 / 102 / 0 4.127
Resizeable Array 16 49 / 50 / 3 1.891
Linked List 10 41 / 91 / 0 1.425
Exercise 1 (Queue List) 13 27 / 36 / 0 1.979
Exercise 2 (Stack List) 13 27 / 36 / 0 1.580

18 Pedro Gasparinho and Mário Pereira

Case Study #VCs LoC/ LoS / LoG Time (s)
Data Structures (Cont.)

Exercise 3 (Set List) 10 24 / 43 / 0 2.303
Selected Topics

Delannoy Numbers 19 10 / 11 / 0 1.793
Binomial Coefficients 2 10 / 14 / 0 1.673
Tools in Collaboration (Client) 2 8 / 14 / 0 0.968
Time Complexity (Linear Search) 1 9 / 5 / 7 0.775

Table 1: Case Studies Metrics

The time results found in table 1 were measured using the following config-
uration: 3 warm-up runs, followed by 17 concrete runs, of which the minimum
and maximum values were removed to calculate the average of the remaining
15 concrete runs. The data was obtained using the hyperfine tool applied to the
why3 replay command. These samples were collected on a Linux Mint 22.1 Cin-
namon machine, with an Intel Core i7-13620H CPU, 16GB of RAM memory, and
the 6.8.0-87-generic Linux kernel. The tool versions include: OCaml 4.14.1,
Why3 1.8.1, Alt-Ergo 2.6.2, cvc5 1.1.0, Z3 4.15.1, and Eprover 2.0 Turzum.

8 Related Work

The idea of a textbook about verified algorithms is a recent topic. In 2020,
Nipkow et al. performed a study [24,26] to discover which algorithms from the
famous textbook Introduction to Algorithms [10] had already been verified, ei-
ther automatically or interactively. The results were remarkably positive, with
the majority having already been proven. The previous study triggered the cre-
ation of the textbook Functional Data Structures and Algorithms [25], using
the Isabelle proof assistant. Similarly, the third volume of the Software Foun-
dations [2] series focuses on proving algorithms in the functional style with the
Rocq proof assistant (previously known as Coq). This family of deductive tools is
notorious, despite their powerful proving capabilities, for the strenuous learning
process associated [4]. We believe that new verification students and industry
users of formal methods will benefit from first learning an automated deductive
tool. Moreover, the space for a textbook about verified algorithm using proof
assistants has already been filled by these two extremely competent works.

By contrast, that is not the case, in our opinion, within the ecosphere of
automated tools. The closest work we are aware of to textbook about verified
algorithms is Program Proofs [20]. It covers several algorithms, namely from the
searching and sorting problem class. However, it separates functional program-
ming from imperative and object-oriented. This decision, regarding the structure
of the textbook, feels more akin to studying the Dafny language in a paradigm-
by-paradigm basis, or, at times, from feature to feature. This contrasts with the
structure that we have envisioned. In particular, we wanted to follow the classical

Verification à la carte 19

approach of Algorithm Design works. Moreover, Dafny is a verification-aware pro-
gramming language, and, while this certainly has its merits and advantages, we
preferred to use OCaml, a mainstream general-purpose programming language,
as justified in section 2. Other well-regarded works using automated tools in-
clude Guide to Software Verification with Frama-C [18] and Deductive Software
Verification - The KeY Book [1]. A common characteristic between these works
and ours is the use of mainstream general-purpose programming languages, how-
ever, these textbooks are very complete, extensive, and, at times, technical in
the teaching of their respective tools, which contrasts with our practice-oriented
and algorithmic approach.

9 Conclusions and Future Work

In this article, we have presented our design process to write an introductory
textbook about certified algorithms and data structures with automated deduc-
tive verification tools, in particular Cameleer. In this section, we describe possible
future applications of our textbook and lines of work to expand it. We also briefly
reflect on the state of our work and the Deductive Verification field.

Applications: Undoubtably, the most obvious application of our work is in
educational contexts. It can either be used as a self-study manual or be a signifi-
cant reference for courses on Formal Verification. As our textbook is nearing the
end of its initial development phase, the next step is to put it to test. Ideally, we
want to use it in a classroom environment to test its effectiveness. This would
allow us to see how students react to the different chapters and case studies.
Additionally, during this phase, we expect to receive substantial feedback and
new ideas, as well as identifying potential typos. If we overlook the educational
aspect of our work, then it can also be seen as a standard library of certified
algorithms. Software projects with high security and fidelity thresholds can use
these independent components as a foundation. Moreover, projects with more
lenient requirements may also integrate these algorithms and data structures
for additional reliability. With these applications in mind, alongside the grow-
ing interest in formal methods seen in industry and academia, we firmly believe
that our work presents itself as a serious contribution to this field, as well as the
Cameleer and OCaml ecospheres.

Reflections: Writing a textbook is far from being an easy and quick task. In
fact, it is a “journey of a thousand miles”. As of now, we have just arrived at
the halfway point, which was having a tangible first version of the book with
a significant set of examples and exercises. During these “five hundred miles”,
we were able to study all sorts of interesting problems and programming tech-
niques. Even if proving such problems felt, at times, like an unsurmountable
challenge. Despite the hardships, we consider that the collection of examples
we have devised cover a substantial subset of the available functionalities of the

20 Pedro Gasparinho and Mário Pereira

OCaml fragment supported by Cameleer. It includes its module system, recur-
sion, mutability, and much more. This demonstrates, once more, the maturity
of automated deductive tools.

Future Work: As future work, we want, in the first place, to continue ex-
panding our textbook with more case studies and exercises. A chapter entirely
dedicated to graph algorithms is exactly our next step. Despite the existing bib-
liography concerning certified graph algorithms [7], the reality is that, in general,
this class of problems remains difficult to the current capacities of automated
tools. We believe, once more, that the secret to success resides in the design
of modular specifications and proofs, with a clear separation between different
aspects of graph algorithm and data structures. We intend, in particular, to
follow the approach presented by the OCamlGraph library [9]. Finally, we have
narrowed ourselves, so far, to the choice and implementation of case studies that
fit inside the OCaml fragment supported by the Cameleer tool. In particular, this
decision does not allow us to tackle the verification of case studies that resort
to dynamically allocated memory. To surpass this limitation, we anticipate two
possible lines of future work: (1) contribute to the expansion of Cameleer in order
to reason about separation logic [14]; (2) combine Cameleer, in a collaborative
effort, with other OCaml verification tools, such as CFML [5] or Iris [21].

Acknowledgments. We thank Ion Chirica for his helpful comments during the de-
velopment of both this paper and textbook.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M.: De-
ductive Software Verification – The KeY Book: From Theory to Practice. Lec-
ture Notes in Computer Science, Springer International Publishing (2016), https:
//books.google.pt/books?id=vdLDDQAAQBAJ

2. Appel, A.W.: Verified Functional Algorithms, Software Foundations, vol. 3. Elec-
tronic textbook (2025), version 1.5.5, http://softwarefoundations.cis.upenn.edu

3. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength SMT solver. In: Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I (2022), https://doi.org/10.
1007/978-3-030-99524-9_24

4. Brain, M., Polgreen, E.: A pyramid of (formal) software verification. In: Platzer, A.,
Rozier, K.Y., Pradella, M., Rossi, M. (eds.) Formal Methods - 26th International
Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 14934, pp. 393–419. Springer (2024), https:
//doi.org/10.1007/978-3-031-71177-0_24

5. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the

https://books.google.pt/books?id=vdLDDQAAQBAJ
https://books.google.pt/books?id=vdLDDQAAQBAJ
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-71177-0_24
https://doi.org/10.1007/978-3-031-71177-0_24

Verification à la carte 21

16th ACM SIGPLAN international conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, 2011. pp. 418–430. ACM (2011), https:
//doi.org/10.1145/2034773.2034828

6. Charguéraud, A., Filliâtre, J., Lourenço, C., Pereira, M.: GOSPEL - providing
ocaml with a formal specification language. In: ter Beek, M.H., McIver, A., Oliveira,
J.N. (eds.) Formal Methods - The Next 30 Years - Third World Congress, FM
2019, Porto, Portugal, October 7-11, 2019, Proceedings. Lecture Notes in Com-
puter Science, vol. 11800, pp. 484–501. Springer (2019), https://doi.org/10.1007/
978-3-030-30942-8_29

7. Chen, R., Cohen, C., Lévy, J., Merz, S., Théry, L.: Formal proofs of tarjan’s
strongly connected components algorithm in why3, coq and isabelle. In: Harrison,
J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive
Theorem Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA. LIPIcs,
vol. 141, pp. 13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019),
https://doi.org/10.4230/LIPIcs.ITP.2019.13

8. Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT
Workshop: International Workshop on Satisfiability Modulo Theories. Oxford,
United Kingdom (Jul 2018), https://inria.hal.science/hal-01960203

9. Conchon, S., Filliâtre, J., Signoles, J.: Designing a generic graph library using ML
functors. In: Morazán, M.T. (ed.) Proceedings of the Eighth Symposium on Trends
in Functional Programming, TFP 2007, New York City, New York, USA, April 2-4.
2007. Trends in Functional Programming, vol. 8, pp. 124–140. Intellect (2007)

10. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, fourth
edition. MIT Press (2022), https://books.google.pt/books?id=HOJyzgEACAAJ

11. Filliâtre, J., Conchon, S.: Apprendre à programmer avec OCaml: Algorithmes et
structures de données. Noire, Eyrolles (2014), https://books.google.pt/books?id=
aTy9BAAAQBAJ

12. Filliâtre, J., Gondelman, L., Paskevich, A.: The spirit of ghost code. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559,
pp. 1–16. Springer (2014), https://doi.org/10.1007/978-3-319-08867-9_1

13. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 125–
128. Springer (2013), https://doi.org/10.1007/978-3-642-37036-6_8

14. Gros, C., Pereira, M.: Le chameau et le serpent rentrent dans un bar: vérifica-
tion quasi-automatique de code ocaml en logique de séparation. In: 36es Journées
Francophones des Langages Applicatifs (JFLA 2025) (2025)

15. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (Oct 1969), https://doi.org/10.1145/363235.363259

16. Huet, G.P.: The zipper. J. Funct. Program. 7(5), 549–554 (1997), https://doi.org/
10.1017/s0956796897002864

17. Knuth, D.E.: The art of computer programming, Volume I: Fundamental Al-
gorithms, 3rd Edition. Addison-Wesley (1997), https://www.worldcat.org/oclc/
312910844

18. Kosmatov, N., Prevosto, V., Signoles, J.: Guide to Software Verification with
Frama-C: Core Components, Usages, and Applications. Computer Science Founda-

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.1007/978-3-030-30942-8_29
https://doi.org/10.4230/LIPIcs.ITP.2019.13
https://inria.hal.science/hal-01960203
https://books.google.pt/books?id=HOJyzgEACAAJ
https://books.google.pt/books?id=aTy9BAAAQBAJ
https://books.google.pt/books?id=aTy9BAAAQBAJ
https://doi.org/10.1007/978-3-319-08867-9_1
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/363235.363259
https://doi.org/10.1017/s0956796897002864
https://doi.org/10.1017/s0956796897002864
https://www.worldcat.org/oclc/312910844
https://www.worldcat.org/oclc/312910844

22 Pedro Gasparinho and Mário Pereira

tions and Applied Logic, Springer International Publishing (2024), https://books.
google.pt/books?id=lD0TEQAAQBAJ

19. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning. pp. 348–370. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

20. Leino, K., Leino, K.: Program Proofs. MIT Press (2023), https://books.google.pt/
books?id=98p3EAAAQBAJ

21. Mével, G., Jourdan, J., Pottier, F.: Cosmo: a concurrent separation logic for
multicore ocaml. Proc. ACM Program. Lang. 4(ICFP), 96:1–96:29 (2020), https:
//doi.org/10.1145/3408978

22. de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

23. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.)
Dependable Software Systems Engineering, NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 50, pp. 104–125. IOS
Press (2017). https://doi.org/10.3233/978-1-61499-810-5-104, https://doi.org/10.
3233/978-1-61499-810-5-104

24. Nipkow, T.: Teaching algorithms and data structures with a proof assistant (invited
talk). In: Hritcu, C., Popescu, A. (eds.) Certified Programs and Proofs, CPP 2021.
ACM (2021)

25. Nipkow, T., Blanchette, J., Eberl, M., Lammich, A.G.P., Sternagel, C.,
Wimmer, S., Zhan, B.: Functional data structures and algorithms. https://
functional-algorithms-verified.org/, accessed: 2025-06-07

26. Nipkow, T., Eberl, M., Haslbeck, M.P.L.: Verified textbook algorithms - A biased
survey. In: Hung, D.V., Sokolsky, O. (eds.) Automated Technology for Verification
and Analysis - 18th International Symposium, ATVA 2020, Hanoi, Vietnam, Octo-
ber 19-23, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12302, pp.
25–53. Springer (2020), https://doi.org/10.1007/978-3-030-59152-6_2

27. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
28. Pereira, M., Ravara, A.: Cameleer: A deductive verification tool for ocaml. In:

Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 12760, pp. 677–689. Springer (2021),
https://doi.org/10.1007/978-3-030-81688-9_31

29. Pereira, M.J.P.: Tools and Techniques for the Verification of Modular State-
ful Code. (Outils et techniques pour la vérification de programmes impératives
modulaires). Ph.D. thesis, University of Paris-Saclay, France (2018), https://tel.
archives-ouvertes.fr/tel-01980343

30. Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg, M.,
Hriţcu, C., Sjöberg, V., Yorgey, B.: Logical Foundations, Software Foundations,
vol. 1. Electronic textbook (2025), version 6.9.0, http://softwarefoundations.cis.
upenn.edu

31. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) Proc. of the 27th CADE, Natal, Brasil. pp. 495–507. No. 11716 in LNAI,
Springer (2019)

32. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley (2011), https://books.
google.pt/books?id=MTpsAQAAQBAJ

https://books.google.pt/books?id=lD0TEQAAQBAJ
https://books.google.pt/books?id=lD0TEQAAQBAJ
https://books.google.pt/books?id=98p3EAAAQBAJ
https://books.google.pt/books?id=98p3EAAAQBAJ
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3408978
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.3233/978-1-61499-810-5-104
https://functional-algorithms-verified.org/
https://functional-algorithms-verified.org/
https://doi.org/10.1007/978-3-030-59152-6_2
https://doi.org/10.1007/978-3-030-81688-9_31
https://tel.archives-ouvertes.fr/tel-01980343
https://tel.archives-ouvertes.fr/tel-01980343
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://books.google.pt/books?id=MTpsAQAAQBAJ
https://books.google.pt/books?id=MTpsAQAAQBAJ

Verification à la carte 23

33. Skiena, S.: The Algorithm Design Manual. Texts in Computer Science,
Springer International Publishing (2021), https://books.google.pt/books?id=
G22jzgEACAAJ

https://books.google.pt/books?id=G22jzgEACAAJ
https://books.google.pt/books?id=G22jzgEACAAJ

	Verification à la carte: A textbook on formally verified OCaml programs

