
Type-Safe Transactional Monadic IO in Java 17

Leonid Meshcheriakov

Innopolis University, Innopolis, Tatarstan Republic, Russia

Abstract. Most popular Java approaches rely on imperative constructs,
exception handling with try-catch blocks, and transaction frameworks.
Many of them are thread-bound, which create challenges for asynchronous
workflows and system composability. Inspired by functional languages
like Haskell and Scala, we adapt the IO monad abstraction to pure Java
using modern language features including sealed interfaces and records
and add support for transaction management in this abstraction. Our im-
plementation provides a declarative, type-safe mechanism for sequencing
computations with side effects through monadic composition, structured
exception flow control, and transaction management powered by lifecy-
cle hooks. The library also supports inner transactions, the Saga pat-
tern, and asynchronous computations. The final implementation show
that functional concepts such as the IO monad can be seamlessly in-
tegrated into Java 17 without custom runtime or syntax, making code
more composable with preserved type safety.

Keywords: Java · Side Effects · Functional Programming · IO Monad
· Transactions.

1 Introduction

In modern software engineering, reliable management of side effects and trans-
actions is a fundamental requirement for building scalable and maintainable
systems. Java, while widely used in enterprise systems, relies primarily on im-
perative constructs and framework-level mechanisms for handling side effects
and transactions, such as exceptions and annotations. Moreover, widely used
Java frameworks for transactions, such as Spring Transaction Management or
Java Transaction API, are thread-bound, meaning that a transaction initiated
in one thread cannot be safely continued, committed or rolled back in another.
This limitation makes it hard to design asynchronous or parallel transactional
workflows.

In contrast, functional programming languages such as Haskell and Scala
hava addressed this problem through the abstraction of the IO monad, which
provides a declarative and type-safe mechanism for sequencing computations
with possible side effects, and the Handle pattern, where resource and context
management lies outside the computation. These approaches allow developers
to model side effects explicitly, improving reasoning about program behavior,
composability, and testability.

2 L. Meshcheriakov

Despite the proven advantages of monadic abstractions in functional pro-
gramming, there is no native or standardized mechanism in Java for encapsu-
lating and composing side effects in a type-safe and purely functional manner.
Although some researchers have attempted to introduce algebraic effects and
handlers in Java [1,2], these solutions typically rely on non-standard language
extensions, complex syntax, or advanced functional abstractions, which increase
the barrier to entry and limit their usability in practical applications.

This research explores whether the idea of the IO monad, as used in func-
tional languages, can be effectively adapted to Java 17 to create a type-safe,
composable, and transactional model for managing side effects.

The goal of the research is to design and implement a library for Java 17
that enables the representation of computations as declarative IO actions with
explicit and composable error handling and support for asynchronous execution
and transaction management. Moreover, the library should be user-friendly for
the average Java developer; in other words, it should have the lowest possible
barrier to entry.

The library is implemented using modern features from Java 17, such as
sealed interfaces and records, which help model data in a type-safe and concise
way. The design follows the principles of IO monads from Haskell and Scala but
extends them with built-in transactional support.

To evaluate the library, unit tests will be used to check compliance with
monad laws and correctness of transactional workflows. Additionally, a test pro-
gram will be implemented to validate the functionality, correctness and perfor-
mance of the library.

2 Literature Review

2.1 The Limitations of Exception and try-catch Mechanisms

Exception handling using try-catch blocks has been a key component of error
management in object-oriented programming languages such as Java. However,
many studies show that, although this mechanism aims to improve reliability
and maintainability, in practice it often leads to hidden complexity and prob-
lems with modular design. The work by Miller and Tripathi [3] was one of the
first to analyse this problem, in which the authors state that traditional ex-
ception handling conflicts with object-oriented principles such as abstraction,
inheritance, and encapsulation. Exceptions are propagated implicitly, and they
can be handled far from the point where they were thrown. This makes control
flow less transparent and introduces dependencies between modules that are not
visible in the program structure. As a result, it becomes harder to reason about
system behavior or to modify and reuse components safely. [3] concludes that
exception handling, although designed to improve fault tolerance, can in fact
reduce robustness if it is not designed properly.

Empirical evidence supports these theoretical claims, for example, the au-
thors of [4] found that in large software product lines exceptions flow frequently

Type-Safe Transactional Monadic IO in Java 17 3

goes beyond the scope of individual features and modules in ways that were not
originally intended. Their study discovered that many exceptions are thrown by
variable components, but caught in core parts of the system or sometimes not
caught at all. This leads to unplanned exception propagation and unpredictable
program behavior. Handlers are often generic, located far from the original source
of the error, and therefore unable to recover properly. The authors conclude that
try-catch mechanisms, when used in large modular systems, do not ensure the
composability or predictability required for reliable software design. Moreover, in
a large empirical study of Eclipse and Apache Tomcat projects, the authors ana-
lyzed 220 exception handling bugs and surveyed 154 professional developers [5].
They found that exception handling is often ignored in practice: only 27% of
organizations reported having exception handling policies and standards, and
70% had no specific tests for exception handling code. Common problematic
practices were overly generic error handlers or empty catch blocks, which made
systems more fragile and harder to debug.

2.2 Monads and Side Effects

Studies [6,7] show that functional concepts, especially monads, can be effectively
integrated into object-oriented and imperative languages. The authors of [6]
focus on representing effectful computations with type-level monadic structures
that make side effects explicit. Their library translates imperative constructs into
typed bind chains, ensuring that each effect of Option, State, Writer, and List
is safely composed. In [7] the Funk library was implemented in C#, introducing
types such as Maybe, OneOf, and Exc to express optionality, branching, and
exceptions as explicit monadic values. Both approaches prove that effect-safe
functional abstractions can coexist with object-oriented design. This integration
can improve code composability, clarity, and reliability and reduce boilerplate
and failures by forcing developers to handle side effects properly.

Simon Peyton Jones [8] explains how Haskell deals with real-world side
effects such as IO, concurrency, exception handling, and foreign language calls,
while keeping the language pure and functional. The author shows that monads
make it possible to describe side effects as typed values, so that programs stay
predictable and composable. The IO monad is used to control execution order
and isolate side effects inside a safe type structure. The paper also shows how
monads make concurrent and exception-handling code easier to reason about.

In [9], the author presents the theoretical idea that exception handling can be
seen as a special case of monadic binding, not as separate control-flow construct.
He shows that the usual catch operation works in the same way as the monadic
bind when it is used with an error monad. This means that exceptions can be
handled as first-class values inside a typed computational context.

3 Design

To be more user-friendly for the average Java developer, the Java standard API
and Mono from Project Reactor [10]—one of the widely used Java libraries among

4 L. Meshcheriakov

those that adapt functional programming concepts—were considered while de-
signing API.

3.1 Constraints of Java Type System

Java does not support higher-kinded types, but they can be introduced in type-
safe way [12]. However, this approach makes the library more complex and harder
to understand, which increases the barrier to entry. Moreover, this approach leads
to boilerplate code and a loss of type information: if an operation is defined
generically over all monads, its result will be only generic kind without type-
specific methods, such as error recovery from the IO. In this work, the focus is
limited to the implementation of the IO monad, because a separate library for
a general Monad abstraction introduces more drawbacks than benefits.

3.2 Exceptions as IO Error

According to Java language standards [13], developers should throw Exception
and its subclasses only to indicate that a problem has occurred. Therefore, we
can consider an exception as an error state of our monad, that can be recovered
from. If an exception is thrown inside a transformation function, it will be also
treated as recoverable error state of the IO monad, ensuring that exception do
not propagate outside.

3.3 Support of Asynchronous Computation

Modern applications often require asynchronous computations to handle I/O
operations, external API calls, and concurrent tasks efficiently without blocking
threads. To support such workflows, the library should rely on CompletableFuture—the
standard Java API for asynchronous computations—so that the developer can
seamlessly integrate existing libraries. This can be achieved by representing
the result of each computation step as a CompletableFuture, to which sub-
sequent operations are then composed. Additionally, to give developers control
over thread management, it is important to provide the ability to explicitly
specify which Executor should be used to run asynchronous computations when
executing an IO.

3.4 Debugging Support

Since IO computations are lazy and asynchronous, standard Java stack traces
become uninformative—they capture only the point where the computation was
executed, such as a thread pool worker, rather than where the IO was actually
constructed. To solve this problem, the library should capture stack traces at
each IO step, so that the developer can trace the entire composition chain and
identify which specific operation failed and how it was built.

Type-Safe Transactional Monadic IO in Java 17 5

3.5 Lack of Syntactic Sugar

Haskell has do-blocks, just like Scala for-comprehension, which make code more
concise and less overloaded, when working with monads. Basically, these con-
structs are syntactic sugar over the bind operator. This kind of functionality
is important for writing concise code. Since the library uses the standard Java
without syntax changes, this problem can be solved by creating static methods.

Also, while designing the library, boilerplate code was observed when specify-
ing the IO type with its parameters—context, error and result. Not only did the
type itself become overly long and impractical to use, but it also needed to be
repeated in multiple locations. Although this problem can be avoided by using
the var keyword instead of a type, so it will be inferred, but it can be applied
only to variables.

This problem can be solved in Haskell and Scala through type aliasing mech-
anism, which is not available in Java. However, it can be implemented in at least
two ways. First, the developer defines a type alias via an interface, for example:
MyIO<R> extends IO<Nothing, Exception, R>, and uses it in the code. Sec-
ond, either the code is transformed at compile time by substituting IO instead of
these user-defined interfaces, or the library generates classes implementing these
interfaces at runtime. The first approach provides better runtime performance,
but its implementation is significantly more complex than the second approach.
This complexity arises from the requirement for advanced static analysis and
code transformation. Moreover, it is not clear whether it will provide a signif-
icant performance improvement compared to the second solution. Hence, the
second approach was chosen.

3.6 Transactions

Transaction handling should be designed so that transaction handlers, which
configure environment, are defined in the same place as the code that requires
it, rather than elsewhere. Therefore, the end user does not need to know, which
implementation of service is used, to handle transactions correctly, which aligns
with the object-oriented principle of inheritance. This approach enables easy
combination of different modules with service implementations, reduces com-
plexity and simplifies testing. Additionally, there should be support for isolated
transaction for workflows that require it.

This behavior can be achieved by allowing the attachment of transactional
hooks to an IO instance. The attached hooks should be executed before compu-
tation of that particular IO starts and at the end of its computation, providing
information about whether it completed successfully. To properly isolate one
transaction from another, their hooks must be handled separately from each
other.

Unfortunately, some systems lack transaction mechanisms, for example, API
calls, or cannot rely on them due to various reasons, such as the absence of
atomicity, consistency, isolation or durability (ACID) guarantees. For such sce-
narios, there should be support for the Saga pattern [11]—a transaction pattern

6 L. Meshcheriakov

that maintains data consistency through a sequence of local transactions. In this
pattern, the developer can define a compensating action for each step that will
be executed on failure to undo the effects of previously completed steps. This
approach ensures consistency even when rollback mechanisms are not available.

3.7 Stack Overflow Problem

The most popular IO implementations in Scala—ZIO [14] and Cats Effect[15]—use
a trampolining technique, where computations are executed step by step in a
loop instead of recursive function calls, preventing stack overflow. Stack safety of
asynchronous computations is ensured by storing the continuation and resuming
it later via an event loop rather than through recursive calls.

In practice, Java programs are typically written in an object-oriented and im-
perative style, where stack overflow rarely occurs and usually happens only when
recursion is used incorrectly. Moreover, we need to work with CompletableFuture
that is not stack-safe, so that the developer can integrate libraries based on it.
Due to these factors, this implementation was not designed to be stack-safe.

4 Implementation

We present results of our implementation1 of the IO monad. This implementa-
tion demonstrates the feasibility of combining functional programming concepts
with transaction management in a type-safe manner using an object-oriented
language. While the core monadic operations and basic transactional manage-
ment are in place, a number of advanced features are still under development.

4.1 Core Design

The IO<C, E extends Exception, R> interface defines a computation that is
parameterized by a context type C, an exception type E, and a result type R.

This interface defines three core abstract methods that must be implemented:
the prepare method simply returns an instance of IORunnable that repre-
sents the computation, the getHooks method returns the list of transactional
hooks attached to this instance, and the getInitializationTrace method re-
turns the stack trace of this instance initialization, needed for easing debugging.
To run the computations, one of the execute methods, such as tryExecute or
tryExecuteAsync, should be used.

1 public interface IO <C, E extends Exception , R> {
2 // ...
3 @NotNull
4 IORunnable <C, R> prepare(@NotNull C context);
5

1 The implementation and documentation are available at https://gitlab.com/
worldm/functional/io.

https://gitlab.com/worldm/functional/io
https://gitlab.com/worldm/functional/io

Type-Safe Transactional Monadic IO in Java 17 7

6 @NotNull
7 RecList <IOHook <? super C>> getHooks ();
8

9 @NotNull
10 RecList <IOInitializationTrace > getInitializationTrace ();
11

12 @NotNull
13 default Try <Exception , R> tryExecute(
14 @NotNull C Context
15) {
16 // ...
17 }
18

19 @NotNull
20 default CompletableFuture <Try <Exception , R>>

tryExecuteAsync(
21 @NotNull C Context
22) {
23 // ...
24 }
25 // ...
26 }

Besides these methods, the IO interface provides a comprehensive set of de-
fault methods for monadic composition, exception flow control, the type aliasing
mechanism, transaction management, and utility operations.

Also, the library provides several standard implementations such as IO.success(R
result) and IO.error(E error) for pure values, IO.of(Supplier<R> supplier)
for simple effectful operations, IO.fromCompletionStage(...), and so on.

1 IO<Nothing , Exception , String > io1 = IO.success("abc");
2 // Java allows type inference via "var" keyword.
3 // Type of io2 is IO <Object , RuntimeException , Long >
4 var io2 = IO.of(
5 () -> System.currentTimeMillis ()
6);

4.2 Monadic Composition

The implementation satisfies monad laws through the map and flatMap methods.
The map method simply transforms results, while the flatMap method creates
a sequence of IO computations. Method signatures ensure compatibility with
other context types and allow flexible result type transformations. Moreover, it
is impossible to compose IO instances with different context types directly, it
is required to explicitly change the context through the mapContext method. If
any of these methods produce an exception inside an user-defined transformation
function, it will be caught, and the IO computation will be in a recoverable error
state.

8 L. Meshcheriakov

1 IO<Nothing , Exception , String > io1 = IO.success("abc");
2 IO<Nothing , Exception , Integer > io2 = io1.map(
3 s -> s.length ()
4);
5 // Type inference works even on transformations.
6 // Type of io3 is IO <Nothing , Exception , Integer >
7 var io3 = io2.flatMap(
8 i -> IO.success(i + 1)
9);

10 IO <Connection , Exception , Integer > io4 = io3.mapContext(
11 c -> Nothing.INSTANCE
12);

4.3 Exception Flow Control

Structured exception flow control is provided through three methods: recover
converts exceptions into successful results, flatRecover allows exception han-
dlers to return an IO computation for complex recovery strategies, and mapError
transforms exception types for adapting to different error contexts. The type sys-
tem tracks exception types through composition chains, providing compile-time
safety.

1 IO<Nothing , SQLException , String > io1 = IO.error(
2 new SQLException("abc")
3);
4 IO<Nothing , SQLException , String > io2 = io1.recover(
5 e -> e.getMessage ()
6);
7 IO<Nothing , SQLException , String > io3 = io1.flatRecover(
8 e -> new Random ().nextBoolean ()
9 ? IO.success(e.getMessage ())

10 : IO.error(e)
11);
12 IO <Nothing , Exception , String > io4 = io1.mapError(
13 e -> (Exception) e
14);

4.4 Asynchronous Computations

The implementation is built on top of CompletableFuture to support asyn-
chronous computations, allowing the wrapping of existing asynchronous code
based on the standard Java API as IO computations, thus gaining the benefits
of this library, such as transaction management. It is worth noting that there is a
simple optimization: if an IO is executed asynchronously, the entire computation
will be performed in the same thread that called the execution until it reaches
the first asynchronous computation. Therefore, if an IO has no asynchronous
operations, the entire computation runs synchronously in the same thread.

Type-Safe Transactional Monadic IO in Java 17 9

1 IO<ApiContext , Exception , String > io = IO.fromCompletionStage
(context -> {

2 String password = context.getApiPassword ();
3

4 CompletableFuture <String > future = apiService.getToken(
password);

5

6 return future;
7 });

Additionally, the developer can specify the Executor that should be used to
run asynchronous computations by providing an execution context that imple-
ments the ExecutionContext interface.

1 class MyContext implements ExecutionContext {
2 private final Executor executor;
3

4 public MyContext(@NotNull Executor executor) {
5 this.executor = executor
6 }
7

8 @Override
9 @Nullable

10 public Executor getExecutor () {
11 return executor;
12 }
13

14 @NotNull
15 public ExecutionContext withExecutor(
16 @Nullable Executor executor
17) {
18 return new MyContext(executor);
19 }
20 }

1 IO<Object , Exception , String > io = IO.success("abc")
2 .flatMap(s -> IO.fromCompletionStage (...))
3 .map(o -> o.toString ());
4

5 Executor executor = Executors.newSingleThreadExecutor ();
6

7 // Asynchronous computation will use the executor ,
8 // provided to the context
9 Try <Exception , String > result = io.tryExecute(

10 new MyContext(executor)
11);

4.5 Type Aliasing

The implementation contains type aliasing mechanism that allows the use of
domain-specific type definitions via interfaces. The withTypeAlias method adapts

10 L. Meshcheriakov

IO to the user-defined interface type without losing type-safety, allowing the de-
veloper to write concise code. Additionally, the developer can override methods
to change the type of the return value to the corresponding type alias. All type
constraints work at compile time; hence, the reliability of the type aliasing mech-
anism is significantly increased.

1 interface MyIO <R> extends IO<Nothing , Exception , R> {
2 @Override
3 default <NR > MyIO <NR> map(
4 CheckedFunction <
5 ? extends SQLException ,
6 ? super R,
7 ? extends NR
8 > function
9) {

10 return IO.super.map(function)
11 .withTypeAlias(new TypeRef <>() {
12 });
13 }
14 }

1 IO<Nothing , Exception , String > io1 = IO.success("abc");
2 MyIO <String > io2 = io1.withTypeAlias(new TypeRef <>() {});
3 MyIO <Integer > io3 = io2.map(s -> s.length ());
4 IO<Nothing , Exception , Integer > io4 = io3;

4.6 Transaction Management

Transaction lifecycle hooks (onStart, onEnd, onException) attach to IO in-
stances by using the addHook method and are preserved through monadic com-
position. It is guaranteed that a hook will be considered only once if it cor-
rectly defines a key—a combination of objects that uniquely identifies this hook.
Moreover, the library ensures correct handling of hooks after IO instance trans-
formations. The current implementation supports single-phase transactions with
proper resource management and commit-rollback logic. Additionally, the library
supports nested transactions by introducing the isolate method that runs a new
transaction independently of the current one.

1 class SqlHook implements IOHook <Connection > {
2 @Override
3 public void onStart(@NotNull Connection connection) {
4 connection.setAutoCommit(false);
5 }
6

7 @Override
8 public void onEnd(@NotNull Connection connection) {
9 connection.commit ();

10 connection.close ();
11 }

Type-Safe Transactional Monadic IO in Java 17 11

12

13 @Override
14 public void onException(@NotNull Connection connection) {
15 connection.rollback ();
16 connection.close ();
17 }
18

19 @NotNull
20 public IOHookKey getKey () {
21 // Hook does not have any arguments or dependencies ,
22 // so the key is just the class
23 return new IOHookKey(getClass ());
24 }
25 }

1 IO<Connection , SQLException , Unit > io1 = IO.of(connection ->
{

2 Statement statement = connection.prepareStatement(
3 "INSERT INTO users(name , age) VALUES (?, ?)"
4);
5 statement.setString(1, "Ivan");
6 statement.setInt(2, 10);
7 statement.executeUpdate ();
8 return Unit.INSTANCE;
9 }).addHook(new SqlHook ());

10

11 IO <Nothing , Exception , Unit > io2 = IO.success(Unit.INSTANCE)
12 .flatMap(unit ->
13 io1.isolate (() ->
14 DriverManager.getConnection("...")
15)
16);
17

18 Try <Exception , Unit > result = io2.tryExecute(
19 Nothing.INSTANCE
20);

4.7 Saga Pattern

The library provides the Saga pattern for systems, where resources lack proper
transactional support. The developer can use the compensate method to asso-
ciate compensating actions with an IO instance, so that when a failure occurs,
they execute automatically in reverse order, ensuring consistency across the sys-
tem.

1 Map <Integer , String > storage = new ConcurrentHashMap <>();
2 AtomicInteger lastId = new AtomicInteger ();
3

4 IO<Nothing , Exception , String > io = IO.defer (() -> {

12 L. Meshcheriakov

5 int id = lastId.incrementAndGet ();
6 return IO.of(() -> {
7 String data = "data";
8 storage.put(id, data);
9 return data;

10 }).compensate(IO.of(() -> {
11 storage.remove(id);
12 }));
13 });

4.8 Debugging Support

In the library, each IO instance captures the stack trace of its initialization,
maintaining a recursive list of the full transformation history. When an IO com-
putation raises an exception, these initialization stack traces are automatically
filtered and attached as suppressed exceptions, allowing developers to trace the
failure. Moreover, developers can control what should be filtered out by provid-
ing an execution context that implements the InitializationTraceContext
interface.

1 class MyContext implements InitializationTraceContext {
2 @Override
3 @NotNull
4 public IOTraceIgnoreTrie getStackIgnoreTrie () {
5 return new IOTraceIgnoreTrie ()
6 .addStartsWith("java.util.concurrent.");
7 }
8

9 @Override
10 public int getInitializationTraceDepth () {
11 return 20;
12 }
13 }

1 IO<Object , Exception , String > io = IO.success("abc")
2 .map(s -> s.repeat (2))
3 .flatMap(s -> IO.error(new Exception));
4

5 // Contains an suppressed exception with information
6 // about the initialization trace of the IO
7 Try <Exception , String > result = io.tryExecute(
8 new MyContext ()
9);

4.9 Composition Utilities

The library provides several utilities to simplify composition and transformation
of IO instances, improving code clarity and maintaining type safety.

Type-Safe Transactional Monadic IO in Java 17 13

For-Comprehension The IODo class provides Scala-like for-comprehension
syntax to simplify the composition of multiple IO instances. It allows devel-
opers to express sequential operations in a declarative style, reducing syntactic
overhead while maintaining type safety and monadic semantics.

1 IO<Nothing , Exception , String > io = IO.success("a");
2

3 IO<Nothing , Exception , List <String >> result = IODo.of(
4 io ,
5 s -> IO.success (1),
6 (s, i) -> IO.success(Collections.nCopies(i, s))
7).yield((s, i, l) -> l);

Result Aggregation The IOZip class provides the ability to execute multiple
IO computations in sequence and zip their results together into a single value
in a type-safe manner. It provides a more concise alternative to IODo when the
goal is simply to collect and combine multiple independent results.

1 IO<Nothing , Exception , String > io1 = IO.success("a"),
2 IO<Nothing , Exception , Integer > io2 = IO.success (1),
3 IO<Nothing , Exception , Long > io3 = IO.success (2L),
4

5 IO<Nothing , Exception , List <String >> result = IOZip.of(
6 io1 ,
7 io2 ,
8 io3
9).yield((s, i, l) -> new MyEntity(s, i, l));

Monadic Transformations The IOOps class provides static methods for sev-
eral monadic operations. It includes the Optional monad transformer for concise
handling of nullable values, as well as the sequence method that converts a col-
lection of IO instances into a single IO instance that contains a collection of the
results.

1 List <IO <Nothing , Exception , String >> list = List.of(
2 // ...
3);
4

5 IO<Nothing , Exception , List <String >> io1 = IOOps.sequence(
6 list
7);
8

9 IO<Nothing , Exception , Optional <String >> io2 = IO.of(
10 Optional.of("a")
11);
12

13 IO <Nothing , Exception , Optional <String >> io3 =
14 IOOps.flatMapOptional(

14 L. Meshcheriakov

15 io2 ,
16 string -> IO.success(string + "b")
17);

4.10 Extension Libraries

To demonstrate the practical applicability and extensibility of the IO library, two
extension libraries were created: a Java Database Connectivity (JDBC) integra-
tion layer—JDBC is the standard Java API for working with databases—and a
remote procedure call framework supporting distributed transactions.

io-jdbc This library2 allows developers to easily wrap actions with database
based on JDBC to the IO instances with transaction support:

1 record User(int id, @NotNull String name , int age) {
2

3 }
4

5 String name = "foo";
6

7 SqlIO <SqlContext , List <User >> io1 = JdbcQuery.select(
8 "SELECT id, age FROM users WHERE name = ?"
9)

10 .argument(name)
11 .build(new ListOutcome <>(
12 (resultSet) ->
13 new User(
14 resultSet.getInt("id"),
15 name ,
16 resultSet.getInt("age")
17)
18)
19);
20

21 IO <SqlContext , SQLException , List <User >> io2 = io1;

io-rpc This library3 allows the developer to delegate execution of an IO com-
putation to a remote server in a single distributed transaction via any backend,
that the user can implement. The library contains an implementation for HTTP
and AMQP backends. Distributed transactional behavior is achieved through
the following steps:

2 The implementation and documentation are available at https://gitlab.com/
worldm/functional/io-jdbc.

3 The implementation and documentation are available at https://gitlab.com/
worldm/functional/io-rpc.

https://gitlab.com/worldm/functional/io-jdbc
https://gitlab.com/worldm/functional/io-jdbc
https://gitlab.com/worldm/functional/io-rpc
https://gitlab.com/worldm/functional/io-rpc

Type-Safe Transactional Monadic IO in Java 17 15

1. The client sends the first RPC request for this server in transaction A.
2. The server stores the already existing context if the first RPC request in this

transaction was sent by this server; otherwise, it creates and stores a new
one.

3. The server calls the method with arguments, provided by the client, runs
the received IO and sends the result to the client.

4. The server asynchronously waits for another RPC request or a request that
indicates whether the transaction should be rolled back or committed.

5. If waiting exceeds the timeout, the transaction will be rolled back.

Moreover, multiple parallel distributed transactions on one server instance
are supported.

Unfortunately, there is a case that can lead the system to an inconsistent
state. If the timeout is exceeded at one of the servers and it then receives a
commit request, the request will fail. However, it will not affect commit requests
to other servers, because in the current implementation the IO library ignores
exceptions from transactional hooks. To handle such situations correctly, a two-
phase commit protocol must be implemented in the future.

1 // API module , shared between the server and its clients
2 public interface HashService {
3 @NotNull
4 IO<Nothing , Exception , String > hash(
5 @NotNull String s
6);
7 }

1 // Server code
2 // -- Configuration
3 ServerRpcIO <Nothing > serverRpcIO = new ServerRpcIO <>(
4 new ServerId("my-service"), // Server ID
5 () -> Nothing.INSTANCE , // Context factory
6 Duration.ofSeconds (5) // Transaction timeout
7);
8

9 serverRpcIO.addCallHandler(
10 HashService.class ,
11 new Sha256HashService () // Implementation
12);
13

14 // -- Usage
15 String rpcJsonFromClient = "...";
16

17 RpcClientMessage <?> request = serverRpcIO
18 .getObjectMapper ()
19 .readValue(
20 rpcJsonFromClient ,
21 RpcClientMessage.class
22);

16 L. Meshcheriakov

23

24 CompletableFuture <RpcResponseMessage <RpcServerMessage >>
25 response = serverRpcIO.handle(request);
26

27 // Wait for response , serialize it and send
28 // to the client

1 // Client side
2 // -- Configuration
3 RpcBackend rpcBackend = ...;
4

5 ClientRpcIO <Nothing > clientRpcIO = new ClientRpcIO(
6 rpcBackend ,
7 Nothing.class // Context class
8);
9

10 HashService remoteHashServer = clientRpcIO.implement(
11 HashService.class
12);
13

14 // -- Usage
15 String hashedData = IO.success("data")
16 .flatMap(p -> remoteHashServer.hash(p))
17 .execute(Nothing.INSTANCE);

4.11 Constraints

The current implementation has several constraints that must be considered
when using the library.

As discussed in Section 3.7, the implementation is not stack-safe. This design
focuses on practical needs: stack overflow rarely happens in typical Java code,
and compatibility with the existing standard Java API for asynchronous com-
putations—which itself is not stack-safe—is required, since there is a huge code
base built on top of it.

All methods enforce non-null semantics: null values are forbidden in all argu-
ments and results in transformation functions even for the map method. This is
achieved Developers must use Optional types when representing absent values.

Exception handling currently captures only Exception and its subclasses,
meaning other Throwable types such as Error are not caught and will propagate
unchecked. While this aligns with standard Java practices, where Error indicates
state where it is impossible to recover, some third-party libraries inappropriately
use Error subclasses for recoverable failures. To properly support badly designed
libraries, we plan to refactor the library to handle all Throwable types while
maintaining appropriate semantics for unrecoverable errors.

The transaction hook system has a critical limitation in error handling: ex-
ceptions thrown by onEnd and onException hooks are only logged and not
handled properly. This creates a problem with consistency when several hooks

Type-Safe Transactional Monadic IO in Java 17 17

manage different resources. For example, if a file system and an SQL connection
hooks have been initialized, and one fails during commit, the other proceeds
independently, potentially creating an inconsistent state. To address this issue,
there must be support for two-phase commits to ensure the atomicity principle,
which is our primary focus.

To change or define the behavior of the effects, the code should rely on the
execution context provided by the developer. However, due to the inheritance
principle, developers should declare the most general context possible, without
exposing implementation details. For example, if we have a UserRepository
service with in-memory and database implementations, the context type of the
interface cannot be SqlContext. Otherwise, the code becomes non-extensible:
for instance, it is impossible to create an implementation for MongoDB without
using type-unsafe context casts. Therefore, the developer should use parameter-
ized types for the context in all abstractions and implementations to ensure fully
type-safe operations. It is worth noting that in Java it is possible to obtain a
union type only by using parameterized types. This approach is demonstrated
in the code example below.

1 // Service and context definitions
2 interface UserRepo <C> {
3 @NotNull
4 IO<C, Exception , User > getUser(int id);
5 }
6

7 interface SqlContext {
8 // ...
9 }

10

11 class PostgresUserRepo implements UserRepo <SqlContext > {
12 // ...
13 }
14

15 class MemoryUserRepo implements UserRepo <Object > {
16 // ...
17 }
18

19 interface PermissionService <C> {
20 @NotNull
21 IO<C, Exception , Boolean > isAdmin(int id);
22 }
23

24 interface PermissionContext {
25 // ...
26 }
27

28 class UserPermissionService <
29 // Union type
30 C extends URC & PermissionContext ,
31 // UserRepo context type

18 L. Meshcheriakov

32 URC
33 > implements PermissionService <C> {
34

35 private final UserRepo <URC > repo;
36

37 public UserPermissionService(
38 @NotNull UserRepo <URC > repo
39) {
40 this.repo = repo;
41 }
42

43 // ...
44 }

1 // Configuration
2 interface CombinedContext extends
3 SqlContext ,
4 PermissionContext {
5 }
6

7 UserRepo <SqlContext > repository =
8 new PostgresUserRepo ();
9

10 PermissionService <CombinedContext > service =
11 new UserPermissionService <>(repository);

Unfortunately, there is one problem with contexts: the user can use a final class
as a context type definition, which limits the ability to handle effects, since
these classes cannot be overridden or extended with interface implementations.
Addressing this limitation is a priority for future work.

4.12 Conclusion

In this work, the library for the functional IO monad with transaction support
was implemented in Java 17, while preserving all the benefits of this approach,
including type-safety, side effects handling, and robust workflow. The current
implementation provides a solid foundation, but further work remains to be
done to achieve more robust workflow.

References

1. Brachthäuser, J., Schuster, P. & Ostermann, K. Effect handlers for the masses. Proc.
ACM Program. Lang.. 2 (2018,10), https://doi.org/10.1145/3276481

2. T. Mahler. Jiffy, https://github.com/thma/jiffy, Accessed: 2026-01-11
3. Miller, R. & Tripathi, A. Issues with exception handling in object-

oriented systems. ECOOP’97—Object-Oriented Programming. pp. 85-103 (1997),
https://doi.org/10.1186/2195-1721-1-3

Type-Safe Transactional Monadic IO in Java 17 19

4. Melo, H., Coelho, R., Kulesza, U. & Sena, D. In-depth characterization of exception
flows in software product lines: an empirical study. Journal Of Software Engineering
Research And Development. 1, 3 (2013,10), https://doi.org/10.1186/2195-1721-1-3

5. Ebert, F., Castor, F. & Serebrenik, A. An exploratory study on exception handling
bugs in Java programs. Journal Of Systems And Software. 106 pp. 82-101 (2015),
https://www.sciencedirect.com/science/article/pii/S0164121215000862

6. Anderlind, J. & Åsberg, M. Monadic Programming in Imperative Languages. (2023),
https://hdl.handle.net/20.500.12380/306361

7. Ćerim, H. Extending C# with a Library of Functional Program-
ming Concepts. (Univerzita Karlova, Matematicko-fyzikální fakulta,2020),
https://hdl.handle.net/20.500.11956/121344

8. Peyton Jones, S. Tackling the Awkward Squad: monadic in-
put/output, concurrency, exceptions, and foreign-language calls
in Haskell. (2002), https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/07/mark.pdf

9. Malakhovski, J. Exceptionally Monadic Error Handling. (2019),
https://arxiv.org/abs/1810.13430

10. VMWare. Project Reactor, https://projectreactor.io/, Accessed: 2026-01-11
11. Garcia-Molina, H. & Salem, K. Sagas. ACM Sigmod Record. 16, 249-259 (1987),

https://doi.org/10.1145/38714.38742
12. Higher-Kinded-J Maintainers. Higher-Kinded-J, https://higher-kinded-j.github.io,

Accessed: 2026-01-11
13. Oracle Corporation. Throwing Exceptions, https://dev.java/learn/exceptions/throwing/,

Accessed: 2026-01-11
14. ZIO Maintainers. ZIO Documentation, https://zio.dev/reference, Accessed: 2026-

01-11
15. Typelevel. Cats Effect Documentation, https://typelevel.org/cats-

effect/docs/getting-started, Accessed: 2026-01-11

	Type-Safe Transactional Monadic IO in Java 17

