Benchmarking a Baseline Fully-in-Place Functional
Language Compiler

Jaromir Prochazka,

Vit Seﬂ[(]OOO700037435079256]7 and Tomas Petricek[OOO()f()O()Q7724272208]

Charles University, Czech Republic
jaromir.prochazka724@student.cuni.cz
sefl@ksvi.mff.cuni.cz
petricek@d3s.mff.cuni.cz

Abstract. Functional programming makes code more testable, inher-
ently thread-safe, and easier to reason about. However, immutable data
structures introduce efficiency costs, as many operations require copying
rather than performing in-place modifications. To address this, the Koka
language introduced a novel mechanism known as fully-in-place functional
programming (FIP), which enables safe in-place updates while minimizing
unnecessary memory allocations. Nevertheless, Koka’s garbage collection
and extensive feature set complicate the task of isolating FIP’s specific
memory efficiency advantages. We design a minimal functional language
that supports fully in-place updates based on the FIP calculus while
omitting garbage collection. This lets us compare the performance of
the FIP approach against that of a conventional implementation. Using
finger trees, red-black trees and quicksort as case studies, we show that
a language employing the FIP calculus in a garbage collection-free envi-
ronment can achieve a significant increase in performance and memory
efficiency. Our work confirms the results of the original FIP authors, but
it also uncovers limitations of the approach.

Keywords: FIP - Compilation - Programming languages - Functional
programming

1 Introduction

It is no secret that programs written in functional languages allocate a lot of mem-
ory. Functional data structures achieve their advantages through immutability.
Updating these structures is done through copying rather than in-place mutations,
and even though parts of the structure can typically be shared, some additional
memory needs to be allocated. Fortunately, most allocations are ephemeral, and
thus the residency of functional programs (the total amount of memory in use at
any given point) is typically not large.

Modern generational garbage collectors are good at handling the memory
allocation patterns of functional programs [9]. In particular, garbage collection
performs the best for short-lived structures that never leave the first generation.

However, even though the cost of allocation (and deallocation) has gotten very
low, it is not free.

In some cases, memory allocation can be replaced with in-place mutation
while still maintaining functional purity. That is, destructive updates can occur
as long as they are not observable. For example, if we copy an array and the
original immediately ceases to exist (there are no observers that can access it),
the copy can be elided and the update done in-place. However, identifying these
optimization opportunities automatically can be quite challenging.

The FIP (fully in-place) calculus [6] is a recent attempt at solving this
problem in a principled way. The FIP calculus describes a wide variety of purely
functional programs that can be executed safely using in-place updates, thus
avoiding unnecessary memory allocation. If a function argument is unique and
owned, the memory it occupies can be reused as it is deconstructed. FIP itself
does not specify how to ensure that the reused structure is unique and leaves it
up to the implementation. Uniqueness could be tracked statically (e.g. through
linear types) or dynamically (e.g. through reference counting).

The FIP calculus has been successfully implemented in the Koka language [5].
Although Koka shows promising results, it is, to our knowledge, a singular
experiment. Koka is a rich language with a more complex reference-counting
runtime, which complicates the evaluation of benefits provided by FIP. To validate
the promising results of Koka, we aim to examine if it is possible to obtain the
same benefits in a different functional language.

1.1 Goals

The primary objective of this work is to design and implement a small, compiled
functional language based on the FIP calculus. The implementation should have
a minimalistic runtime. In particular, no garbage collection or reference counting
should be employed.

With the implementation in place, the next step is to reproduce the ex-
periments of the original paper: quicksort, red-black tree insertion, and finger
tree insertion. We are interested in the relative speedup between a standard
reallocating implementation and a FIP implementation. Finally, we analyze the
results and compare them with those of the original paper.

As a secondary objective, we analyze how the design of the FIP-based type
system interacts with the chosen compiled data representation. This points to a
potential limitations of the FIP approach.

1.2 Contributions

— We implemented StaFip, a lightweight functional language (Section. Unlike
Koka, StaFip is a statically compiled language without garbage collection. Its
feature set was carefully chosen with the goal of providing a strong baseline
for benchmarking FIP.

— We reimplement three benchmarks from the original paper [6] (finger trees,
red-black trees, quicksort) using StaFip and compare the performance of
a conventional and FIP-based compilation strategy. The speedup (1.4-3x)
closely resembles the speedup measured in the context of Koka, confirming
the validity of the FIP approach (Section .

— We observe that the type system can be sensitive to the implementation
details (Section . In particular, a valid FIP program in one language might
not be valid in another language. The degree to which validity depends on
implementation details could pose an issue to FIP.

2 Background

2.1 The FIP Calculus

To introduce the FIP approach, we consider the example presented in the original
paper. In a standard functional implementation of a list reversal, the program
recursively traverses the list using an accumulator parameter. For each item of
the list, a new node is allocated and added to the accumulator, as can be seen in
Figure

The FIP approach avoids this inefficiency by reusing the space of the ‘reversed’
list (Figure [I]) to initialize the ‘(_head:accumulator)‘ node without the need
for a new allocation. It is important to keep in mind that reversed argument
must be owned by (unique to) the FIP function to maintain its functional purity
(no observable side effects). To understand how the new node can be initialized
without allocation, let us look at the reuse tokens, which are a special notation
of FIP calculus developed for Koka and used to trace the available memory. The
part ‘(_head:rest)‘ is understood as a block of memory with two elements, the
head and tail, and is used as a reuse credit of size 2 (written as ©3). Upon reuse,
it must be checked that the size of the new structure fits the size of the available
reuse credit (as seen in Figure .

These reuse tokens must represent a contiguous segment of memory. Note
that two reuse tokens representing adjacent segments cannot be merged into

reverse_acc :: [a] -> [a] -> [a]
reverse_acc reversed accumulator =
case reversed of
-- (_head : accumulator) allocates new list mode
(_head:rest) -> reverse_acc rest (_head : accumulator)
0] -> accumulator

main :: I0 ()
main = print $ reverse_acc [1, 2, 3] []

Fig. 1: A Haskell code representing a simple allocating list reversal.

@ -0
@-© -0
@-0-0 -0
@-0-6060 O

Starting step

1. iteration

2. iteration

Result

Fig. 2: Step by step flow of the fully in-place list reversal.

a larger reuse token. This is because we cannot ensure that two variables will
be allocated right next to each other statically before runtime. The allocation

process is managed by the kernel.

2.2 The FIP Type System

The original FIP calculus models a richer programming language. Only a subset
of the FIP type system is relevant for benchmarking purposes. This includes
typing rules for pattern matching on expressions, reuse of available data blocks

and calling of first-order functions.

Evaluation Terms:

E:=(V,..,V)
| £(E; E)

| match F {P — E}
| match! B {P — E}

Vi==x
lcVV .V

P:=Czl..zk

(varible)

(constructor)

(pattern)

FIP calculus defines a syntax based on commonly used functional operations:
function call, function definition, match and destructive match terms. The match

A|lT'ke

—— VAR —— EmpPTY ——— Atom
Alzbkx A|TLogke AlgkEC
FX Fl|zThe
—— DEFBASE ——————— DErFUN
I+ o IFX fg;z) =e

Fig. 3: Well-formedness rules of the FIP calculus (variables and base terms)

terms are used to create branching and unboxing in the program. The destructive
match (match!) in particular is a special FIP term which allows the reuse of
memory blocks.

For reusing memory, we denote a reuse token of size k as ¢;. These tokens
represent a contiguous part of already allocated memory, all of which is available
for reuse. They are created from destroyed data, which the program no longer
uses.

As mentioned above, these blocks cannot be merged or split. Merging would
not always preserve their contiguity or would lead to reallocations, which is exactly
what we are trying to avoid. Splitting, on the other hand, could create reuse
tokens of size unusable for any constructor. It would also make it much harder to
manage memory, since to deallocate this memory block without destroying some
still-used data, the system would have to keep track of all the data instances
placed in it. The block could be deallocated only if all the instances placed in it
are not used anytime later in the runtime.

Since the FIP approach reuses already allocated memory blocks, converting
their data to reuse tokens effectively destroys them, we need to make sure that
this data is no longer used by other parts of the program. For that purpose, we
use two separate contexts for any expression e:

I':=0| x| I, (owned environment)

Az=g | Ay (borrowed environment)

A context denotes borrowed environment, with values that are not owned
by us, and thus must not be destroyed. I' denotes the owned environment with
data not shared with other parts of the program. This data can be safely reused,
including the reuse tokens themselves. The judgement A|I" - e means that
expression e is a well-formed FIP expression in borrowed context A and owned
context I'. A union of two contexts is denoted by their concatenation: A, A’.

Well-formedness. A FIP term is well-formed if every allocation reuses memory of
a previously destroyed data structure. This is ensured using the well-formedness
judgment written as A | I' - e. Figure [3| shows the base and variable rules. The
VAR rule states that any expression in a borrowed environment is well-formed.
The baseline rules (DEFBASE, AToM, EMPTY, DEFFUN) handle the trivial
cases of definitions, constructions, and reuses. Here, the 'l X/’ notation means

that the set of top-level functions (the signature X’) is fully in-place. The DEFFUN
rule shows that a function definition is well-formed if its body is well-formed in
the contexts of the arguments.

The remaining interestign rules are shown in Figure] The TUPLE rule states
that we can create tuples of variables which are well-formed in the borrowed
context and the union of the owned contexts of the variables.

AT yeAdom(Y) A|lFe
TUPLE CALL
AT, ..., Tk (v1,...,05) A|I'E f(gse)

yeA AT | I'F e z; ¢ AT

BMatrcH
A|I'tmatchy {C; Ti — e}

A\F,fz,okl—ez k:‘f7‘| fzgﬂ,F

— DMatcH!
A| I x Fmatch! z {C; T; — e;}

AlFiF’UZ‘

REUSE
A|F1,...,Fk,OkFCkU1...Uk

Fig. 4: Well-formedness rules for tuples, calls, pattern matching and reuse

The rules BMATCH and DMATCH! are used to create branching and unboxing
in the program. The non-destructive BMATCH is well-formed if the matched
object y is in a borrowed context, each expression e; matched with the pattern
C;Z; is well-formed, and the pattern expressions Z; are not already in the borrowed
or owned contexts. They are new, unique expressions. On the other hand, the
DMATcH! rule states that an expression is well-formed if the each expression e;
following the pattern is well-formed in the context with ¢ reuse token included,
provided by the matched expression z. Notice that this is the only rule where the
reuse token is actually introduced to a context. It provides these reuse tokens
for the REUSE rule. This rule states that a construction of object C* using a
reuse token of the same size ¢, is well-formed if the construction arguments are
well-formed.

CALL rule states that with some number of arguments in borrowed context
or bounded in the global environment (dom(Y)) and a well-formed resulting
expression, a function call with these arguments as parameters is well-formed.

The set of rules defines well-formedness, independently of any particular type
system. It is also important to note that realistic programs can not be written
using only the FIP syntax. There must be some way of integrating FIP code
fragments in a larger non-FIP program. This is because using only the FIP subset,
no memory blocks could be allocated, and so no memory blocks could be reused
anywhere in the program.

2.3 Koka Implementation

Koka is a strongly typed functional-style research language with effect types and
handlers [5]. It implements the FIP calculus using the approach outlined above,
as a language embedded within Koka.

Koka uses reference counting to manage its memory and to ensure the unique-
ness of variables to be reused. If a function argument has a reference count of one,
then we can be sure that its memory is not accessed anywhere else in the program
and thus can be safely reused. In the formal language of the FIP calculus, all the
arguments of a FIP function with the reference count of one are in the owned
context for that function call.

Koka also provides an option of compiling directly to C code using the Perceus
method [§] for reference counting. This method uses some aggressive optimizations
and static analysis in order to generate code from Koka scripts without the need
for a garbage collector or runtime system.

Furthermore, Koka implements an extension of FIP called FBIP (Functional
But In-Place). It allows FIP to also deallocate when necessary. In theory, this is
achieved by adding store semantics to the FIP syntax with new drop and free
operations. drop x is used for dropping an owned variable x from the owned
environment and the free k is used for freeing a reuse token of size k [, p. 12].

The garbage collection with reference counting creates an overhead not present
in the unique typed environments. This approach is also not efficient for contexts
with small memory, like microcontrollers. Although Koka tries to bridge this gap
with the aforementioned Perceus method, this requires aggressive optimizations.

3 StaFip Implementation

To test the FIP approach, we designed a lightweight functional language called
StaFip [7]. StaFip is a statically compiled functional language. Unlike Koka, it
does not use reference counting, but manual memory management (like C). It
is made to provide a strong baseline for benchmarking the FIP approach as
described in the background, without unrelated features from Koka confounding
the testing results.

Let us now discuss how the StaFip language represents the type definitions
and how the FIP rules are enforced.

3.1 Basic StaFip Terms

A StaFip program consists of algebraic type declarations and fuction definitions,
one of which must be named main (Figure[5)). Type declarations start with a type
keyword and specify a list of constructors as can be seen in Figure [0}

Function definition can either include a body, or simply declare a function
without it (this is useful in cyclical dependencies between functions). A function
definition consists of an optional fip keyword for FIP functions, a return type, a
name. a list of explicitly typed parameters. and a its body.

Inside the body, we can nest a set of simple expressions such as constructors,
function calls, or arithmetic operations. And complex expressions like match,
destructive match and if-else expressions.

int main [int argc, char** argv] =
printf ("Hello world!")

Fig. 5: Example of main function definition.

3.2 Types

StaFip supports custom data types defined in a similar fashion to Haskell. An
example in Figure [f] shows a list data type definition, which can be either a Nil
or a Cons with a value and list data fields inside it. The StaFip implementation
represents these data types in a similar way to C structs. When using the type
as an argument, for instance in ’type list xs’, this type actually translates to
'struct list *xs’. The first field of any non-null type is implicitly an ’int’ tag
with a unique type identifier. Another example with a binary tree type is shown
on Figure [7] with its memory layout in the diagram below the type declaration.

For each of these options a constructor and a reuser functions are implicitly
defined. A reuser function resembles a constructor; however, instead of allocating
memory on the heap, it takes a pointer to a heap memory block given as its first
argument and initializes the type in that location, effectively reusing the address.
Regarding the FIP theoretical model, this function is used for the consumption
of the reuse tokens.

Data type instances holding some fields are represented as memory allocated
blocks similar to C structs with an implicit first field of type tag. This tag is a
number identifying the type.

This is different for constructor calls with no arguments like the ’Nil’ con-
structor in the example. The resulting type instances are represented as a NULL
pointer. Consequently, only one such empty constructor can exist. In our imple-
mentation, multiple empty constructors would be indistinguishable from each
other at runtime.

Let’s look at a more complex example, and its memory layout (Figure[7). This
example shows a memory layout for a simple instance of a binary tree. We can
see the two data nodes allocated on the heap and pointing to each other. Each
contains a tag that marks by which constructor this instance was made (Node).
The leaf nodes are represented as NULL pointers, and so are not allocated.

3.3 Match Expressions

Match expressions is where the magic of the FIP method happens. A match ex-
pression is a syntactic structure that, given an input expression, creates branching

type list {

Nil;

Cons (int val, type list next);
}

// Instantiation: Cons(1, Cons (2, Nil))
// results in 1list: '1 -> 2 -> Nil'

Fig. 6: Example of list enum type declaration

in the program based on the expression’s actual (child/case) type. In StaFip, we
distinguish between two types of matches: destructive match! and non-destructive
match. In the context of FIP and the destructive match!, it is also where the
captured data blocks are reused.

Figure [§] shows a use of this match in a simple list reversal function (also
presented in [6]). In this example, we match an expression xs, for which we must
specify type type list if the xs is a Nil, this expression is evaluated as the value
of variable acc. If the expression a list element Cons(x, xx), where we name
the element value x, and the rest of the list xx, this expression is evaluated as
value of function call freverse_acc(xx, Cons(x, acc)). The type of the matched
expression is checked using the type tag allocated on heap in case of the Cons
type, or by checking it to be NULL in case of the Nil type.

But how is the match used for memory block reusing? When a destructive
match! is applied to an expression whose value is allocated on the heap, this value
is tracked by the compiler as reusable. On each return expression, if a type is
constructed, instead of calling the type’s constructor, a reuser is called, possibly
overwriting the matched expression value. For that reason, it is important to
make sure that the caller owns this value. However, since this check would be
done statically and thus has no effect on benchmarks, the StaFip places this
responsibility on the user.

3.4 Implementation of Reuse Tokens

When the competition process enters a destructive match or body of a FIP
function (function with a key £ip keyword in its declarators), the compiler switches
into a FIP mode. In this mode, for any constructor call, it will try to find a suitable
reusable block of memory and reuse it. Depending on the compiler’s configuration,
if there is no such block, it will either throw a compilation exception or simply
allocate instead (weak configuration mostly for debugging). It is important that
the FIP mod can be turned off, since in a program with only FIP functions, no
memory allocation could occur. But how does the compilation process keep track
of the reusable blocks?

A StaFip program is compiled in a single traversal. When calling a destructive
match on some variable x1, this variable (a reference to some heap memory block)

type Tree {
Leaf;

Node (type Tree left,

}

Node (Leaf, Node(Leaf, Leaf,

// 1
/7 N\
// 2

Allocated block (Node)

type Tree right, int key);

1) // instance of Tree

tag (4B): 3

Allocated block (Node)

tag (4B): 3

/1111] (4B) ///]]]

left (8B): NULL

/11111 4B) //]]]/

right (8B): x1100

left (8B): NULL

key (4B): 1

right (8B): NULL

key (4B): 2

/1171 4B) [/]]]]

/1171 4B) //]]]]

addr: 0x1000 ddr-—0x1166

Fig. 7: Binary tree data type example and its heap-allocated instance layout
diagram.

is tracked as reusable by a FipState singleton defined in the StaFip compiler.
Then, if an allocation were to occur, the FipState instead provides the reusable
memory block of the required size, and a reuser function with this block is
generated instead of the allocation.

This process is illustrated in Figure [9] There, we have nested destructive
match! expressions on argument x1 and x2. The comments besides each line
describe at that point of compilation, which arguments are traced as reusable.

On the first line of the example[9] we destructively match the argument x1.
To know what its size is in memory, we need to know its constructor. On the
second line, we have a case of x1 being an instance of Ta constructor, which tells
us that in this case, x1 has size 3, since it holds three fields. We thus place ©3
to FipState and evaluate the case expression on lines 5 to 8. On line 5, we are
constructing a type instance with 3 fields, thus we can reuse the x1 from the
FipState. On line 6, we are constructing a type instance with 2 fields, so we can
reuse the x2 from the FipState. There are no further constructions in this case
and we used all the reusable blocks, so the context is empty. On line 9, we are at

// list definition from above

fip type list freverse_acc [type list xs, type list acc]
= match! xs -> type list {
| Nil -> acc
| Comns(x, xx) -> freverse_acc(xx, Cons(x, acc))

Fig. 8: Example of fully in-place list reversal function. Shows a use of destructive
match on a list from figure @

another case of the inner match expression. We are outside of the context of the
last case, and so the x1 block is still unreused. The type of x2 might be different
and so it is not in tracked by FipState yet. Outside of the inner match expression,
the type of both arguments are unresolved and so the FipState is empty.

1. match! x1 -> type T1 { // reusables: emty
2. | TaCa, b, c) -> // reusables: x1{3}
3. match! x2 -> T1 { // reusables: x1{3}
4. | Tb(d, e) -> // reusables: x1{3}, x2{2}
5. Taa (// reusables: x2{2}
6. Tbb(a, b), // reusables: emty
7. c, d // reusables: emty
8.) // reusables: emty
9. /] . // reusables: x1{3}
10. } // reusables: emty
1. // 1 ... // reusables: emty
12. } // reusables: emty

Fig.9: Example of nested match expression

As shown in the example, the reusable blocks tracking is tied to the variable
context. Notice how, when the program jumped out of the case context on line 8§,
where the x1’s memory block had already been reused, to the next case’s context,
the x1 memory block reappears. This is because we are in a different variable
context.

The FipState singleton keeps track of the reusable blocks in these contexts at
compile time. It holds a stack of contexts each with a set of reusable variables
with heap addresses and their sizes.

A new context block is entered, for example, on a match or an if-else expression.
When a new context block is entered, if the program is in FIP mode, a new
context instance with a set of reusable blocks is appended to the stack. This new
context is a copy of the one before it because the new context has access to all

reuse tokens from the context above it. When leaving the context block, this
instance is again popped from the stack.

4 Benchmarks

For benchmarking purposes, the quicksort algorithm, red-black tree insertion,
and finger tree insertion algorithms were chosen.

Why these algorithms? Quicksorting is a sorting algorithm that serves as a
classic benchmark for non-trivial problems. The repeated insertion into a red-
black tree was chosen as a test case to illustrate a scenario in which the operation
necessitates the allocation of new space, as new data is added. And the finger
tree insertion represents a much more complex algorithm, more closely aligned
with practical applications in functional programming.

These algorithms were also benchmarked in the FP? paper [6, p. 25]. They
were selected to directly compare the efficiency of the garbage-collected Koka
with the statistically checked StaFip. The implementations of these algorithms
are designed to minimize bias in the comparisons as much as possible.

These benchmarks (Figure can be run and the plot for the benchmark
results generated in the StaFip compiler repository [7]. The resulting plot vi-
sualizes these results through two rows of column graphs. The upper row for
each algorithm compares the means of the FIP (orange) and reallocating (blue)
versions. Above these comparisons, the fetch time is depicted in gray. Below each
comparison, the relative speedup of the FIP implementation is calculated as
(reallocating.mean / FIP.mean).

As illustrated in Figure [I0}

1. Finger tree insertions implemented in FIP are around 3x faster than their
reallocating implementation in StaFip

2. Red-Black tree insertions implemented in FIP are around 2x faster than
their reallocating implementation in StaFip

3. Quick sort implemented in FIP is around 40% faster than its reallocating
implementation in StaFip

These results, as presented, closely resemble those in the original paper [6],
. 25]. The FP? paper details their implementation for

. Finger trees insertions: 1.59x faster compared to std,
. Red-Black trees insertions: 2.47x faster compared to std,
. Quick sort: 1.69x faster compared to std

LN+~ T

5 Observations

5.1 FIP Implementation

An interesting consequence of the FIP calculus discussed in this paper is its
implementation sensitivity. Since type size plays a crucial role in the FIP cal-
culus, algorithms utilizing these types are sensitive to their implementation.

Execution Time Comparison

=== Normal
— P
W= Data Fetch

° °
S g
2 H

Time (seconds)
°
8

0.01

Speedup Ratio (Normal/FIP)

~

Speedup Factor

command fetch (ms)|mean (ms)|stddev (ms)
finger trees normal 0.0011 44.3690 1.3114

finger trees_fip 0.0017 15.0972 |0.5527
quick _sort_normal 3.5735 31.2762 |1.0000
quick sort_fip 3.5931 22.6871 1.0911

red black trees mnormal|0.0013 33.2975 |2.5120
red black trees fip 0.0013 16.3061 |1.1851

Fig. 10: Results of the benchmarks on Ubuntu 22.04.4 (AMD Ryzen 5 4600HS)
in seconds

Consequently, the same algorithm may not be easily translatable into a different
language that implements FIP.

This problem is best illustrated on Example In this example, we have a
Tree and Buffer data structures. Both have constructors padded to the size of
3. The Buffer type is similar to a list with an extra field for an additional data
buffer. We also assume that there is a concat method that, given two buffers,
concatenates them. The Tree type is a binary tree with an additional data buffer
field in its leaves. The linear method goes through the binary tree using the
DFS algorithm and, in that order, generates (in place) a buffer. Elements of this
buffer contain a buffer with extra data for the Leaf elements in the tree.

Now in StaFip, the linear function is a valid fully in-place method. But if
the Empty constructor was implemented differently in StaFip and was represented
by some heap-allocated block, this algorithm would no longer be fully in-place,
since there would be no reuse tokens for it. This is interesting because the FIP
calculus does not specify how data types should be implemented. And thus, to
functional languages implementing FIP could have algorithms written in them,
where the algorithm is not directly translatable to the other language.

type Buffer {
BCons (int key, type Buffer next, type Buffer data);
Empty;

}

// we also have defined a 'concat' FIP method which takes two
Buffers and concatenates them as lists

type Tree {
Node (type ATree 1, type ATree r, int i);
Leaf (int i, type Buffer b, int _padding);
}

fip type Buffer linear [type BTree s] =
match! s -> type Buffer {

| Node(l, r, i) ->
BCons (i, concat(linear(l), linear(r)), Empty)
// <-- Empty sensitive to implementation

| Leaf(i, b, _2) ->
BCons (i, Empty, b)
// <-- Empty sensitive to implementation

Fig. 11: A FIP function which takes a binary tree with extra data (buffers) in
its nodes. The function generates a list of the items from the tree (destructively
in-place). These list items are in the order of the DFS algorithm’s traversal of
the original tree.

5.2 Behavior to Hardware Caches

Another aspect to consider is how the StaFip programs in general relate to
hardware caches. Since FIP programs limit the amount of reallocations and so are
inherently nicer to hardware caches. This is because a reallocation of an object
often leads to a cache miss when this object is accessed again. This is also one
of the reasons why the FIP approach can run much faster than its reallocating
counterpart.

5.3 StaFip Limitations

The primary concern regarding the testing process is the lack of a deallocation
mechanism. The issue is minimal for the implementation of the FIP calculus
within the compiler. This is because the FIP algorithm neither allocates memory
nor requires deallocation.

Furthermore, this implementation of the StaFip compiler is relatively simple
and not representative of state-of-the-art compilers. However, real-world compilers
may introduce distortions to the results. For example, when comparing a FIP
algorithm implemented in Koka with a reallocating implementation of the same
algorithm in C++, it remains uncertain whether differences between these two
languages affect the results. To mitigate this issue, we aim to maintain consistency
in the implementations, with the only variation being the FIP optimization.

5.4 Threats to Validity

Let’s now discuss potential aspects of the StaFip testing compiler and the
benchmarking process that may threaten the validity of our results. The lack of
deallocations may pose a problem for the reallocating algorithm since it may lead
to excessive page faults in the operating system. These page faults may occur
more frequently because the allocated heap blocks are not freed when they are
no longer needed, which forces the program to request new frames unnecessarily.
Nevertheless, this may not pose a significant issue, given that the benchmarks
are designed to limit the overall amount of allocated memory.

Regarding the benchmarking process, a significant portion of the operat-
ing systems’ overhead arises from executing the testing scripts multiple times
from scratch. This approach ensures that optimizations within the operating
system—such as allocating program stacks at different memory addresses for
each run—do not impact the final results. The benchmarks also assess the dis-
play of standard deviations, and the number of runs is adjusted to achieve an
appropriately low standard deviation.

6 Related Work

Repeatability and reproducibility are important issues in any research field. Many
people have specifically raised these points in relation to systems research [4J10].

Our work contributes to this by reproducing the results obtained by the Koka
language [65].

The idea of using a formal system (typically a type system) to track when
an in-place update could be safely performed has been used before. Hofmann [3]
proposed a linear type system for in-place updates that is very similar to the FIP
calculus. The main distinction is that while the FIP calculus can be integrated
with a type system, the calculus itself is type-agnostic.

In general, linear types have often been a consideration for memory-related
optimizations. As Wadler [IT] pointed out, values belonging to linear types require
much simpler memory management and admit destructive modification in a way
that is compatible with functional purity.

Linear Haskell [I] is a great example of how linear types can be helpful even if
the compiler does not use them to perform optimizations. Haskell libraries often
provide unsafe versions of certain primitives (such as unsafeFreeze found in
various container packages) that place the burden of showing that a copy can be
elided or mutation done in-place on the programmer. By using a linear interface,
the burden can be placed on the library, where it is much easier to control.

The Koka language deals with the problem of deciding when to use a standard
allocating operation or an in-place operation by employing precise reference
counting. It might also be possible to perform this decision statically, without
the overhead of runtime reference counting. In particular, bounded linear types
[2] together with a suitable semiring seem like a promising approach.

7 Conclusion

In-place mutation has long been an advantage of imperative data structures.
Although purely functional structures have their own advantages, there are cases
where performance is paramount and additional memory allocations required to
work with these structures are too steep a price. One of the main culprits is the
inability to reuse memory which is no longer needed by the program.

FIP is a promising new approach that tackles this issue in a systematic way.
By keeping track of unneeded memory through reuse credits, it is able to execute
a wide range of functional programs in-place. However, while Koka, the main
implementation of FIP, shows a significant performance speedup, it was not clear
how much of it is purely due to the in-place execution.

In this work, we provided a second implementation of the FIP calculus, one
specifically made with benchmarking in mind. With it, we reproduced the original
experiments and showed that the previously established performance speedup is
indeed due to the in-place execution.

While implementing the type system, we noted a potential design limitation
of working with reuse tokens: whether a program can be executed in-place can
depend on subtle implementation details. Still, FIP proved to be as powerful as
we expected and thus we hope that this work encourages further adoption of this
framework.

References

10.

11.

. Bernardy, J.P., Boespflug, M., Newton, R.R., Peyton Jones, S., Spiwack, A.: Linear

haskell: practical linearity in a higher-order polymorphic language. Proc. ACM
Program. Lang. 2(POPL) (Dec 2017). https://doi.org/10.1145/3158093

. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao, Z.

(ed.) Programming Languages and Systems. pp. 331-350. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8_18

. Hofmann, M.: A type system for bounded space and functional in-place update—

extended abstract. In: Smolka, G. (ed.) Programming Languages and Systems. pp.
165-179. Springer Berlin Heidelberg, Berlin, Heidelberg (2000). https://doi.org/
10.1007/3-540-46425-5_11

. Krishnamurthi, S., Vitek, J.: The real software crisis: repeatability as a core value.

Commun. ACM 58(3), 34-36 (Feb 2015). https://doi.org/10.1145/2658987

. Leijen, D.: The Koka Programming Language (2025), https://koka-lang.github,

io/koka/doc/book.html#why

. Lorenzen, A., Leijen, D., Swierstra, W.: FP2: Fully in-Place Functional Program-

ming. Proc. ACM Program. Lang. 7(ICFP) (Aug 2023). https://doi.org/10.
1145/3607840

. Prochazka, J., Petficek, T.: Benchmarking a baseline fully-in-place functional

language compiler (2025), https://github.com/JaromirProchazka/FipCompiler

. Reinking, A., Xie, N., de Moura, L., Leijen, D.: Perceus: Garbage Free Reference

Counting with Reuse. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. p. 96—-111.
PLDI 2021, Association for Computing Machinery, New York, NY, USA (2021).
https://doi.org/10.1145/3453483.3454032

. Sansom, P.M., Peyton Jones, S.L.: Generational garbage collection for Haskell. In:

Proceedings of the Conference on Functional Programming Languages and Com-
puter Architecture. p. 106-116. FPCA 93, Association for Computing Machinery,
New York, NY, USA (1993). https://doi.org/10.1145/165180.165195

Vitek, J., Kalibera, T.: Repeatability, reproducibility, and rigor in systems research.
In: Proceedings of the Ninth ACM International Conference on Embedded Software.
p- 33-38. EMSOFT ’11, Association for Computing Machinery, New York, NY,
USA (2011). https://doi.org/10.1145/2038642. 2038650

Wadler, P.: Linear types can change the world! In: Programming concepts and
methods. vol. 3, p. 5. North-Holland, Amsterdam (1990)

https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/3-540-46425-5_11
https://doi.org/10.1007/3-540-46425-5_11
https://doi.org/10.1007/3-540-46425-5_11
https://doi.org/10.1007/3-540-46425-5_11
https://doi.org/10.1145/2658987
https://doi.org/10.1145/2658987
https://koka-lang.github.io/koka/doc/book.html#why
https://koka-lang.github.io/koka/doc/book.html#why
https://doi.org/10.1145/3607840
https://doi.org/10.1145/3607840
https://doi.org/10.1145/3607840
https://doi.org/10.1145/3607840
https://github.com/JaromirProchazka/FipCompiler
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/3453483.3454032
https://doi.org/10.1145/165180.165195
https://doi.org/10.1145/165180.165195
https://doi.org/10.1145/2038642.2038650
https://doi.org/10.1145/2038642.2038650

