Run-time identity functions in a quantitative
type theory

José Carlos Padilla Cancio![0009-0006-6787-162X] ' jegner
Cockx![0000-0003-3862-4073] 4104 Bohdan Liesnikoy![0009—0000—2216-8830]

Delft University of Technology, Delft, The Netherlands
jcpadillacancio@gmail.com, J.G.H.CockxQtudelft.nl, B.Liesnikov@tudelft.nl

Abstract. Many dependently typed languages impose run-time over-
head because they must track proof-relevant information throughout ex-
ecution. Quantitative type theory (QTT) addresses this by distinguishing
compile-time and run-time data. However, this distinction leads to sit-
uations where data types differ in their erased proofs while sharing the
same run-time representation. Functions operating only on such erased
proofs behave as run-time identity functions without the type theory
explicitly recognizing them.

We introduce a type theory extending QTT with a principled notion
of run-time identity (runid) functions. Our system adds runid annota-
tions to the syntax and equips the language with a syntactic notion of
equivalence of terms at run-time. To reason about this syntactic relation
we introduce a denotational semantics. We prove that these annotations
correctly capture when terms are equivalent at run time, establishing the
coherence between the syntactic and semantic accounts.

Keywords: Dependent types - Inductive families - Structural typing.

1 Introduction

Society often pays a high price to mitigate consequences of bugs. Formal verifi-
cation allows us to prove that software adheres to specification and thus gives
strong correctness guarantees. However, verification often comes at a high cost
— lower performance of the end program being a frequent one.

Dependent type systems are one established way to formally verify software.
To manage the overhead of proofs at run-time, they can include erasure [2];
which allows programmers to communicate to the compiler which parts can be
safely removed during compilation. As an example, vectors can have their length
index marked as erased such as in Listing 1.

For formal proofs to be easier, programmers often have to define multiple
data types [10,7] that have same runtime representation, but carry proofs of
different invariants. And while erasure allows the programmer to communicate
what the type should look like at runtime, it does not reflect this knowledge
back into the type system.

2 J.C. Padilla Cancio et al.

data Vec (A : Set) : @ IN - Set where
[T : Vec A zero
:V{@0 n} - (x : A) - (xs : Vec A n) » Vec A (suc n)

Listing 1: Defition of vector with erased length index in Agda

data List (A : Set) : Set where
[0 : List A
(x : A) » (xs : List A) - List A

listToVec : (1 : List A) -> Vec A (length 1)
listToVec [1 = []
listToVec a :: as = a :: (listToVec as)

Listing 2: Definition of lists and listToVec in Agda

The 1istToVec function that maps from list to vector, would not do any
work at run-time! However, it will still be present and induce a useless traversal
of the input. This additional overhead is what we aim to eliminate in this paper.

Existing solutions [4,9] based on ornaments [6] have some limitations. Chiefly,
they tend to rely on unergonomic encodings of data types. Programmers have
to manually write mappings from every single existing data type into its cor-
responding ornament (e.g. all list-based types into the base list type). These
mappings also tend to imply manual proving of certain conditions that are im-
plicit in the data type. As a concrete example, vectors would be encoded as
Vec An = {l : List A|length(l) = n}: The programmer has to manually sepa-
rate lists from their length and prove that the length will align with the index.
We would much rather have a “plug and play” solution that works on existing
data types with minimal work.

For a practical idea of what we aim for, consider the mock in Listing 3. On
top of the regular definitions of inductive types and functions on them — we
add annotations, informing the type system that we intend Vec to be compiled
away to a List and that listToVec should be compiled away completely. The
compiler can then use the information gleaned from these annotations to verify
their validity and the behaviour of the code. It then uses this newly confirmed
information to optimize away these run-time irrelevant details. Since the runid
status is an explicit member of the type system the compiler can even propagate
this runid status or infer it, such as a map function @runid map f : List A
-> List B supplied with a runid function f.

Contrary to ornament based approaches the programmer would not need
to define views as refinements of the base type, nor provide manual coherence
proofs. The annotations provide the type system with sufficient information to
perform a structural analysis which verifies runtime equivalences and thus va-
lidity of runid functions.

Run-time identity functions in a quantitative type theory 3

data Q@repr=List Vec (A : Set) : @0 IN - Set where
@constructor=[]
[1 : Vec A zero
Qconstructor=_::_
_ :V{@ n} (x : A) (xs : Vec A n) » Vec A (suc n)

@runid listToVec : (1 : List A) -> Vec A (length 1)
listToVec [] = []
listToVec a :: as = a :: (listToVec as)

Listing 3: Mock data type and runid annotations

For this paper we decide to focus on the type system and assume that infer-
ence is being done in a previous pass to the state we receive the intermediate
representation in. As such our contributions are:

— Core type theory with exhaustive runid and erasure annotations.

— Syntactic run-time-equivalence relation I' - a ~, b, used in the type theory.

— Guidance for implementing this as a language feature.

— Denotational semantics of run-time equivalence post-erasure using an exten-
sional semantic domain based on a PER model[1].

— Sketch of syntactic run-time equivalence soundness proof in the style of logi-
cal relations: Terms related by our run-time equivalence relation are mapped
to equal values in our semantic domain.

2 Extending QTT with runid functions

We extend QTT with a runid marking r. We rely on the Barendregt convention
in this paper, thus ignoring variable name capture. In this section we present
a calculus with functions (a T A) — B and one primitive type Nat for brevity.
Further types — dependent products, sums, lists and vectors — are elaborated
on in appendix A.

2.1 Syntax

Figure 1 showcases the syntax of our simplified calculus. Functions carry a usage
annotation 7 for their argument z in both the type (z H A) — B, constructor
Az T A).b and eliminator a - b. Usages can be either erased 0 or present w.

Since runid functions cannot take erased input when function syntax is
marked runid we dont provide a usage annotation. Similar to functions, Nat
eliminators elNat can carry a runid marking. Contexts I" = I/, x TA map a
variable x to both its type A and usage o.

4 J.C. Padilla Cancio et al.

T,y,%,p € String
moo,pi=0|w
I:=0|Laz" A
AB:=(xT A = B|(x:A) =, B|Nat|Set Types
a,bc, P ==« Variables

[Az T A)b | A(z:A)b|a cla-b Functions
| suc a|z|elNataPbc|elNataPbc Nat

Fig. 1. Syntax

2.2 Run-time Equivalence

This section covers the primary contribution of the paper: the weak run-time
equivalence relation I' - a ~, b. This relation allows us to state syntactically
that two terms have the same value or behaviour at run-time, which we make
use of in our typing rules for runid terms.

The majority of the rules are not surprising: the run-time equivalence relation
shares the same congruence and equivalence rules present in conversion (but no
computation rules). The interesting rules concern terms annotated with erasure
or marked runid. The terms with usage annotations or runid markings are related
to the “optimized” version — with identity computations removed.

Relating runid terms We call it a weak relation because it only needs to to be
defined on well-typed terms. Since it is only used in the well-typedness judgment
for runid terms, any ill-formed terms would be rejected by the precondition that
any runid term must be a well-typed regular term.

Figure 2 applies this to functions and eliminators by equating them to their
optimizations. Therefore, runid lambdas are equated to a trivial identity function
and runid eliminators are equated to their argument.

~, FUNTYR
I't(a:A) =B ~, (a: A) > A
~pLAMR —
I'MX(a:A)b ~r Aa: A)b I'Efva ~a APPR
~, ELNATR

I'+el.Natz Pbc ~, x

Fig. 2. Relating runid terms

Run-time identity functions in a quantitative type theory 5

Relating types with erasure Figure 3 showcases the rules for types. Depen-
dent function types weaken the codomain of the result type with the argument
variable I', z ®AF B set. We cannot just say I' + (z ? A) = B ~, B since
B is weakened with regards to I'. Instead we pick a C that is strengthened with
regards to z, i.e. C' does not refer to z.

If two types are considered to be equivalent at run-time I'+ A ~,. B then

for each instance I' F a : A there must be some other instance I' = b : B such
that I'a ~, b.

Iz?AFB ~, C
5 ~, FUNTYO
I't(z:A) —B ~, C I'FNat ~, Nat

~y NAT

Fig. 3. Run-time equivalence rules on types

Relating constructors with erasure Figure 4 shows the rules for erased
constructors. Erased functions are related to a version of their bodies without
reference to the erased argument, the same procedure we used for function types.
Erased vectors are related to equivalent list constructors.

Iz?Arb ~ c
IFEAz?A)b ~ c

~ LAMO

I'ba~ b I'Fas ~y b
~, NILVO a as 5 ~, CONSVO

1o ~, [, I'F cons®anas ~, cons;bbs

Fig. 4. Constructor erasure rules

Relating arbitrary inductive constructors Note that we assume a corre-
spondence between vectors and lists and thus a correspondence between their
constructors. In a full system, correspondence of nominally distinct types would
not be hardcoded, rather we would let the programmer state that two nominal
types should be considered equivalent and confirm this via structural analysis.
This analysis is performed by comparing the type signatures of aligned construc-
tors.
The way we would do this for vectors is:

1. Compare the type formers’ signatures:

I'(A:8Set) = (n ° Nat) — Set ~, (A :Set) — Set. We now assume
that I' - Vec An" ~, List A during our analysis of the constructors.

6 J.C. Padilla Cancio et al.

2. Compare the constructors:
(a) Nil case: I' - Vec Az ~, List A. Holds by assumption.
(b) Cons case:

I'(n ? Nat) — (z: A) — (25 :Vec An®) = Vec A (suc n)? ~,
(r:A) - (xs:List A) —» List A

The argument n gets erased. The equality holds by congruence on func-
tion types, via reflexivity I' - A ~, A and by assumption I" +
Vec A(suc n)? ~, List A.

Thus, the algorithm for including new rules is: Compare the signatures of the
type formers. If successful, compare the signatures of the constructors, assuming
that the nominal types are run-time equivalent. If this check succeeds, introduce
rules equating the nominal type formers and the constructors.

Relating eliminators with erasure Figure 5 shows that function applications
get equated to the function term — which is equated to the body when the
function is resolved to a lambda term. As for the data-type eliminators (see
appendix B): If ' A ~, B then an eliminator for A is equated to an
eliminator for B.

'Ef ~ f

O—NTAPPO
I'fla ~ f

Fig. 5. Erased application run-time equivalence rule

2.3 Simplifying QTT

We use a simplified version of quantitative type theory (QTT) [2] for our type
theory. Our quantities are rather simple, only erased 0 and present w. Typing
judgements '+ a 7 A are indexed by a “mode” o annotation that splits the
type theory into two halves: one for compile time (erased) and one for run-time
(present). These modes induce a certain flow or separation — erased values
cannot be found in runtime position, but runtime values can be found in erased
position. In order to enforce this, we make use of an ordering 0 < w as well as a
multiplication operation Ow = 0

2.4 Typing terms

Variables The only special condition that erasure induces in variables in our
system is that erased variables may never end up in a run-time position® (because

! Note that run-time variables can be used in erased position, we only restrict flow in
one direction.

Run-time identity functions in a quantitative type theory 7

they will not exist). The variable rule in Figure 6 enforces this invariant by
requiring that the variable in the context have a usage greater-than or equal-to
the type checking mode.

z% Ael o<co
I'rz%A

F VAR

Fig. 6. Typing rule for variables

Constructors Figure 7 shows the rules for constructors. The bodies of lambdas
are checked in the extended context — where the added variable has the same
usage annotation 7 as in the type annotation in the lambda-argument. Runid
lambdas are well-typed if the usage-annotated version is well-typed according to
the - LAM rule and if the function body is run-time-equivalent to its argument,
La?Arb ~,

I'FAz?YA)b% (xYA) —B
Ne"AFbTB THA'Set LaefArb ~
p P F LAM p F LAMR
''tXz:A)b:(x: A)—> B I'tX(z:A)b:(z:A)—, B
- Ly F}—n:I\Lat - sue
I'Fz: Nat I' - suc n : Nat

Fig. 7. Typing rules for constructors

Eliminators We give the rules for eliminators of natural numbers explicitly in
Figure 8, the rules for other recursive data types can be derived in a similar way
as shown in the appendix. The eliminator elNatn P bc is typed in mode ¢ and
takes four arguments:

= N

. The scrutinee n is type checked in the same position o.

. The motive P is typed in erased position, as it is a type function.

. Branch b, is the body for the zero case and is type checked in position o.

. Branch b, is the body for the suc m case. We expose the value of m by

extending the context.

For runid data eliminators, to reduce notational noise, we omit the typ-

ing hypothesis that the unmarked version of the eliminator is well-typed. Since
eliminators imply something about the structure of the scrutinee in the relevant

8 J.C. Padilla Cancio et al.

branches, we only allow runid eliminators to be well-typed when the scrutinee
is a variable z. We substitute into = the arbitrary constructor that matches the
case — e.g. zero b, [x — z| and successor bs[x — suc m| branches.

For inductive data types (like Nat), we also substitute recursive subterms (like
m in suc m) with the result of the recursive eliminator call. The rule ensures
the condition holds in the base cases (like z), and in the inductive cases (like
suc m) — where one assumes the subterms match the corresponding recursive
results I' Fm ~,. p.

At first glance, we would prefer a structured solution to keep track of as-
sumed run-time equivalences. In effect our inductive case is: ' Fp ~,. m —
I' - by ~, suc m. However, including such hypotheses would violate strict
positivity in a formalization. Therefore we use substitution as a convenient defi-
nition for future formalization efforts. We suggest that future work give a more
structured approach to defining, say, an assumption context A for a more general
system.

IF'rn%Nat I'+PY(z?Nat) — Set
I'Fb, Pz F,mC;Nat,p(:;P?mFbsc:rP{r(suc m)

P - elNat
I'+elNatnPb.bs : P-n
N, Ihhbjz—z] ~ z
Fl,FQ,mO:uNat}—bs[p»—>m][a;b—>suc m] ~, suc m
F el,Nat

Fl,x(?)Nat,Fg}—eeratbezbSL?)P%ja:

Fig. 8. Typing rules for eliminators

When checking applications f Tain Figure 9 we multiply the mode o by
the annotation m when checking the argument to ensure that the usage of the
function type aligns with the annotation. Similar to the F LAMR rule, runid
applications are well-typed if the provided function is a well-typed runid function.

I'tf%@? 4 =B I'a™ A I'tf%@:A) —».B TI'+a?A
— F APP — APPR
I'f-a:B I'f+a:B

Fig. 9. Typing rules for application

Run-time identity functions in a quantitative type theory 9
3 Denotational semantics of run-time equivalence

Our integration of runid into the type system hinges on our notion of two syn-
tactic code fragments being “equal” at run-time — both in the sense of the result
after erasure (structural) and the computational behaviour of runid fragments
(extensional). We want to justify the validity of this syntactic judgement given
that its meaning is essential to our analysis. To this end we give a denotational
semantics, a semantic equality judgement I' F a = b : A that tells us that two
terms are equal at run-time.

To do this we establish a partial equivalence relation (PER) @ ~ 6 : o in
some semantic domain D which we interpret terms into — based on the model
described by Abel in his habilitation thesis on normalization by evaluation (NbE)
[1]. Unlike NbE we do not reify back into our original syntax, as we are only
interested in equality in the domain.

3.1 Erasure

We define erasure as a partial function on the syntax of our language to an
erasure-free subset of the same language. The function operates using the fol-
lowing algorithm recursively:

1. Terms marked erased are removed, e.g. | (a ? A)— B=|B
. Terms marked runid have their marking removed, e.g. | f -~ a =] f- la
. Type annotations and motives are ignored, e.g. | elNata bc = elNat |
a_ b lc
4. The function is undefined for explicitly erased terms, e.g. | x if = YAerlor
1in1%«q,

W N

An exhaustive definition of the erasure function can be found in appendix C.

3.2 Domain values

Our domain is made up of two broad classes: Dy contains values that terms
map to; D corresponds to type codes, i.e. values that represent types.

A value d : Dy is either: a natural number n : N, a function® @ — b : D — D3,
a pair (a,b) : D x D or an empty list symbol []. Accordingly, a type code d; : D
is either: the Natp type code, a dependent function type code, a dependent pair
type code, a list type code, a vector type code, or a universe type code (with
hidden universe level).

2 We actually utilize Abels defunctionalization [1]: functions are closures and function
application is a custom operation, we present these as regular functions for ease of
reading.

3 This function notation helps us distinguish semantic functions from syntactic lamb-
das

10 J.C. Padilla Cancio et al.

D =Dy U Dr
Dy=N U D—=D U DxD U |}
Dt = Natp | VeCD(DT,D) | Listp Dt
| FunD(DT7D — DT) | PairD(DT,D — DT) | Setp

Fig. 10. Values in D

3.3 Evaluating terms into domain values

We define an evaluation function (a). from terms into our domain D.

Evaluating variables The evaluation function maximally evaluates terms to
simplify comparisons. This becomes a problem when dealing with open terms,
as we have un-bound variables and are thus “stuck” in our evaluation. If we
pretend we have a value for that variable we can reduce our term, so we simply
quantify over the values assigned to variables. In practice this means providing
our evaluation function with an environment v that maps a given variable x to
some value y(z).

Definition 1. Variables are evaluated to the result of lookup in the environment
v : Env
() = ~(x)

Evaluating constructors Lambdas are evaluated into semantic functions from
a value a, to some definition given by the evaluation of the lambda body. This
body is a term that is weakened by the input variable a. To account for this we
define an environment extension vy[a — a,] which binds the variable a to the
provided argument value a,.

Definition 2. Constructors evaluate to values in Dy,

(Ma: A).b)y = ay = (B)s[asa,]
(](a'v b)D’Y - ((]U“D’W qu'y[zH(]a[)ﬂ,])
(2D =0

(suc n), =1+ (n),

(L[11)~ =]

(consiab)y = ((h)y, (t)+)

Evaluating eliminators Since eliminators induce a computation procedure,
when evaluating these we fully evaluate their result value. Lambda application
evaluates to function application in the domain. Elimination on pairs implies
splitting the pair into its left and right value and feeding them to the evaluation
of the branch argument b.

Run-time identity functions in a quantitative type theory 11

Definition 3. FEliminators are evaluated to the result value of their computation

(f - a)y = (D ((a)~)

(]el' X anD’Y - (]bD’y[a:»—):pu,yr—)yv]
where: (a)y = (zv, Yo)
(etNata _bd), = reen((lay, (b)y, (k,7) = (cDypmsk,psr))
where:
reen(0,b,1) = b
reen(1+m,b,i) = i(m, reen(m,b, 7))
(elListxs _bc)y = recp((x8)y, (b)y, (A t,7) = (Dy[ash,asst,prsr])
where:

recr([],b,4) = b
recr,((h,t),b,4) =i(h,t, recy(t,b,1))

Eliminators on recursive data are defined via recursion. For example natural
numbers: the function is recy(a, b, 7): a is the input number, b is the value for the
base case, i is the inductive step — i(m, p) takes two arguments: the predecessor
m and the result of induction p. Note that these are simple domain functions
and not a primitive recursion operations.

Evaluating types as terms Since we can encounter types as terms we need to
map them to a domain value during evaluation. We are going to call the result
of evaluation on syntactic types: type codes. We will not call them type values.
Later when we give our PER model we will define type wvalues, or semantic
types, in terms of PER. Evaluating syntactic types gives us an encoding of types
in our semantic domain, not a semantic type. Because of this we have custom
encodings for types, the only interesting one being the encoding for functions:
The codomain B will depend on the domain A. A function type code Funp (A, F')
is the type code for its argument type A € D together with a function from its
argument to its result type code F': D — Drp.

Definition 4. Fvaluation of types as terms
((a:A)— BD“{ = FunD((]AD%av = (]Bl)v[a»—mvv

((a: A) x B)y = Pairp((A)y, av = (B)yjarsa,])
(List A), = Listp (A,

(Vat), = Natp

(Set), = Setp

3.4 Partial equivalence relations

Now that we have defined operations for creating domain values a.,,, b, we need
some mechanism to relate values together in accordance with which type they
correspond to a, ~ b, : Y. This is done by way of defining PERs { C D x D
on the domain — where each PER corresponds to a semantic type at run-time.
PERs allow us to define an extensional notion of equality such that, for example,
functions that behave the same but are not identical are still related to each
other.

12 J.C. Padilla Cancio et al.

A PER o is a relation on some set D that respects transitivity and symmetry,
but not reflexivity. This means that for arbitrary a € D it will not always hold
that @ ~ a : 9. However, once a value is related to any other value, it is also
related to itself: a~ b: A = b~a: A4 = a~a: 9. Due to this we can
also define a PER o as a (total) equivalence relation on some subset A C D.

Intuitively, this means that a semantic type S does two things simultane-
ously: specify a subset of well-behaved values and tell us which of these are
equivalent. The collection of all of our semantic types is the collection of quo-
tient sets which span all “reasonable” values.

Relating domain values We present the semantic types we have in an induc-
tive fashion, building them “from the ground up” as Abel [1] does, courtesy of
the assumed universe levels.

II(A,F) denotes a semantic dependent function type where 9 is the argu-
ment type and F : A — Per the type family, such that F respects the relation
A — Tt maps related values to the same relation: Va =~ o’ : d.F(a) = F(d').

Definition 5 (Semantic function types: I1(d,%F)). Given two functions
fyf" € D — D we state they are related by extensionality; If their outputs are
related then they are related.

Va=a :d.f(a) = f(a'): F(a)
frfId,F)

Dependent pairs have an analogous definition. The difference being that we
have input-output pairs and thus do not need to quantify over all possible inputs.

Definition 6 (Semantic dependent product types: X (A, %F)). Pairs are
related pointwise, with dependency in the type specification.

a~ad:d b=b:F(a)
(a,b) ~ (a',) : D(A, F)

Definition 7 (Semantic types of inductive data). Inductive constructors
are related inductively. The base cases relate to themselves (e.g. 0) and the in-
ductive cases relate if their sub-values relate. We write (h,n,t) as a shorthand
for (h,(n,t)) for vector values.

n~m: Nal
0~0:Nat 1+n~1+m: Nal

heah A txt Lt(A)
[~ : Lt (dA) (h,t) =~ (B, t") : List (A)

hah:d n=n:Nal t=t:TVec(d n)
[~ :TVec(d,n) (hyn,t) ~ (W', 0/, ') : Vec(d,1+n)

Run-time identity functions in a quantitative type theory 13

Relating type codes Different type codes may denote the same semantic type.
Therefore we define the PERs on type codes (semantic universes) inductively,
along with a corresponding lifting function [| from type code to relation.

Definition 8 (Semantic type of type codes).

S — Nat
Natp =~ Natp : Sel arD [Vatp] = Nat

A~ A :Set n~n':Naot
Vecp(A,n) =~ Vecp(A',n') : Set

§ = Veen(,) [Veep(A,n)] = Veo([A],n)
A~ A Set
a~a :[A] = B(a)=~ B'(d): Set
Funp(A, B) ~ Funp(A', B') : Set

arad :[A] = B(a) =~ B'(d): Set

Pairp(A, B) = Pairp(A’, B'): § = Pairp(,)

[Pairp(A, B)] = X([A],a — [B(a)])

1<k
S
Set; ~ Set; : Sel,

— SetD
[Set;] = Set;
We specify the rules for universes only once to show we are still working
in a predicative manner and building our semantic types inductively. We will
continue to ignore universe levels unless relevant.

Lemma 1 (Related type codes lift to equal PER). If two type codes are

semantically related
A~ B:8el

Then they lift to equal PER
[A] = [B]

Proof. We can prove this by induction on the rules. The base cases S — Natp
and Setp are trivial and the inductive cases hold by induction.

3.5 Defining a semantic run-time equality

We know have the necessary building blocks to give a semantic account of equiv-
alence at run-time. This is done by way of three interpretation operations: one
on terms, one on types and one on contexts.

Terms are interpreted into domain values, giving the semantic account of
what a given term means.

Definition 9 (Interpretation of terms). Terms are interpreted into their
evaluation post-erasure
[a]y = Wa),

14 J.C. Padilla Cancio et al.

Types are interpreted into a partial equivalence relation, giving us a semantic
account of which values belong to a given semantic type and how we can compare
two values of that type.

Definition 10 (Interpretation of types). To interpret a syntactic type: erase,
then evaluate to a type code, then lift to a semantic type.

[AH’Y = N\I/AD’Y}

Contexts are intepreted into a PER on environments, letting us know that
two environments contain semantically equivalent values.

Definition 11 (Interpretation of contexts). Contexts are interpreted to the
PER of related environments

~v [T ~a :[A
s N Il a~a HZ S — EXTP
0=~0:[0] Y a)l =y [z a]: [Da s Al

~y T
yv Tx: A

With these three operations we can define our account of semantic run-time
equivalence.

Definition 12. Terms are semantically run-time equivalent if for all related
environments they interpret to equivalent values. Environments and values are
determined equivalent by the PER obtained from interpreting the context and
syntactic type respectively.

I'ra=b:A < Vy=~y:[I.[a], ~[b]y : [A], (1)

4 Syntactically related terms are semantically related

We now show that our syntactic notion of run-time equivalence coincides with
semantic equivalence in the PER model. Since the weak equivalence from the
type system contains typing side-conditions and unrestricted reflexivity, it is not
well-suited for an inductive argument. We therefore introduce a strong run-time
relation that mirrors the structure of the semantic relation.

Run-time identity functions in a quantitative type theory 15

4.1 Strong run-time relation

The strong relation I' - a ~4 b : A consolidates typing, runid, and erasure side-
conditions into a single judgement. Instead of a global reflexivity rule, it provides
constructor-specific reflexivity and congruence rules, ensuring that only well-
formed terms enter the relation. For erased and runid constructs, the rules equate
each term with its optimized erased form or identity behavior, matching the
semantic interpretation. This creates a syntax-directed relation that structurally
aligns with the PERs. The exhaustive rules are listed in appendix D

Claim. If a is well typed and weakly related to b then it is strongly related to b.
F'ra?AandI'ra ~, b = I'Fa~gb: A

4.2 Erasure does not fail

Because semantic interpretation begins by erasing terms, we must show that
erasure is defined on all related terms. A straightforward induction on the strong
relation establishes that no related term appears in an erased position. This
removes the need to reason about partiality during the main proof.

Theorem 1 (Related terms have defined erasure). IfI'Fa ~;b: A then
neither a nor b will be a term in erased position, i.e. la and b are defined

Proof. We operate by induction on the strong rules:

1. Base cases:

(a) variables x are only ever undefined if x ® A € I which is excluded by
the assumption in the variable rule

(b) All other base rules contain no erased fragments and thus erase directly
to themselves.

2. Inductive case: We have the following inductive rules:

(a) Congruence rules, e.g. I' - inl**“q ~; inr““b : AWB. These have a
defined erasure if their subterm does, which holds by induction.

(b) Erasure rules, e.g. I' F in1*% ~, b : A“W°B. The erasure function
does not subrecurse on erased subterms, and the subterms marked not
erased have a defined erasure by induction.

(¢) Runid rules. This also holds by induction, by analogous logic.

(d) Erased constructors, i.e. erased left injections in1%“a (and erased right
injection). Neither of these are included in our relation.

None of the inductive rules relate terms that would fail on erasure so | a is
defined.

As such for any I' F a ~4 b : A in our relation, erasure will succeed for both a
and b.

16 J.C. Padilla Cancio et al.

4.3 Fundamental theorem

We prove that syntactically related terms are semantically related. The proof
proceeds by induction on the derivation of the strong relation. PER rules (sym-
metry and transitivity) and constructor rules follow from induction. Eliminators
interpret to the output of a function and thus follow from induction and exten-
sionality. Validity of motives ensures that eliminators produce well-typed families
in our semantics. Erased rules reduce to regular cases since erasure is total on
related terms. Runid rules carry over because their semantic interpretation ig-
nores the marker; the inductive step for runid eliminators (e.g. the eliminator
on Nat) relies on lemmas equating our substitution with an induction principle.
We give a more in depth proof in appendix E.

Theorem 2. Syntactic run-time equivalence implies semantic run-time equiva-
lence

I'ra~;b:A — I'Ea=0b:4A

By Definition 12 more explicitly:

If a,b are syntactically related I' - a ~4 b : A then: Interpreting a,b with
related environments v ~ ~' : [I'] produces related terms [a], =~ [b]+ : [A], in
semantic type [A],

4.4 Polymorphic functions

. 0
Our analysis rejects erased parametric functions e.g. id : (A : Set) — (a ¢
A) — A, because the type variable A no longer exists in our context. However
accounting for this would not make our proof or semantics more useful, we could
either:

1. Require types with erased parameters to be monomorphized, either by the
compiler or metatheoretically (one can regard the semantics or proof as
quantifying over the specific type). Thus fixing A to a specific type in each
case.

2. Build monomorphization into the semantics, interpret the semantic type into

an explicit quantification over valid semantic types [(A ? Set) = (a ¥ A) —
A)l, = ved.11(sd, o).

3. Define a different erasure function/semantics for types, and only erase type
parameters at the type level after this compiler pass.

Any of these options would gain us more technical complexity with equivalent
generality or results. As such our semantics simply exclude such functions and
assumes they are monomorphized before being passed to this compiler stage.

5 Related work

5.1 QTT

We elaborate on our simplification of QTT [2] here, specifically as it pertains to
argument sharing. Argument sharing allows one to specify strict usage conditions

Run-time identity functions in a quantitative type theory 17

on variables; whether they be used zero times (i.e. used only at compile time),
once (linearly), twice (etc), or an unrestricted number of times. This means that
when checking subterms a, b in a+b QTT will make sure that the linear variable
2 will only be used once in a single term by associating a custom context for
each term and ensuring that in the sum of those contexts z is exactly linear, i.e.
I I—aQ:JNat7 bbb % Nat suchthatm%Nat el + Is.

This introduces some notational noise and downstream formalization headaches
due to green slime — which limits pattern matching in proofs. Luckily we do not
support anything beyond 0 and w and can simplify the type theory. It suffices
for us to know that 0 < w and have a multiplication operation omw. 0 < w can be
used to ensure that erased variables are never used in run-time position. Multi-
plication lets us “collapse” usages when any argument is erased as 0 = 0o = 00.

5.2 Ornaments

Ornaments [6] specify a theoretical basis for how to give an algorithm (an
algebra) to create one type from another via extension. Using this approach
we can, for example, define vectors as an extension of lists: Vec(A,n) = {l :
List(A) | length(A,a) = n}, i.e. a list together with a condition on the index
(the index equals the length of the list). Two existing approaches based on this
are “Custom Representations” [9] and Agda2HS|[4].

Custom representations Theocharis et al. [9] give a type theory for reason-
ing about the run-time representation of data generally; decoupling it from the
theoretical structure of data. They generalize the practice of built-in binary rep-
resentations of types e.g. natural numbers, allowing programmers to define a
runtime representation of a type and giving a primitive conversion operation to
transport along views.

These “refinements” carry with them proof obligations which must be par-
tially provided by the programmer. The proofs are not particularly complex for
an experienced prover but still tedious. Using their system as it currently exists
implies a large amount of small changes to a large codebase.

Transparent in agda2hs Agda2HS is less principled in its treatment of runid
functions. It has a rudimentary analysis of correctness, and no mechanism to
specify representations. This means we cannot equate structurally equivalent
types, only having support for dependent pairs with erased index. This explicit
separation of data into run-time data plus proof makes the analysis of the map-
ping “trivial”, but greatly restricts what a runid function can be or what types
can be compiled away.

5.3 Proof irrelevance

Rocq Some languages, like Rocq, avoid some of these run-time costs, by way
of a split type-system. A type-level separation of code and proofs are encoded

18 J.C. Padilla Cancio et al.

[5]. Proof statements are members of the Prop type and code is a member of
Type. So a compiler could simply disregard members of Prop. However, this is an
under-approximation with low granularity. For example, we can define a vector
to have a Prop length index but cannot even write a safe head function — as it
needs to eliminate the index which is forbidden for Prop values.

Ghost type theory [11] tries to alleviate these problems by way of a universe
of “Ghost” types, which behave closer to run-time irrelevance, allowing for more
granularity by discarding impossible branches, enabling the vector example we
gave for Rocq. We recommend future work to explore the applicability of their
results in our system. This was out of scope for this paper since they rely on
proof-irrelevance rather than erasure.

5.4 Identity function detection in compiler backends

Some compilers already perform identity optimisations for commonplace shapes;
Idris 2 recognizes identity functions on List-shaped things [8], among others.
However this does not give a structured solution for general types, nor give the
programmer any mechanism to assure that this optimization will kick in.

The blog post [3] shows an approach to a similar problem in OCaml. It
describes identifying identity functions in that it analyses the representation of
data types and uncovers that the function does not produce a representationally
different value of the input. It is thus in its aims quite close to our system.
However some important distinctions is that it isnt a dependently typed language
and does not support erasure.

6 Conclusion and future work

We developed a core dependently typed language that separates run-time-relevant
from erased components and marks run-time identity (runid) functions explic-
itly. A syntactic relation of run-time equivalence was justified by a PER-based
NbE semantics, and an erasure translation made precise which parts of a pro-
gram survive into execution. We proved that syntactically related erased terms
are semantically equal after erasure. Several extensions remain open: supporting
inductive families more generally, giving a principled account of assumptions
and higher-order runid functions beyond our substitution-based approach, and
mechanizing the development to validate the boundaries of the system. Together,
these results provide a foundation for reasoning about modalities on run-time
behaviour in dependent type theory and for optimizing dependently typed pro-
grams.

Acknowledgments. This paper is a modified version of the Master thesis presented
by the principal author®.

4 https://resolver.tudelft.nl /uuid:e6d5e4a8-6df5-4867-ad9b-4ac77cdc2512

https://resolver.tudelft.nl/uuid:e6d5e4a8-6df5-4867-ad9b-4ac77cdc2512

Run-time identity functions in a quantitative type theory 19

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.

References

10.

11.

Abel, A.: Normalization by evaluation: Dependent types and impredicativity. Ha-
bilitation. Ludwig-Maximilians-Universitdt Miinchen (2013)

Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A.
Gridel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018. pp. 56—
65. ACM (2018). https://doi.org/10.1145/3209108.3209189, http://doi.acm.org/
10.1145/3209108.3209189

Boitel, L.: Detecting identity functions in flambda. https://ocamlpro.com/blog/
2021 07 16 detecting identity functions in flambda/, [Accessed 24-02-2025]
Cockx, J., Melkonian, O., Escot, L., Chapman, J., Norell, U.: Reasonable agda
is correct haskell: writing verified haskell using agda2hs. In: Polikarpova, N. (ed.)
Haskell '22: 15th ACM SIGPLAN International Haskell Symposium, Ljubljana,
Slovenia, September 15 - 16, 2022. pp. 108-122. ACM (2022). https://doi.org/10.
1145/3546189.3549920, https://doi.org/10.1145/3546189.3549920

Letouzey, P.: A new extraction for coq. In: Geuvers, H., Wiedijk, F. (eds.) Types
for Proofs and Programs, Second International Workshop, TYPES 2002, Berg en
Dal, The Netherlands, April 24-28, 2002, Selected Papers. Lecture Notes in Com-
puter Science, vol. 2646, pp. 200-219. Springer (2002), http://link.springer.de/
link /service /series/0558 /bibs /2646 /26460200.htm

McBride, C.: Ornamental algebras, algebraic ornaments. Journal of functional pro-
gramming 47 (2010)

McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69-111 (2004). https://doi.org/10.1017/S0956796803004829, http:
//dx.doi.org/10.1017,/S0956 796803004829

Stafford, Z.: Make ‘cons’, ‘nil‘, ‘just‘ and ‘nothing‘ constructors have uniform names
by z-snails - pull request #3486 - idris-lang/idris2 — github.com. https://github.
com/idris-lang/Idris2/pull /3486 (2025), [Accessed 13-08-2025]

Theocharis, C., Brady, E.: Custom representations of inductive. In: Trends in Func-
tional Programming: 26th International Symposium, TFP 2025, Oxford, UK, Jan-
uary 14-16, 2025, Revised Selected Papers. p. 302. Springer Nature (2025)
Wadler, P.: Views: A way for pattern matching to cohabit with data abstraction.
In: POPL. pp. 307-313 (1987)

Winterhalter, T.: Dependent ghosts have a reflection for free. Proceedings of the
ACM on Programming Languages 8(ICFP), 630-658 (2024). https://doi.org/10.
1145 /3674647, https://doi.org/10.1145 /3674647

A Language

A.1 Syntax

Type formers track usage information in two ways: explicit annotations which

bind a variable, e.g. (z ¢ A) — B for functions, and position-based which track
the usage of terms in types, e.g. Vec An?. Position-based annotations are a result

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
http://doi.acm.org/10.1145/3209108.3209189
http://doi.acm.org/10.1145/3209108.3209189
https://ocamlpro.com/blog/2021_07_16_detecting_identity_functions_in_flambda/
https://ocamlpro.com/blog/2021_07_16_detecting_identity_functions_in_flambda/
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1017/S0956796803004829
https://github.com/idris-lang/Idris2/pull/3486
https://github.com/idris-lang/Idris2/pull/3486
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647

20 J.C. Padilla Cancio et al.

of our hardcoded type examples, rather than fully general inductive families, e.g.

0 - ..
Vec : (A :Set) — (n‘ Nat) — Set where indices are always explicitly bound.
Constructors and eliminators of a given type have analogous annotations vis-
a-vis usages, e.g. sums A "W B with constructors in1™*q, inr™”b and eliminator

el™WPsPcd.

T,Yy,Z,p € String

r:=0 | Lz%A
ABP:=x?A) —B|(x:A) —,.B

| List A | VecAn’

| A°w’B | (¢?A)xB”

| Nat

| Set

a,b,c,d,n,P ::==x
[Az T A)b|a c|AM(x:A)b|a-b
| "(a,b)’ | el™x"aPb|el,"x"aPb
| suc a |z |elNataPbc|el,NataPbc
| cons;ab| [1; | ellista APbc|el,ListaAPbc
| consyanb| [17 | elVec™ a Pcd | el,Vec" a Pcd

| in1™”a | int™’b | el"W a Pcd | el, "W a Pcd

Fig.11. Syntax

Dependent functions

Recursive types

Sum and product type
Natural Numbers
Universes

Variable

Functions

Products

Natural Numbers
Lists

Vecs

Sums

Run-time identity functions in a quantitative type theory 21

A.2 Constructor typing rules

Constructors with usage annotations multiply the mode o by the usage when
checking annotated terms — e.g. when checking the left value a in "(a,b)” we
multiply the checking by 7, i.e. om. As stated earlier this has the effect of shifting
the typing mode to erased position if the value we are checking is introduced in
erased position. Constructors that do not carry usage annotations maintain the
mode when checking their arguments.

In order to define the type for dependent pairs we must substitute the con-
crete left value into the right type. Substitution is defined as a[z — b] where
each instance of variable x in b is substituted for a.

e"AFb?B I'FA'Set F'ta™™A I't+b% Bz a .
''tXz:Adb:(x: A)— B I'"(a,b) : (xz: A) x B
Y Fz —F}—n:I\Lat F suc
I'Fz: Nat I'F suc n : Nat
_ -, I'Fa: A F'_iS:LiStAl—consl
I'H1[];:List A I'F cons;jaas : List A
. -, I'tEh: A FPt:Vecén" FFn:Natl_consv
' 117 : VecAzZ"™ I'+ cons] h(suc n)t : Vec A(suc n)"
om op
Fl_a(;A Finl Fi_b;,B F inr
't inl™?a : A°W’B 't inr™?b: A°W’B

Fig. 12. Typing rules for constructors

22 J.C. Padilla Cancio et al.

A.3 Eliminator typing rules

This multiplication operation is also present when type checking sum branches:
erasure in sums indicates if the left or right constructor are erased, e.g. A°w“B
has an erased left constructor. As such each branch is multiplied to match the
usage of the constructor: if the left constructor is erased then its corresponding
branch must also be in erased position.

r'cf%@”A) =B TI'Fa™ A
I'tf"a’B

F APP

Fre® @A) xB” I'rPY(y%A)—>set Iz~ Ay Brb? P (z,y)"

— Fel x
I'Fel™?cPb:P-c
IFtniNat I'+P° (27 Nat) — Set
I'tb,?P%z I'mNat,p? P mbE b, 7 P (suc m)
— F elNat
I'elNatnPb.bs : P-n
I'Fas®List ATF P (y7List A) >Set I'Fb, 7 P[],
Ia? Axs List A,p‘:’P?ajsl—bc({P?(conslmxs)
P F ellList
I'+ellistasPb,b. : P - as
I'a?VecAn™ Fl—P?(m?Nat)—>(y(:7VecAm“)—>Set I'to, T PTOT
F,m?Nat,h‘:TA,t(:rVecAm”Fbc(:rP?(conerhmt)
F elVec

I'+elVec"aPbyb. " P a

I'ts? A™w’B Ir'tP% (% A0’ B) — Set
Lzt Arb, % P7(in1™%a) Iz® BFbg " P7 (inr™"b)

FFel”Lﬂ”stLbR?P?s

Felw

Fig. 13. Typing rules for eliminators

Run-time identity functions in a quantitative type theory

Fl,Fg,:r7:TA,y?Bl—b[c»—)”(w,y)p] ~ w(m7y)p

o R Fel, x
I,ci(x: A)x B, Ib+el,"xPcPb: P-c

N, Ihhbjz—z] ~ z
Fl,FQ,mC:UNat}—bs[p»—>m][a;b—>suc m] ~, suc m

” o F el,Nat
I,z : Nat,I> el Natx Pb.bs : P - x

Fl,FQ}_bn[l’—) []l} ~p []l
I, o h Y At P List A b bu[p — t][l — cons; ht] ~, cons; ht

= — Fel,List
Ih,l: List A, I>F ellistlAPb,b. : P - as

I, 1% an[v»—> []ﬂ ~p []g
I, 1%,

" Nat
Z‘f}Aa7 F be[p — t][v — cons] hnt] ~, cons] hnt

tYVecAn™

- el,Vec
F17v(?)VecAn’T7F2 FelTVec”vanbc(?) P

I, I,y Y BF bgls— inr®“y] ~, inr’“y

— —— Fel, %
I,s T A’w*B, Ih Fel, "w” s Pbrbr * P " s

I, I,z % A by [s — inl“”ox} ~yp inl@V%

— Fel, “u°
I, sV AW’B, Ih Fel, “W s Pbrbr Y PV s

I, In,x YARF br[s — inl*“z] ~, inl*“z
N, y? Bk br[s — inr““y| ~, inr**“y

- — Fel, “w¥
In,s: Aw“B,I>F el W sPbrbr : P-s

Fig. 14. Typing rules for runid eliminators

23

24 J.C. Padilla Cancio et al.

A.4 Forming types

Type formers are always typed in erased position I' - A ¢ Set, as type formation
is only relevant to the compile time. Dependent pairs differ from those in [2] in
that we admit usage annotation for both types, while Atkey’s dependent tensors
only admit usages for the first argument. The rules are standard

I+ AYset Ex?AFB?&tFJ]FFA?&t IzYAr BYset

- I,
I'F(z" A)— B set I'b(z:A) —, BYset
0 0 o
FFA.Sit F List '+ A" Set FEnAN}—Vec
I'+List A : Set I'FVec An’ : Set
I'-AYset I't BYset
}—N . e . e '_H‘J

F}—Nat(:)Set FI—AU&JPB(:)Set

'+ A°set Ez?AFB?%tF
Fl—(x?A)XBp?Set

Fig. 15. Type rules for type formers

A.5 Mode zeroing rule

Rule F TMO is exactly the same as in QTT, it “state[s] that we can take any
term and produce its ‘resource free’ counterpart in the o = 0 fragment”[2]. Note
that this rule only holds in one direction, an arbitrary compile time judgement
obviously cannot be assumed to also hold as a run-time judgement.

I'ta’B
I'a'B

= TMO

Fig. 16. Typing rule to shift type checking mode.

B Runtime equivalence relation

B.1 Types

Run-time identity functions in a quantitative type theory

Iz°AFB ~, C o

o () — 5 .
I't(z:A) —- B ~,. C I'FVecAn” ~, List A

~, Vec 0

Iz?AFB ~, C o
o ~p (:)X 5 ~p (;)><0
I'r(z:A)xB ~, C I't(z:A)x B ~. A

~p OH—J ~p L-{-JO

'+ A°9B ~, B I'tAWB ~, A

Fig. 17. Run-time equivalence rules on types

25

26 J.C. Padilla Cancio et al.

B.2 Constructors

Right-erased pairs are related to their left term (and vice versa). A left-injection
for a right-erased sum is just its content (and vice versa). Finally erased vectors
are related to list constructors.

Nz’ AkFb ~, c
Az A)b ~, c

~p A0

F,z:(:)Al—b ~y C

e — NTO
I't%a,b) ~ c)

0 NT' 9y 0
'k (a,b)° ~ a)

~p in1? ~p inr®

't inl1%a ~, a I'Finr%b ~, b

[0 I'+a ~- b I'as ~, bs v
~p v ~pll
Fl—consganas ~;, cons; bbs

'+ []?; ~r []l

Fig. 18. Constructor erasure rules

B.3 Eliminators

Vector eliminators equal list eliminators, subject to strengthening of the branches.
With dependent pairs the eliminators correspond to let bindings of the non-
erased counterpart, where the body is the strengthening of the branch. Sums
are defined similarly as let bindings of the inner value, where we select the non-
erased branch for the body. Since we do not directly support let bindings in our
language we simulate these with lambdas.

I'tby ~p b,
I'Ef o~ f 0 Iﬂn(:)Nat,h:A,t:VecAnOI—bC ~p b
refla~ " I'FelVec®a Pbyb. ~, ellista Pb, bl
La:AFb ~ ¢ Lo Iz?Ay:BFb ~ c
~p X ~
I'elxaPb ~, Az:A).c-a ¢ I'-el®<aPb ~, MNy:B).c-a
Iz:AEbL ~, c L0 Ix:BFbr ~, ¢
~p W,
I'elwaPbrbr ~r Mz:A).c-a ° I'el®yaPbrbg ~, Az:B)c-a

Fig. 19. Eliminator erasure rules

~p elvec®

- el%x

~r el

Run-time identity functions in a quantitative type theory

C Erasure function

l(a:A)—-B =B

J(ai A)—> B =(a:lA) —|B
(@Y A) xB*=(la:lA)x |B
L

JList A =List |A
lVec An® = List |A
JVec An” =Vec A |n
JAYWYYB =AW B
1As~B =B
1A“w’B =1A

JNat = Nat

27

28 J.C. Padilla Cancio et al.
(Constructors)

INa®A)b = 1b

INa® A)b = Xa:LA). b
b = (ladb)

1°(a, b)* = 1b

1%(a,b)° =la

1 = [,

lcons; ht = cons; |h |t

n =

lcons®hnt = comns; Lh |t
lconsy hnt = comns, lh |n |t
$inl®*%a = inl“* |a
1in1¢% =la

$inr*“b = inr““ |b

1inr%«p =1b

lz =z

lsuc n = suc |n
(Eliminators)

‘fla —f

Lfa =1f la
lel“x“aPb =elx la|P lb
1e1%x“aPb = (A(y:B).lb)-la
1e1“x%aPb = (A(z:}A).lb)la
lel,"x?aPb = lel™x’aPb
lellista Pbc = ellist la [P |b |c

lel,ListaPbc = |ellLista Pbc
lelVvec”a Pbc = elVec |a [P b lc
lelvec®aPbe = ellist la [P b lc
lel,.Vec"aPbc = JelVec"aPbc
lel“w“sPbc elW [s [P |blc
1e1®wsPbc = (A(z:lB). lc) s
1e1“w’sPbc = (Mz:LA). Lb) s

Jel, "W’ sPbec = |el™W’sPbc
lelNata Pbc = elNat la [P b lc
lel,NataPbc = |lelNata Pbc

Run-time identity functions in a quantitative type theory 29

D Strong runtime equivalence relation

D.1 Types

0 w
I''a: AFB~; D :Set I'FA~;C:Set I'Na: AF B ~g D :Set

I't(a®A) = B~y D:Set I'F(@?A) = Bry (c?C)— D:Set

I'FA~g; A:Set F,aL:UA}—BNSA:Set
I'(a:A) -, B~g(a:A) = A:Set

Fig. 20. Strong relation on function types

F,x(:)A#BNSC:Set T'FA~,C:Set

't (@?A) xB~,C:8et I't(z% A) x B ~, C:Set

I'tA~y;C:Set Iz“ AF B~ D :Set
't (z% A)x BY ~s (% C) x D¥ : Set

Fig. 21. Strong relation on product types

I'A~; B:Set
I'+List A~ List B : Set

Fig. 22. Strong relation on list type

30 J.C. Padilla Cancio et al.

I'FA~; B:Set I'A~;B:Set I'tn~gm:Nat

I't+vVec An® ~, List B : Set I'Vec An® ~s Vec Bm" : Set

Fig. 23. Strong relation on vector type

I' F Nat ~4 Nat : Set

Fig. 24. Strong relation on nat type

't B~ B: Set ' A~ A:Set
'+ A°w“B ~; B : Set ' A“¢°B ~, A: Set

I'FA~;C:Set I'B~yD:Set
I'FAYWYB ~, C“WYD : Set

Fig. 25. Strong relation on sum types

Run-time identity functions in a quantitative type theory 31

D.2 Constructors

F7a(:)AFbwsc:B

Ia?A-b~,V : B
I'tAa®A)b~sc:B

I'FXa®A)b~sANa?A)b (e A) - B

F,a‘?’AFbwsa:A
I'tX(a:A)b~sANa:A)a:(a:A) =, A

Fig. 26. Strong relation on lambdas

F,x(:)A}—bfvsc:C I'Far~sa: A
I'%a,b)* ~sc:C I'9a,b)° ~5a:A

I'ta~sc:A TNz?Arb~.d:B
I'F“(a,b)” ~s “(c,d)” : (¥ A) x B®

Fig. 27. Strong relation on pairs

I'n~gsm:Nat
I'Fz~gz:Nat ['F suc n ~gsuc m: Nat

Fig. 28. Strong relation on Nat constructors

32 J.C. Padilla Cancio et al.

I'h~sh:A I'Ft~gt :List A
I'F[;~s[];:List A I'F cons ht~scons h’'t' :List A

Fig. 29. Strong relation on List constructors

F%~, [;:VecAZ° ' [1% ~5 [1% : Vec Az¥

I'the~gh i A Thtrgt :VecAn® I'Fhe~oh A TThHt~gt :VecAn® TI'Ene~gn:Nat
0 I'- cons®” hnt ~, consy b’ n't’ : Vec Asuc n*

I+ consg hnt ~g cons; h't' : Vec Asuc n

Fig. 30. Strong relation on Vec constructors

I'Fa~sa ' A I'Fb~,b :B

I'F inl“%“q ~ inl“%a’ : AY@W¥B I F inr*“b ~, inr““d’ : Aw* B
I'Fa~gad : A '+Fb~s b : B

't in1®%a ~z;a' : AW’B It inr®b ~, inr®“v : A°w~B

Fig. 31. Strong relation on sum injections

Run-time identity functions in a quantitative type theory 33

D.3 Eliminators

0

b frg Az A)b:(x® A) > B FFfmef (@A) =B IFa~sd:a

rrf'a~sb:B I'Ff%~ f'%d : B

't fesMh(@:A)z:(a?A) A I'Fa~sa: A
I'tfoar~sa: A

Fig. 32. Strong relation for function application

I'Fa~sa :Nat F}—PNSP':(nC:uNat)%Set
F}—bwsb':P-zF,mU:JNat,p(?)P%nl—cwsc':P-(suc m)
'+ elNata Pbc ~; elNata P'b' ¢ : P-a

Fl,au:)Nat,Fgl—aNsa:Nat
I, Ib Fbla— z] ~5 z: Nat
Fl,FQ,mC:uNatl—c[pHm][an—)suc m] ~ suc m : Nat
Fl,aU:JNat,Fg,mL?Nat,p%)NatI—cmsc:Nat

Fl,a“:)Nat,Fz Fel,.NataPbc ~s a: Nat

Fig. 33. Strong relation for Nat eliminator

34 J.C. Padilla Cancio et al.

FFpNSp:AFFPNSP:(zLEJ(m(:)A)XBW)—>Set
Na'AyYBFbryc: Py

I'Fel®x“pPbr~ANa?B)c’p:P-a

w

I'Fprsp:ATFP~,P:(27 (x? A) x BY) — Set
IaY Ay BrFbr~sc:P -z

I'Fel“x’pPbrANa? A)c”p:P-a

w

T'kprsp i (@ A)xB* THFP~ P i (2% (a? A) x BY) — Set
Nz Ay Brb~sb :(a? A) x B®

I'Fel“x“pPbryel“x“p P'Y :(a? A) x B®

I'tFp~sp:(a’ A) x B?
Nz Ay Brbr~, "(x,9)":(a’ A) x B
I'Fel,"x’p b~ga:(a’ A)x B?

Fig. 34. Strong relation for x eliminator

FFPNSP:(pU:JAOH:J“’B)%Set I'ks~g;s:B F,J;‘?)BFbLNSb:P‘f(inro’“’x)

w w

B).b)-s:P-s

w

I+ elO&JwSPbL br ~s (/\(x :

I'FP~gP:(p? Aw’B) >8et I'kFs~s;s:A Ia® AFbr~sb:P? (in1% %)

w w

I'el“w’sPbrbr ~s Mz ¥ A).b) s: P s

I'tP~, P :(p?Y AYw*B) > Set I['Fs~s : A“6“B
Ix? Abbp ~g by : PY (in1%z)
Iy Y BFbg~, by : P‘f}(inr“”“’y)

I'hFel“w” sPbybg ~s el“W*s P'bybp: P s

IN,s"B, I[P~y P:(x?B)—Set I, I2,x" BFbg[sr x|~sz:B
I',sY B, Ihtel, " sPbrbr ~ss: B

IN,sY ATy P~ P:(z¥ A —Set I, In,x? Abbrfs—z]~oz: A
IN,s YA Tt el, “w0sPbrbg ~ss: A

IN,s Y A“0*B, I - P~y P: (z 7 A“W¥B) — Set
I, I x Y AR br[s — in1l**z] ~ inl““z : AW B
I, o,y Y B brls — inr““y] ~, inr*“y : A“w*B

IN,s P AW*B, Ih b el, “W sPbrbr ~s s : AW¥B

Fig. 35. Strong relation for & eliminators

Run-time identity functions in a quantitative type theory 35

I'tan~sad :List A I'FP~, P :(z%List A)—»Set I'Fb~,b : P71
I''h% A t%List A,p%’P‘thFCNS c’:PU-J(conslht)

I'FellistaPbc ~;s ellistad P’V ¢ : P%a

Fl,aC:uList A,FQ}_PNSP:(:I:US]LiSt A) — Set
F1,F2|—b[a'—> []l] ~s [];:List A
Fl,Fg,hU:JA,tu:JList Al ¢[p t]la cons; ht] ~s cons; ht:List A

Fl,a“:)List A, IxFel, ListaPbc ~sa:List A

Fig. 36. Strong relation for List eliminators

I'a~ga :List A b~ b PYL
F,h‘?’A,n?Nat,tL?)List Ap? P trcr~sc : P cons ht

I'FelVec®aPbc ~, ellista P’V ¢ :P%a

I'Fan~sa :VecAn® F}—bwsb':PLf)[];’
IhY Am Y Nat,t Y VecAm®,pY Ptk crycd : P% cons® hmt

't elVec® aPbc~gelVec¥a P ¢ : PYa

Fl,aLE)VecAn",FgFawSa:VecArfr
I, IbFblaw [O7] ~s [1] : Vec AZ"
I, ok Aym " Nat, ¢t Vec Am™ F ¢[p — t][a — cons] hmt] ~ cons] hmt : Vec A (suc m)™

F17a(?)VecAn’T,F2 Fel,Vec"a bc~sa:VecAn™

Fig. 37. Strong relation on vector eliminators

36 J.C. Padilla Cancio et al.

E Fundamental theorem

Our main theorem is proving the fundamental theorem of logical relations: syn-
tactic run-time equivalence entails semantic run-time equivalence.

Theorem 3. Syntactic run-time equivalence implies semantic run-time equiva-
lence

I'ra~yb: A — I'Ea=0b:A

By Definition 12 more explicitly:

If a,b are syntactically related I' - a ~4 b : A then: Interpreting a,b with
related environments v ~ ~' : [I'] produces related terms [a], = [b] : [A], in
semantic type [A]~

Our proof will operate by induction on the strong rules. We will give an
overview of the classes of rules with illustrative cases to detail the proof strategy.
Each case will show the relevant syntactic rule and operate by induction on the
assumptions of the rule. More involved proofs will rely on helper lemmas.

We will implicitly assume arbitrary enviroments vy & ' : [I'], such that every
statement quantifying over environments of I" will use the same environment. We
will also implicitly assume the same for context extensions in assumptions. The
first few lemmas will manually fix the contexts and extensions and subsequent
lemmas will use analogous logic.

We use Theorem 1 to know that we do not have to handle failure of erasure,
and can assume that the erasure function succeeds.

We first prove the PER rules subsection E.1, then go over the proof strategy
for regular rules subsection E.2, rules for erasure subsection E.3 and finally rules
for runid terms subsection E.4. These classes of rules exhaustively cover the set
of strong run-time equivalence rules thus the main theorem holds by induction
on the strong run-time equivalence rules.

E.1 PER rules

Our strong relation still has inference rules for symmetry and transitivity. These
can be fairly trivially proven with by combining induction with the PER rules
of the semantic domain.

Case 1 (Strong relation is a PER). Symmetry and transitivity in the strong
relation entail the same results in the domain.

1. Given I'Fb~ga:Ait holdsthat 'Fa~,b: A
2. Given I'ta~gb:Aand I'b~,c: Ait holds that 'Fa~g,c: A

By proving transitivity and symmetry in general we can operate in our proof
in an equational manner, rewriting terms.

Run-time identity functions in a quantitative type theory 37

E.2 Unerased rules

Rules relating unmarked and unerased terms are either base reflexivity rules or
congruence rules. The proof strategy for these cases is relatively straightforward,
axioms in the source map to axioms in the PERs, the conditions of composite
semantic types are obtained via induction on the assumptions (which by con-
gruence in the source relation we have for each subterm).

To this end we detail the proof strategy for:

1. Rules on types with function types
2. Rules on constructors with suc a and A(a * A).b
3. Rules on eliminators with application and induction on nats

Rules on types The base types Nat, Set are axiomatically related in both the
source and semantic domain. Hence these are base cases in our main proof and
are trivial.

Dependent functions (a © A) — B, products (a ¢ A) x B, lists List A and
vectors Vec An® are the inductive cases. We show the proof for functions as the
others are analogous.

Case 2 (Unerased function type). Regular function types are semantically equal
if their argument types are equal and their return types are extensionally equal

I'tA~,C:Set Ia”AF B~,D:Set

I'(@?A) = Br~g (c?C)— D:Set

Proof. For arbitrary v ~ ~' : I' we wish to prove
[(a? A) = B], ~[(a® C) = D], : Set
If we evaluate both sides of the relation we are left to prove
Funp([Al4; av = [Blyjarsa,)) = Funp([Cly; co = [Dlyfamse,]) -

By Definition 8 for function type codes we require two conditions: argument
types relate and return type functions relate by extensionality.

1. [A], = [C], : Set holds by induction on the first assumption
2. For any a, =~ ¢, : [A], we need to prove that supplying each argument to
the type code function gives us related typecodes, i.e.

[[B]]'y[w—)av] ~ [[Dﬂ'y’[al—mv] : Set
Which similarly holds by induction on the second assumption

As both conditions are satisfied our typecodes are equivalent.

38 J.C. Padilla Cancio et al.

Constructors Similarly we have base cases and inductive cases.

The base cases in the strong relation are also axioms in the domain, e.g.
I'+ 2z~ z: Nat holds since 0 ~ 0 : N-at.

Inductive cases are congruence rules and hold similarly by induction on the
assumptions of the rules. We give two proofs, one for suc a and one for A(a K
A).b. The former relies on congruence conditions in the semantic domain and
thus shows an analogous proof for pairs. The latter shows the technique for
functions, which is instructive as all our domain values are either base values or
functions on base values. This will become useful when discussing the proofs for
eliminators.

Case 3 (Congruence on suc).

I'tn~gm:Nat
I'F suc n ~, suc m : Nat

Proof. We need to prove that, for some v =+ : [I'],
[suc a], = [suc b], : Nat
By evaluation we need to prove
1+ [a]y ~ 1+ [b], : Nat
By congruence on semantic Nats (?7) it suffices to prove
lal, ~ [b], : Nat
Which holds by induction on the assumption.

Case 4 (Regular lambdas). Lambdas are related if their bodies are related.

Ia“ Arb~y b : B
w

F'EXa? Ab~g Ma? AV :(a? A) > B

Proof. For arbitrary v~ v’ : [I'] we need to prove that

(av = [[b]]v[awav]) ~ (a; — [[b/ﬂv'[aHa;]) : H([[A]]wav = [B]]W’[GHGU])

By function extensionality (Definition 5) this entails proving that function out-
puts are related for arbitrary related inputs a, ~ a), : [A],, i.e.

[[b]]w[aHau] ~ [[bl]]'y’[aHai,} : [[B]]’y[ar—mv]

Which holds by induction on the assumption.

Run-time identity functions in a quantitative type theory 39

Eliminators Eliminator cases are all inductive rules, we give two cases: function
application and elimination on nats. Function elimination shows how to apply the
extensionality principle, non-inductive eliminators evaluate to regular function
applications so are proven analogously to the case for application. Inductive
eliminators differ in their proof as they operate by induction in the semantic
domain, as such we give the Nat eliminator case as a simple example of how to
prove such cases.

Case 5 (Regular function application).

I'tfrgf:(xYA) =B TI'Fa~sd :a
't f%an~, f'%d : B

Proof. By Definition 5, related functions map related terms to related outputs

[£1+([als) = [f'14([a']+) : [B,
Induction on the assumptions tell us that the functions and inputs are related.

In order to prove the nat eliminator case we need two lemmas: one which
lets us know that the interpetation of the motive into a semantic type family
produces valid types, and another giving the conditions that need to be satisfied
to inductively prove that two recursors on nat values are equivalent.

To know that a semantic type family is valid we rely on the same conditions
placed on the type family & in the semantic function type IT(,%): i.e. that it
respects 9.

Lemma 2 (Motives induce valid semantic type family). Valid motives
are valid semantic type families.
Given

P~ P II(d,Set)
The semantic family P = a v+ [P(a)] is valid, i.e. Va~a' : A

P(a) = P(a)

Proof. By the assumption and Definition 5 we know the function P maps related
inputs to related outputs. Since the outputs are type codes Lemma 1 tells us
these type codes lift to equal semantic types. As such P is a valid semantic type
family.

Inductive eliminators Since inductive eliminators are defined semantically via
purpose built recursive functions it is useful to first abstract over the specifics
and show the conditions necessary to prove two recursive functions on nats
equivalent.

40 J.C. Padilla Cancio et al.

Lemma 3 (Equivalence of recursors on natural numbers). Recursors on
natural numbers are equivalent if they are piecewise equivalent in the arguments.

Given
a~da : Nat

bt P(z)
cxd I(Nat,n— I(P(n), — P +n)))

It holds that
recn(a, b, c) ~ reex(a’,b',c') : P(a)

Proof. We operate by induction on a ~ o’ : N-at

1. Base case: 0 ~ 0 : Nat.
We need to prove that

recn(0,b,¢) ~ recy (0,0,) : P(0)

Which computes to
bt : P(0)

Which holds by assumption.
2. Inductive case: 1 +k~ 1+ k' : Nat.
Given the induction hypothesis:

recn(k,b,c) ~ recn (K, b, ') : P (k)

We need to prove that

recn (1 + k,b,¢) ~recn(1 + K, b,c¢) : P(1+k)
If we compute our proof term we get

c(k,recn(k,b,c)) ~ c(k',recn (K, V',) : P(1 + k)

By assumption it holds that

ex~d I(Nat,n— H(Pn), +— P+n)))
Meaning c, ¢’ are extensionally related: related inputs are mapped to related

outputs. Both inputs are related so the functions must map to related out-
puts thus the inductive case holds.

As base and inductive case hold, it holds for all a ~ o’ : N-at.

We can now proceed to concretely prove the case for equivalent Nat elimina-
tors

Run-time identity functions in a quantitative type theory 41

Case 6 (Nat eliminator).
I'tar~gd :Nat I'tP~g P :(n%Nat) — Set
Fl—bwsb’:P-zF,m“:)Nat,pL?)P-mI—CNSc’:P~(suc m)
I'-elNata Pbc~gelNata' P'b'c : P-a

Proof. We need to prove that the recursors are equivalent, using Lemma 2 and
the second assumption to know the semantic types &P () are valid PER

recn([a], [0]4, (k,7) — HCHW[mHk,pHT]) ~ rec]N([[a’ﬂ,y/, [[b/]]'y’v (K',r") = [[C/]]v’[mHk’,pHW]) : 95([[(1]]7)

From here we can use Lemma 3 which has 3 conditions. Each condition aligns
with induction on an assumption

1. The first condition holds by induction on the first assumption
[l ~ [,y : Nat

2. the second condition holds by induction on the third assumption
6], ~], - P(0)

3. The third condition holds by induction on the third assumption, by exten-
sionality (Definition 5). For arbitrary k ~ k' : Nat, r ~ ' : P(k) the
functions are related.

[[C]]'y[m'—ﬂc,p;_)T] ~ IIC/]]'y[mHk'aPHT,] : 93(1 + k)

E.3 Erased terms

When rules contain erased subterms we know that erasure will map the parent
term to some term without erased subterms. Because of this the cases on such
rules will involve mapping to a statement on the interpretation of the equivalent
erased term. After erasure the relevant statement to prove will align with a case
in the previous section and be proven in an analogous manner.

To this end we give the cases on functions with erased argument for a type.
Then on erased vec cons operation for a constructor. Then on the right erased
pair eliminator.

Types Erased functions show us how the binding of erased terms and weakening
of a context by an erased term produces semantically identical statements. This
case is handled analogously in dependent product types with erasure.

Case 7 (Erased function type). Erased function types map to the same value as
their return type weakened by the argument.

Ia’AFB~,D:Set
I'(a?A) = B~y D:Set

42 J.C. Padilla Cancio et al.

Proof. We wish to prove that

[(a® A) — B], ~ [D] : Set
Since | (a : A) — B =] B it suffices to show that

[B], = [D] : Set
Which we directly obtain by induction on the first condition of the rule.

Constructors with erasure Constructors with erased content operate analo-
gously to the previous congruence rules, but ignoring erased portions. We give
the lemma for non-empty length-erased vectors as an example.

Case 8 (Erased vec cons). Erased nonempty vectors relate to their head and tail
in a list
I'Fhe~gh A Tt~y t iVec AR

't cons® hnt ~, cons; h't' : Vec Asuc n

0

Proof. We want to prove, after erasing, that

([715, [£17) = ([0, [']5) - Lot (o) (2)

By definition lists are related if they are structurally related so we need to prove
the head and tail are related

1. [h], =~ [#'], : A Holds by the first assumption
2. [t]y = [t'] : Lt () holds by the second assumption

Thus the original statement holds.

Erased eliminator We give the cases on erased application and show how to
deal with data type eliminators with the example of a right-erased pair elimina-
tor.

Case 9 (Erased application).

I frg Nzt A)b:(z°4) > B

rrfla~,b:B

Proof. We need to prove that erased function applications are equivalent to their
bodies

[/ " al, = [f], ~ [l : [B],

Which holds by induction on the assumption

[/1, =~ [\ ¢ A).8], = [B]. : [B,

Run-time identity functions in a quantitative type theory 43

FErased data eliminators operate by changing the nominal type, for sums and
pairs this involves mapping to an applied let binding. We show how to do this
for right erased pairs as an illustrative example
Case 10 (Right-erased pair eliminator). Given

w

I'bpegp:ATFP~ P:(27 (27 A) x BY) — Set
F,a:u:)A,y(:)BFszc:P-x
I'tel“xpPb~y ANa® A)cp:P-a

Proof. We first use Lemma 2 to show that the semantic types obtained from
P = ay > [P]y25q,] are valid.
We use the definition of erasure on right-erased pair eliminators

1e1¥x pPb=X\a: A). [b p
to simplify our proof to a function application on both sides
[\a: A)8] ([pl) = [M@: A).cly ([pl) : Pla)

The first assumption tells us the inputs are related so by extensionality (Defini-
tion 5) it suffices to prove the functions as related:

Aa: A).b]y = [Na: A).cly : H(A,z— P(x))

Which holds by the third assumption with analogous logic to before.

E.4 Runid terms

Most rules on runid terms are analogous to the cases on the unerased variant, as
erasure only removes the runid marking. We show the case of runid application
as an example of such cases and as the central optimization. The interesting cases
are inductive eliminators, so we give the case on inductive runid nat eliminators.

Application
Case 11 (runid application).

I'tfrgMz:A)az:(a?A) A IFa~ga: A
I'fo a~sa:A

Proof. We need to prove that applying a runid function is equivalent to its

argument
[/1,([a]+) = [a]y : [Al,
Let id = x — x, we can trivially show that id([a],) ~ [a], : [A]4, so it suffices

to prove that

[f15([aly) = 4d([a]y) : [AD,
We use the extensionality principle on functions (Definition 5): related functions
take related inputs to related outputs.

44 J.C. Padilla Cancio et al.

1. We show that the functions are related

[f1y =id : II([A]+, [Al4)

Since [Ar(z : A).z], = x + z this holds by induction on the first assump-
tion.
2. [a]y = [a]y : [A] holds by induction on the second assumption

By showing that the functions and inputs are related, we prove that the appli-
cations are related.

Inductive runid eliminators Inductive eliminators require a stronger seman-
tic lemma. We need to express the substitution of recursive subterms for recur-
sive subcalls, e.g. b[p — m] for nats. Because of this we give a stronger semantic
lemma with such an induction hypothesis baked in.

Lemma 4 (Runid Nat recursor). Induction on runid Nats
Given

a=~ad : Nat
b~0:Nal
reen(k,byi) ~ K s Nat = i(k, k) ~1+ K : Nt
i~ [I(Nat, I(Nat, Nat))

It holds that
recx(a,b,i) ~ a’ : Nat

Proof. We proceed by induction on a ~ a’ : Nat
1. Base case: 0 ~0: Nat
We need to prove that
recn(0,b,i) ~ 0: Nat
If we compute the left term we need to prove
b~0:Natl

Which holds by assumption
2. Inductive step: 1 +k~1+ k" : Nat
Our induction hypothesis is

recn(k, b,i) ~ k' : Nat
We need to prove

recn(1+k,b,i) =1+ k" : Nat

Run-time identity functions in a quantitative type theory 45

If we compute the left term we need to prove
i(k,recn(k,b,i)) ~ 1+ k' : Nat (3)
Using the induction hypothesis and the third assumption we get
ik, k) ~1+k : Nat (4)

The fourth assumption lets us use extensionality for i, if the first and second
arguments are related the output is related. k =~ k : N-at holds by assump-
tion, using the induction hypothesis for the second argument we arrive at

i(k,recn(k,b,4)) ~i(k, k') : Nat (5)

By transitivity, combining Equation 4 and Equation 5 gives us the exact
proof statement we need in Equation 3

As the statement holds for the base and inductive case, it holds for all a.

Since inductive runid eliminators have the aforementioned substitution to
express the induction hypothesis in the syntactic rule we need to investigate
how sytactic substitutions map to the semantic domain. The following lemma
shows us that substitution is equivalent to extending the environment, mapping
the variable to the interpretation of the term being substituted for.

Lemma 5. Evaluation of substitution [bla — c]|[, = [b][as[e],]

Proof. We analyze the left and right terms:

— On the left hand side: When we reach a term that is @ in b we instead find
the term ¢ which is evaluated to [c],
— On the right hand side : When we reach the variable a in b we give the value

v(a) =[]

The values are the same barring the terms mentioned, and the terms mentioned
evaluate to the same value.

We can now give the case for inductive runid nat eliminators.
Case 12 (Runid Nat eliminator).

Fl,ao:JNat,FQI—QNSa:Nat
I, Ih Fbla— z] ~5 z: Nat
Iy, Iy, m ¥ Nat b ¢[p — m][a — suc m] ~, suc m : Nat
w w w
Iy,a : Nat,I5,m : Nat,p : Nat - ¢ ~, ¢ : Nat

Fl,a%)Nat,Fg Fel.NataPbc ~sa:Nat

46 J.C. Padilla Cancio et al.

Proof. Let a, = v(a),al, = 7'(a), we need to prove that recursion on the left
value is equivalent to the right value

reC]N(ava [[b]]'y[a»—)ayb (kv ’I") — [[C]]'y[a»—)av,mHk,pHr]) ~ a; : Na’t

We use Lemma 4. Which has four conditions, using Lemma 5 to interpret the
substitutions:

1. a, =~ d, : Nat holds by the first assumption
2. [b]fams0) = 0 Nt holds by the second assumption
3. For the third condition we say that given

reCN(ka [[b]]'y[ar—ﬂc]? <n7 T) = [[cﬂ'y[a>—>k,m>—>n,pr—>r]) ~ k' Nat (6>
We must prove that
[[C]]’y[[aHk,mHk,ka] ~1+E: Nat (7)

Which holds by induction on the third assumption
4. The fourth condition tells us the the function is well formed for arbitrary
inputs k = k' : Nat, r =~ : Nat

[Cﬂv[aHk,mHk,pHr] ~ [[d]'y’[ar—)k’,m»—)k’,p»%r’] : Nﬁ/{;
This follows from the fourth assumption, by analogous logic to Case 6.

As all condition holds the original statement holds by Lemma 4

	Run-time identity functions in a quantitative type theory

