
Assorted Types and a Type Class Default
Mechanism for Type Ambiguities in Haskell

Koji Kagawa1[0009−0001−8481−7493]

Kagawa University, Takamatsu Kagawa 761-0396, Japan
kagawa.koji@kagawa-u.ac.jp

Abstract. In functional languages, functions accepting a given data
type can be defined freely, but constructors of the type cannot be added
later. In object-oriented languages, adding subclasses to a given class is
possible, but methods cannot be added to the original class. The difficulty
of achieving extensibility in both directions is known as the expression
problem. In Haskell, type classes mitigate the problem to some extent.
That is, the types that methods (functions) can operate on can be added
later. However, problems arise when grouping these target types into a
single list or a similar structure. Several approaches have been proposed
to address this, but issues remain, such as bad chemistry with types that
include reference types. This paper proposes a mechanism for defining
assorted types to group multiple types, along with a type class defaulting
mechanism to handle the resulting type ambiguity.

Keywords: Haskell · type class · type ambiguity · type class default-
ing mechanism.

1 Introduction

In functional programming languages, one can generally define as many functions
as desired for a given data type, but the varieties of data (constructors) cannot
be added later. Conversely, in object-oriented languages, one can freely increase
the varieties of data (subclasses) for a given data type (class), but functions
(methods) cannot be added to the original class. This well-known problem that
it is difficult to achieve extensibility in both directions simultaneously is termed
the expression problem [15].

However, in Haskell, type classes mitigate the issue to some extent. That
is, while you cannot add new constructors for a function’s target type, you can
define functions that target multiple types, allowing the target types themselves
to be added later. In this sense, Haskell functions can increase the varieties of
data types passed as arguments. However, in this case, the differing types present
another problem when attempting to store data of multiple types, which are the
targets of the function, within a single container such as a list or an array. When
using containers, it is necessary to ensure the elements are of the same type.
Similarly, when using references, the types must be the same. This occurs when
one wants to assign multiple types, sharing common operations, successively to

2 K. Kagawa

a single reference. Therefore, several techniques have been proposed to enable
grouping different types belonging to the same class into a single container.

Generally, object-oriented programming is well-suited to imperative tech-
niques using references. When performing an upcast (type conversion from sub-
class b to superclass a), some information—such as methods or fields (instance
variables)—may become inaccessible. Without references, we would have to re-
store the lost information by performing a downcast (type conversion from su-
perclass a back to subclass b) to use methods specific to the subclass. However,
extracting a portion of data and then restoring it after update is essentially the
same role as references. On the other hand, when references are used in the first
place, the object’s identity is preserved, allowing access to the lost information
from a location separate from the container.

The expression problem is often viewed in functional programming languages
as an issue encountered when handling data types such as abstract syntax trees
used by compilers. However, resolving the expression problem is also crucial
when emulating object-oriented programming in functional languages, and the
solution should ideally be compatible with reference types.

The mechanism proposed in this paper possesses the following characteristics
compared to existing proposals.

– It is well-suited to reference types.
It can be used within references, or references can be used within data types.
However, the technique proposed in this paper is still useful even when ref-
erence types are not involved.

– It requires no advance preparation.
There is no need to define data types with the prior intention of using them
with heterogeneous containers or reference types.

– It supports separate compilation.
The data types provided by this proposal translate straightforwardly to ex-
isting type classes (with commonly used extensions such as MultiParamType-
Classes and FunctionalDependencies) and algebraic data type definitions. Fur-
thermore, the processing required to consolidate multiple data types into a
single container is not expensive.

The remainder of this paper is structured as follows: first, we briefly explain
existing research on the expression problem in Haskell (Section 2), then go on
to introduce the proposed mechanism of assorted type definition and type class
defaulting scheme (Section 3). We also refer to other related research in Section 4.
Finally, we outline future challenges (Section 5), and conclude (Section 6).

2 Background

This section explains several existing proposed methods for constructing hetero-
geneous containers composed of elements derived from multiple types.

Assorted Types for Haskell 3

2.1 Objects and Subtyping in a Functional Perspective

Odersky [11] proposes a technique for constructing heterogeneous containers of
types sharing the same interface.

For example, consider the following type class C:
class C a where

view : : a → Int → String
handle : : a → String → a

which represents some document-like data types with methods view to display
a portion of the document and handle to handle modifications to the document.
To group types belonging to this C class into a single container, one may define
a type T corresponding to a tuple of methods such as the following.

data T = T (Int → String) (String → T)

Here, the Int → String field corresponds to the view method, and the String →
T field corresponds to the handle method.

This type T is an instance of the class C, as shown below, and any instance
of C can be converted to T.
instance C T where

view (T f g) n = f n
handle (T f g) s = g s

toT : : C a ⇒ a → T
toT x = T (view x) (λs → toT (handle x s))

Generally, such a type T can be defined when all the method types of the
type class C a are of the form a → τ, where a appears positively in the return
type τ.

The limitation of this approach is that when the number of involved functions
increases, the definitions of class C and type T must be modified. That is, once
the types of heterogeneous containers are fixed, it is still possible to add new
types afterwards (i.e., to add new instances of the C class), but it is not possible
to add functions (methods) (e.g., gview :: a → Int → ByteString to display a
portion of the document graphically) without recompilation. One could define a
subclass C’ of C to add new methods, but the corresponding type T’ would also
need to be newly defined.

A variation using existential types [7], as shown below, also exists, but the
above restriction applies equally.

{−# LANGUAGE Existent ia lQuant i f i cat ion #−}
data T = f o r a l l a . C a ⇒ T a (a → Int → String) (a → String → a)

2.2 Data Types à la Carte

Swierstra proposed a method in Data Types à la Carte [14] for combining mul-
tiple types into a single sum type. This is achieved by defining operators for the

4 K. Kagawa

type constructor :+:, as shown below, and defining recursive data types by tying
the knot such as Expr.

The following example combines two types, Lit and Add, using the :+: oper-
ator.

data Expr f = In (f (Expr f))
data Lit e = Lit Int
data Add e = Add e e
data (f :+: g) e = In l (f e) | Inr (g e)

addExample : : Expr (L it :+: Add)
addExample = In (Inr (Add (I n l (L i t 2)) (I n l (L i t 3))))

Using constructors such as Inr and Inl directly is cumbersome, so one can
construct data using the overloaded function inj.

class (Functor sub , Functor sup) ⇒ sub :<: sup where
i n j : : sub a → sup a

For example, one can define instances such as the following.

instance (Functor f , Functor g) ⇒ f :<: (f :+: g) where
i n j = In l

Using this inj, one can define the following “smart constructors.”

l i t : : (L i t :<: f) ⇒ Int → Expr f
l i t x = In (i n j (L i t x))

add : : (Add :<: f) ⇒ Expr f → Expr f → Expr f
add x y = In (i n j (Add x y))

Then, the above addExample can be rewritten as follows.

addExample : : Expr (L it :+: Add)
addExample = add (l i t 2) (l i t 3)

When adding new functions to these types, one can define a type constructor
class as a subclass of Functor.

class Functor f ⇒ Eval f where
evalAlgebra : : f Int → Int

instance Eval L i t where
evalAlgebra (L it x) = x

instance Eval Add where
evalAlgebra (Add x y) = x + y

instance (Eval f , Eval g) ⇒ Eval (f :+: g) where
evalAlgebra (I n l x) = evalAlgebra x
evalAlgebra (Inr y) = evalAlgebra y

Here, Functor is a type (constructor) class defined as follows.
class Functor f where

fmap : : (a → b) → f a → f b

Assorted Types for Haskell 5

Meanwhile, functions for the Expr type can be defined using the following
foldExpr function.
foldExpr : : Functor f ⇒ (f a → a) → Expr f → a
foldExpr f (In t) = f (fmap (foldExpr f) t)

eval : : Eval f ⇒ Expr f → Int
eval expr = foldExpr evalAlgebra expr

This approach also allows functions to be added later by defining classes such
as Eval, and new type categories like Lit or Add can be also introduced. These
types can then be packaged into containers using inj.

However, data types à la carte also present several drawbacks. Firstly, it re-
quires even non-recursive constructors to be defined as type constructors that
take a type parameter corresponding to their own type (e.g., e for the Lit type
above). This is at least unnatural and necessitates planning in advance for com-
bining with other data types later. Furthermore, each constituent type con-
structor must be a Functor, meaning it must be able to define fmap, and no-
tably cannot contain a reference to its own type. However, this is unnatural,
as one should ideally be able to simply “forget” about methods that update
self-referential types. In contrast, Odersky’s approach above only requires each
method return type to be a Functor.

2.3 Typed Tagless Final Interpreters

Kiselyov’s “Typed Tagless Final Interpreters” (TTFI) [6] is a technique for rep-
resenting data types not by defining algebraic data types, but by defining cor-
responding type classes. For example, corresponding to the above Lit and Add,
we define the following type class:
class ExpSYM repr where

l i t : : Int → repr
add : : repr → repr → repr

tf1 = add (l i t 8) (add (l i t 1) (l i t 2))

Furthermore, when adding functions to a data type, we define instances for
the previously described type class as follows.
instance ExpSYM Int where

l i t n = n
add e1 e2 = e1 + e2

eval : : Int → Int
eval = id

Evaluating eval tf1 yields 11. For example, the type of tf1 is ExpSYM repr⇒ repr.
By defining a subclass of ExpSYM, one can add constructors, and by defining
an instance of ExpSYM, one can add functions.

However, this approach, representing data as polymorphic functions, is ill-
suited for uses such as passing functions as arguments or storing them in refer-
ences. As is known from ML, references have restrictions on the generalisation

6 K. Kagawa

of type variables. That is, one cannot put a type like ∀ repr. ExprSYM repr ⇒
repr into a reference; one must instantiate the type variable instead. ML has
restrictions known as the value restriction [16]. In Haskell, using functions like
newSTRef or newIORef ensures their return values are lambda-bound [12]. In the
TTFI approach, restricting the type to monomorphic means only one method
can be used. The same paper [6] proposes a method using cloning (duplicat-
ing) to enable multiple methods, but this undeniably complicates the program,
and it is questionable whether this technique can be applied to data containing
references.

2.4 Open Data Types and Open Functions

Löh et al. proposed a syntax for Haskell in “Open Data Types and Open Func-
tions” [8]. They also proposed candidate implementation methods. The proposed
syntax uses a keyword open and is as follows.
open data Expr : : ∗

Lit : : Int → Expr
Add : : Expr → Expr → Expr

open eval : : Expr → Int
eval (L i t n) = …

However, this proposed syntax has not been incorporated into the Haskell stan-
dard.

Reasons for this may include the implementation making separate compila-
tion difficult. Though they propose a translation scheme to maximise separate
compilation, still it requires recompilation of a small part of the program when
adding new constructors. And since it modifies the meaning of existing type
identifiers, say Expr, it is necessary to resort to recursive modules to allow cyclic
dependencies between modules. This would complicate import statements by
necessitating the use of explicit module interfaces.

2.5 Polymorphic Variants

In OCaml, polymorphic variants are defined using backquote character (‘) as
follows. (Ocaml uses semicolon (;) to separate list items instead of comma (,) as
in Haskell.)
let exps1 = [‘ L i t 1; ‘Add(‘ L i t 2 , ‘ L i t 3)] ; ;

This exps1 has a type [> ‘Add of [> ‘Lit of int] * [> ‘Lit of int] | ‘Lit of int] list.
Here, the symbol > means that the type can have more constructors than those
listed, and therefore it is possible to add other constructors freely. On the other
hand, if we define functions for this type straightforwardly as follows,
let rec eval = function

| ‘ L i t n → n
| ‘Add (e1 , e2) → eval e1 + eval

; ;

Assorted Types for Haskell 7

this eval has type ([< ‘Add of ’a * ’a | ‘Lit of int] as ’a) -> int. Here, the symbol
< means that the type can have fewer constructors than those listed, meaning
the function cannot accept other constructors and is not extensible.

Garrigue proposed using open recursion to define functions accepting more
constructors [4].

let eval_add eval_rec = function
| ‘ L i t n −> n
| ‘Add(e1 , e2) −> eval_rec e1 + eval_rec e2

; ;
let rec eval1 e = eval_add eval1 e ; ;

Then we can define another function eval2 that accepts more constructors by
reusing eval_add.

let eval_add_mult eval_rec = function
| (‘ L i t _ | ‘Add _) as e −> eval_add eval_rec e
| ‘Mult(e1 , e2) −> eval_rec e1 ∗ eval_rec e2

; ;
let rec eval2 e = eval_add_mult eval2 e ; ;

On the other hand, as OCaml lacks type classes, a different mechanism such
as first-class modules would be required to use the same name for functions
accepting different sets of constructors.

As for Haskell, the author previously proposed extensions to introduce poly-
morphic variants [5]. However, this required adding new syntax for defining poly-
morphic variants and for declaring instances between polymorphic variants and
type classes, alongside modifications to the type inference algorithm, making its
incorporation into Haskell’s standard difficult. The mechanism we propose in
this paper can be considered a restructuring that organises the situations where
variant polymorphism manifests, enabling its implementation using Template
Haskell’s quasi-quotation [13] and GHC’s compiler plugins.

3 Proposed Mechanism

3.1 Working Example

In the following, we will use several types and methods as concrete examples.
These are the data types and methods used in turtle graphics.

data Turtle s = Turtle { x : : STRef s Double
, y : : STRef s Double
, t : : STRef s Double }

class Movable s a | a → s where
forward : : a → Double → ST s ()
turn : : a → Double → ST s ()

We will subsequently add more data types and methods, and examine examples
where these are grouped together for handling using containers or references.

For instance, we consider adding a color field as shown below,

8 K. Kagawa

data ColorTurtle s = ColorTurtle { x : : STRef s Double
, y : : STRef s Double
, t : : STRef s Double
, c : : STRef s Int }

class HasColor s a | a → s where
getColor : : a → ST s Int
setColor : : a → Int → ST s ()

or introducing turtles dependent on other turtles as follows.
newtype ContraryTurtle s e = ContraryTurtle (STRef s e)

instance Movable s e ⇒ Movable s (ContraryTurtle s e) where
forward (ContraryTurtle r) d = readSTRef r >>= λt → forward t d
turn (ContraryTurtle r) a = readSTRef r >>= λt → turn t (−a)

−− Contrary turtle moves in the direction opposite to the told direction.

Here, e denotes a type variable representing the type of another turtle.

3.2 Basic Idea

The fundamental idea underlying the proposal in this paper is, in a sense,
straightforward. Namely, we define an algebraic data type that possesses all
the types one wishes to include in the container as its constituent elements. We
define a recursive data type by constructing a sum type and, if necessary, defin-
ing the corresponding parts of the subtree to be of the same type as the type
itself. That is, we tie the recursive knot. We refer to such a type, which takes
a sum and further ties the necessary recursive knot, as an assorted type in
this paper. However, this proposal does not require, unlike data types à la carte,
that each component type of the sum be a Functor over itself. Consequently,
generalised type constructors like Expr or :+: cannot be provided, necessitating
a new algebraic data type for each set of components.

However, this means the definition of the algebraic data type must be modi-
fied whenever the type of a component is increased. This point is the opposite of
Odersky’s approach. That is, functions can be added even after creating a het-
erogeneous container, but once the type is fixed, new constituent types cannot
be added. Therefore, to delay fixing the definition of the algebraic data type, the
constructors are made anonymous, and data is constructed using functions over-
loaded on the return type. Such usage of overloading to delay type determination
is also common to data types à la carte and TTFI. However, unlike TTFI, which
represents data as polymorphic functions, the proposed mechanism represents
data as algebraic data types, making it suitable for use with references.

3.3 Definition of Assorted Type

When defining an assorted type, each constructor is composed of type conver-
sions from other types, hence there can be only one field. This aspect is analogous
to newtype. Furthermore, multiple constructors are permitted, but constructor

Assorted Types for Haskell 9

names are not specified. This aspect is the dual of newtype. It employs syntax
similar to the standard data declaration, but uses the new keyword assorted.
data assorted AllTurt le s = Turtle s

| ColorTurtle s
| ContraryTurtle s (Al lTurt le s)

deriving (Movable s _, HasColor s _)

Note that Turtle, ColorTurtle, and ContraryTurtle here are not constructor names,
but type constructor names of the constituent types already defined. In practice,
it is implemented using Template Haskell Quasi-quotation, meaning it is written
within the . . . portion of the quasi-quotation [assorted| ... |].

The grammar for defining assorted types is generally as follows: Here, tycon,
type, etc., follow the names of non-terminal symbols used in the extended BNF
of the Haskell specification [9]. (for simplicity, parts such as module names are
ignored.)

data assorted tycon tyvar1 ... tyvark = type1 | ... | typem
deriving (class1, ... classn)

The deriving clause serves to declare instances for this type. For a standard data
declaration, the deriving clause lists the type class names, such as (Eq, Show).
However, assorted types typically possess type parameters, meaning the type
classes in the deriving clause are necessarily multi-parameter. Only one type
parameter within it is independent; the other type parameters depend on that
independent parameter. Therefore, we extend the deriving notation: we use “_”
to denote the (independent) parameter corresponding to the data type being
defined within the class expressions. The remaining dependent type parameters
may also include the type parameters of the defined type constructor (tyvar1,
..., tyvark).

The above AllTurtle translates to the following data type definition and in-
stance declarations. Here, D1, D2 and D3 are fresh constructor names that are
not visible outside.
data AllTurt le s = D1 (Turtle s)

| D2 (ColorTurtle s)
| D3 (ContraryTurtle s (Al lTurt le s))

instance Cast (Turtle s) (Al lTurt le s) where
ucast = D1
dcast (D1 t) = Just t
dcast _ = Nothing

instance Cast (ColorTurtle s) (Al lTurt le s) where
−− Omitted, as it is largely similar.

instance Cast (ContraryTurtle s (Al lTurt le s)) (Al lTurt le s) where
−− Omitted

Here, the Cast a b class is defined as follows.
class Cast a b where

ucast : : a → b
dcast : : b → Maybe a

10 K. Kagawa

Furthermore, for the classes within the deriving clause, AllTurtle is declared as
their instances by utilising the instances of each component’s data type.
instance Movable s (Al lTurt le s) where

forward (D1 t) = forward t
forward (D2 ct) = forward ct
forward (D3 tt) = forward tt
. . .

Such methods may only be defined when each method’s type is of the form a →
τ, where a appears positively inτ. Therefore, classes that can be written in de-
riving are limited to those whose method types satisfy this restriction. However,
note that this does not imply that references to the same type within AllTurtle’s
constructor can be used solely as read-only. For instance, a type possessing mul-
tiple references to the same type might be added as a constituent type, and we
can imagine a method that swaps the contents of two of such references.

In general, this declaration of an assorted type:
data assorted T α1 ... αk = τ1 | ... | τm deriving (π1, ..., πn)

is translated as follows into a data type definition and instance declarations.
data T α1 ... αk = D1 τ1 | ... | Dm τm

instance Cast τ1 (T α1 ... αk) where
ucast = D1
dcast (D1 t) = Just t
dcast _ = Nothing

...

And suppose, for example, that πi in the deriving clause is of the form C i
β1 ... βj _. (The _ may appear in any position, but for convenience in the
following explanation, it shall be considered to appear as the last argument.)
Then, the following instance declarations are generated.
instance Ci β1 ... βj (T α1 ... αk) where

method1 (D1 t) = fmap ucast (method1 t)
...
method1 (Dm t) = fmap ucast (method1 t)
method2 (D1 t) = fmap ucast (method2 t)
...

In other words, “_” is replaced with the assorted type being defined.
While fmap is used here for simplicity of explanation, whether it can be

defined as an instance of Haskell’s type class Functor is a separate matter, even
if the argument type appears positively within the method’s return value. For
example, while an instance of Functor such as (a → b) → (x, a) → (x, b) can
be defined, an instance such as (a → b) → (a, y) → (b, y) cannot. Therefore, in
practice, it will be defined in a manner that involves inlining fmap.

Assorted Types for Haskell 11

3.4 Defaulting Plugin

To delay the definition of assorted algebraic data types as long as possible,
we propose defining anonymous constructors and using overloading. So when
exactly should the definition of an algebraic data type be fixed? It should be
fixed when it is certain that no further constructors or methods will be added.
Using methods such as ucast imposes constraints on type variables, such as Cast
τ a, or type class constraints like Ci . . . a. However, since the type of the main
function is ultimately (essentially) IO (), such type variables should disappear
at some stage.

Even with the mechanism introduced at this point, one can explicitly provide
a type using signature (::) immediately before the type variable disappears (is
deemed ambiguous). While AllTurtle has a state type parameter s, making things
slightly more complicated, one could write it as follows, for example:
do

−− The definitions of x1, y1, t1, x2, y2, t2, and c2 are omitted.
let tur t l e1 = Turtle x1 y1 t1
let tur t l e2 = ColorTurtle x2 y2 t2 c2
let tu r t l e s = (id : : [Al lTurt le s] → [Al lTurt le s])

[ucast turt le1 , ucast tur t l e2]
−− The code that uses turtles follows.

However, this is cumbersome, so we wish to enable automatic type resolution.
When using variables such as turtles without explicitly specifying their type,
an ambiguous type error should occur somewhere. Typically, ambiguous type
errors occur with types of the form π ⇒ τ, where a type variable appears in
the type constraintπ but not in the type bodyτ. (In practice, due to functional
dependencies in type classes, ambiguity may not occur even when the variable
does not appear in the body.) In such cases, no further constraints are added to
the ambiguous type variable. When such ambiguity in a type variable is detected,
we generate an assorted type from the type τ related to the type variable a via
Cast τ a, and assign this assorted type to the ambiguous type variable.

In current Haskell, one can specify a default type when an ambiguous type er-
ror occurs. However, by default, defaults can only be specified for numeric types
belonging to the Num class. Furthermore, the NamedDefault extension allows
specifying default types for non-numeric types per class. The current NamedDe-
fault extension cannot specify multi-parameter type classes, but the type classes
targeted by this proposal should be treatable in the same manner, as they pos-
sess only one independent type parameter and the rest are dependent parameters
(that is, they are so-called parametric type classes [3]). The ambiguity resolution
mechanism proposed in this paper resembles the NamedDefault extension, but
specifies default types for a collection of type classes rather than a single type
class.

Given an assorted type definition such as the following,

data assorted T α1 ... αk = τ1 | ... | τm deriving (π1, ..., πn)

When the type constraints given for the ambiguous type variable γ are a subset
of (Cast τ1 γ , . . . , Cast τm γ , π1, . . . , πn) where _ is replaced with γ in πi

12 K. Kagawa

and α1, ..., αk are replaced with υ1,..., υk respectively, then we can replace
the type variable γ with T υ1 ... υk.

When multiple assorted types satisfy the condition, any one may be selected.
The definition of an assorted type’s method merely involves adding or removing
tags D1, ..., Dm; since the type variable is judged ambiguous, these tags never
appear externally. Therefore, the result is the same regardless of which assorted
type is chosen.

This assignment is implemented by GHC’s compiler plugin (DefaultingPlugin).
The defaulting plugin is invoked when ambiguous type variables are detected. It
receives the type variable and information about the type constraint containing
that variable, and is designed to return candidate assignments for the type vari-
able. However, it became apparent that several issues exist when attempting to
resolve ambiguity using this approach.

One issue arises from recursive assorted types. For instance, with a type such
as AllTurtle, if a constraint like Cast (ContraryTurtle s α) β is applied, α and
β should be unified since AllTurtle is defined as data AllTurtle s = . . . | D3
(ContraryTurtle s (AllTurtle s)). However, when using the generic ucast, there is
no necessity for this unification to occur before the plugin is invoked, so the
type constraints concerning α and β are grouped separately. As the defaulting
plugin is triggered for each ambiguous type variable, it cannot simultaneously
handle type constraint information concerning both α and β.

Another concern is the potential for users to overuse functions such as ucast.
Inserting more than two ucast calls where one would suffice (for example, before
and after a function call) imposes constraints like Cast α γ and Cast γ β,
increasing the effort required to eliminate the intermediate type variable γ.
While this would not be impossible to implement the elimination, it increases
the complexity of the mechanism.

Therefore, this proposal adopts the following approach. First, we prepare
dedicated classes that provide casts from types that could potentially become
components of the assorted type. For example, we define the following class for
ContraryTurtle. (Currently, GHC’s annotation (ANN) pragma is used to associate
the type class FromContraryTurtle with the type ContraryTurtle.)

class FromContraryTurtle s e | e → s where
fromContraryTurtle : : ContraryTurtle s e → e

{−# ANN type Turtle (CastFrom ’ ’ FromTurtle ’ ’ Turtle) #−}

For such annotated classes, instances are automatically generated when an
assorted type containing ContraryTurtle is defined. For example, when AllTurtle
is defined, instances like the following are automatically generated.

instance FromContraryTurtle s (Al lTurt le s) where
fromContraryTurtle = D3

−− FromTurtle, FromColorTurtle are automatically generated similarly.

The defaulting plugin will search for such classes instead of Cast. Then, this
mechanism allows ambiguity resolution even in cases involving recursive assorted
types, as demonstrated in the following example.

Assorted Types for Haskell 13

do
−− The definitions of x1, y1, and t1 … are omitted.
let tur t l e1 = Turtle x1 y1 t1
let tur t l e2 = ColorTurtle x2 y2 t2 c2
r2 ← newSTRef $ fromColorTurtle tur t l e2
let tur t l e3 = ContraryTurtle r2

tu r t l e s = [fromTurtle turt le1 ,
fromColorTurtle turt le2 ,
fromContraryTurtle tur t l e3]

mapM_ (λt → forward t 3.3) tu r t l e s…

4 Related Work

This section introduces related research on the expression problem that was not
covered in Section 2.

4.1 Trees that Grow

Najd et al.’s “Trees that Grow” [10] proposes a technique for defining data types
using type families, leaving room for later extension. For example, a data type
is defined as follows:

data ExpX ξ = LitX (XLit ξ) Int
| AddX (XAdd ξ) (ExpX ξ) (ExpX ξ)
| ExpX (XExp ξ)

type family XLit ξ
type family XAdd ξ
type family XExp ξ

Then, by defining instances of these type families XLit, XAdd and XExp, we
extend the data type.

This method allows us not only to increase the number of constructors but
also to add fields to each constructor. However, it requires defining the data type
in advance with the expectation of future extensions. Furthermore, repeated ex-
tensions can make accessing the extended parts inefficient. Without providing
some form of syntactic sugar, defining instances of type families or pattern syn-
onyms would become rather cumbersome.

4.2 Composable Data Types

Albers and Romeborn [1] propose an extension to Haskell’s grammar for the
expression problem. This proposal shares with ours the approach of extending
syntax and converting it to standard Haskell. However, since its output code
utilises Data Types à la Carte [14] and its extension, Compositional Data Types
[2], it is considered to have low compatibility with reference types. Moreover, it
requires extending a broad range of Haskell’s grammar, encompassing not only
type definitions but also function declarations.

14 K. Kagawa

5 Future Work

Several parts remain unimplemented due to unfinished design, or due to con-
straints in the compiler plugin specification. This section introduces such future
challenges.

5.1 Binary Methods

Binary methods are methods that take two arguments of the same type, such as
Eq or Ord. The proposed mechanism could potentially support binary methods,
though several details require further refinement.

In general, for each component type constituting an assorted type, the argu-
ment types for a binary method must differ and should be represented using a
multi-parameter type class as follows.

class Eq’ a b where
eq ’ : : a → b → Bool

class Ord’ a b c | a b → c where
compare ’ : : a → b → Ordering
max, min : : a → b → c

The return type of a method may also depend on the argument type, as seen
with c in max and min above. It could be either a or b, or it could be a type like
Either a b.

In other words, generally binary methods are represented by multi-parameter
type classes such as the following:

class BinaryMethod’ α β γ | α β → γ where
binaryMethod’ :: α → β → γ

Then, the first and second arguments must be of different types, and the type
appearing in the return value may vary for each combination, either per class or
per method. The above γ may be α, may be β, or even may be Either α β.

To declare instances for such a class, the methods are defined for all the
combinations of constituent types as follows.

instance BinaryMethod T where
...
binaryMethod (D i x) (D j y) = fmap ucast (binaryMethod’ x y)
...

A mechanism is needed to associate the auxiliary multi-parameter type classes
Eq’ and Ord’ to the original binary method type classes Eq and Ord. Currently,
we are considering using annotation pragmas to express this mapping and ex-
tending assorted types to type classes with binary methods.

Assorted Types for Haskell 15

5.2 GADT

Monads and abstract syntax trees also benefit from the ability to add new data
types (constituents) later. These data types are generally defined as generalised
algebraic data types (GADTs).

It seems possible to extend the syntax of the assorted type definition and
the ambiguity resolution mechanism proposed in this paper to GADTs, but the
current implementation does not support this. Enabling the definition of assorted
types in GADTs and demonstrating useful application examples remains a future
task.

In this paper, we have emphasised the usefulness of reference types for object-
oriented programming. However, reference types seem also convenient in the im-
plementation of embedded domain-specific languages (eDSLs). References may
make it possible to employ features such as graph reduction and unification
while utilising garbage collection of the host language. Therefore, demonstrating
application examples in the implementation of eDSLs is also a future task.

5.3 Extensions requiring changes to the compiler plug-in

As mentioned in the section on defaulting plugins, the current (GHC 9.12.2)
compiler plugin specification appears to trigger a plugin for each type variable
judged ambiguous. However, when handling constraints for multi-parameter type
classes like Cast, it becomes necessary to process information about multiple type
variables simultaneously. Providing such an extension as a plugin would likely
enable resolving ambiguities even when dealing with recursive types or multi-
stage casts (e.g., casting to one assorted type, then casting again to another
assorted type with more constructors but fewer corresponding methods).

6 Conclusion

We have explained that many existing proposals for the expression problem
cannot be applied when data types include reference types, especially references
to the same type as the object itself, and are therefore unsuitable for object-
oriented programming techniques that require frequent use of references.

We have proposed a syntax for assorted types that can be applied to data
types containing references, along with its translation and rules to resolve asso-
ciated type ambiguities, and have implemented it as a compiler plugin. We also
presented a program example demonstrating how type ambiguities can be re-
solved arising when creating heterogeneous containers for data types containing
references to themselves.

The source code for implementing this proposal is available at https://github.com/
KojiKagawa/hs-type-assort.git.

Acknowledgments. I would like to thank anonymous reviewers for their valuable
comments. This study was supported by JSPS KAKENHI (grant number JP23K11350).

16 K. Kagawa

References

1. Albers, F., Romeborn, A.: A Syntax for Composable Data Types in Haskell, A
User-friendly Syntax for Solving the Expression Problem. Master’s thesis, Chalmers
University of Technology and University of Gothenburg (2023)

2. Bahr, P., Hvitved, T.: Compositional data types. In: Proceedings of the seventh
ACM SIGPLAN workshop on Generic programming. pp. 83–94. WGP ’11, ACM,
New York, NY, USA (September 2011). https://doi.org/10.1145/2036918.2036930

3. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: Proceedings of
the 1992 ACM Conference on LISP and Functional Programming. p. 170–181.
LFP ’92, Association for Computing Machinery, New York, NY, USA (1992),
https://doi.org/10.1145/141471.141536

4. Garrigue, J.: Code reuse through polymorphic variants. In: Proceedings of the 2000
JSSST Workshop on Foundations of Software Engineering. pp. 93–100 (November
2000)

5. Kagawa, K.: Polymorphic variants in Haskell. In: Proceedings of
the 2006 ACM SIGPLAN Workshop on Haskell. pp. 37–47 (2006).
https://doi.org/10.1145/1159842.1159848

6. Kiselyov, O.: Typed tagless final interpreters. In: Generic and indexed program-
ming: International spring school, sSGIP 2010, oxford, uK, march 22-26, 2010,
revised lectures, pp. 130–174. Springer (2012)

7. Läufer, K.: Type classes with existential types. Journal of Functional Programming
6(3), 485–518 (1996). https://doi.org/10.1017/S0956796800001817

8. Löh, A., Hinze, R.: Open data types and open functions. In: Proceedings of the 8th
ACM SIGPLAN international conference on Principles and practice of declarative
programming. pp. 133–144 (2006)

9. Marlow, S., et al.: Haskell 2010 language report. https://www.haskell.org/
onlinereport/haskell2010/ (2010)

10. Najd, S., Peyton Jones, S.: Trees that grow. Journal of Universal Com-
puter Science (JUCS) 23, 47–62 (January 2017), https://www.microsoft.com/en-
us/research/publication/trees-that-grow/

11. Odersky, M.: Objects and subtyping in a functional perspective. Tech. Rep. IBM
Research Report RC 16423, IBM Research, Thomas J. Watson Research Center
(January 1991)

12. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Proceed-
ings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 71–84. Association for Computing Machinery, New York, NY,
USA (1993). https://doi.org/10.1145/158511.158524

13. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings
of the 2002 ACM SIGPLAN workshop on Haskell. pp. 1–16 (2002)

14. Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4),
423–436 (2008). https://doi.org/10.1017/S0956796808006758

15. Wadler, P.: The expression problem. https://homepages.inf.ed.ac.uk/wadler/
papers/expression/expression.txt (November 1998)

16. Wright, A.K.: Simple imperative polymorphism. LISP and Symbolic Computation
8(4), 343–355 (December 1995). https://doi.org/10.1007/BF01018828

