
Mutually Recursive Definition Builders
(A Working Draft for Discussion)

Kazutaka Matsuda1[0000−0002−9747−4899]

Tohoku University, Sendai, Japan kztk@tohoku.ac.jp

Abstract. Mutually recursive definitions are a fundamental concept in
programming. This also applies to embedded domain-specific languages
(EDSLs), especially when we want to perform intensional analysis or
manipulation of recursive definitions. A common approach to model mu-
tually recursive definitions is recursive let (letrec). However, in the typed
setting, letrec prevents us from constructing recursive definitions locally
step-by-step, which is inconvenient in generating EDSL expressions. The
difficulty arises because we need to specify the types of recursively bound
variables in advance to use letrec. In this paper, we propose a set of
language constructs that we call mutually recursive definition builders,
which enable local and step-by-step construction of mutually recursive def-
initions in a type- and scope-safe manner. We give their formal syntax and
typing rules, show an EDSL implementation using higher-order abstract
syntax, and discuss their interconvertibility with letrec. Additionally,
we report our experience using the proposed constructs in the embed-
ded FliPpr, an invertible pretty-printing system that involves grammar
processing, to highlight their utility in EDSL program generation.

Keywords: EDSL · Mutually Recursive Definitions · Higher-Order Ab-
stract Syntax

1 Introduction

A domain-specific language (DSL) is a programming language designed for a
specific problem domain, which often provides tailored abstractions that come
with more concise syntax and better efficiency than a general-purpose language.
An embedded domain-specific language (EDSL), which is a DSL implemented as a
library in a host language, provides extra convenience for both DSL programmers
and implementers, as they can access the host language’s ecosystem, such as
parsers, a type system, editor support, an efficient compiler, and interoperability
with the host language.

Recursive definitions are one of the fundamental concepts in programming.
This also applies to EDSLs. Although we often do not need to handle them
explicitly in many applications for which using the host’s recursive definitions
is sufficient, explicit handling is useful for program optimizations that involve
intensional analysis of programs, and is important for grammar manipulations,
including grammar transformations and parser generation. Combinators that

2 Kazutaka Matsuda

represent recursive definitions in an EDSL are sometimes called observable recur-
sions [10, 29].

For defining a single recursion, using the standard fixed-point combinator
suffices. When we implement it as an EDSL primitive, if we use higher-order
abstract syntax (HOAS) [9, 15, 26, 27] with an expression type Exp, its type is
given as fix :: (Exp a → Exp a) → Exp a.12 But, what can we do with mutual
recursion? Theoretically, the operator fix is known to be powerful enough to
support mutual recursions via Bekič’s lemma.

fix2 :: ((Exp a,Exp b)→ (Exp a,Exp b))→ (Exp a,Exp b)
fix2 f = (fix $ λx → fst $ f (x ,fix $ λy → snd $ f (x , y)), . . .)

However, the recursive definitions realized in this way are not useful due to the
code-size blow-up. In general, we need 2n copies of recursive definitions for n
mutual definitions, which is impractical.

Thus, a practical EDSL must be equipped with an operator to define mutually
recursive definitions, when their explicit treatment is required. To mirror the
syntax of the recursive let, letrec x = e in e′, a HOAS representation of the
construct looks like:3

letrec :: Env Proxy ∆
→ (Env Exp ∆→ Env Exp ∆)→ (Env Exp ∆→ Exp t)→ Exp t

Here, Env f ∆ is a heterogeneous list [18] of expressions of type ∆, namely,
Env f [a1, . . . , an] ≃ (f a1, . . . , f an). Thus, it bundles the following combinators.

letrec0 :: (()→ ())→ (()→ Exp t)→ Exp t
letrec1 :: (Exp a → Exp a)→ (Exp a → Exp t)→ Exp t
letrec2 :: ((Exp a,Exp b)→ (Exp a,Exp b))→ ((Exp a,Exp b)→ Exp t)→ Exp t
. . .

There also exist other variants [3, 4, 10,17,29].
However, to the best of our knowledge, the existing approaches [3,4,10,17,29]

share the common issue: we need to be explicit about the objects to be defined
mutually recursively in advance, especially ∆. This “global” construction of
mutually recursive definitions reduces modularity. For example, if we want to add
a function that will be defined along with existing mutually recursive functions,
we need to change not only the function itself and the functions that call it
but also the rest of the functions as ∆ changes. Also, the exposure of ∆ makes
1 We use Haskell to explain our ideas throughout this paper.
2 For presentation simplicity, we often present types of combinators in the plain HOAS,

while the plain HOAS has an issue with interpretations [11] due to exotic terms [8]
and there exist HOAS representations [6, 8] without the issue. If we were to use such
representations, fix would be a constructor Fix :: (v a → Exp v a)→ Exp v a (in the
parametric HOAS [8]) or a typeclass method fix :: Exp f ⇒ (f a → f a)→ f a (in
the tagless-final style [6]).

3 We abuse the notation to use ∆ as a type variable here, while type variables in
Haskell must start with lower letters.

Mutually Recursive Definition Builders 3

-- A surface (derived) combinator we propose for a recursive definition of f a.
letr1 ::Defs f ⇒ (f a → DefM f (f a, r))→ DefM f r

-- A construction of recursive bindings corresponding to
-- letrec {xi = x(i mod n)+1}1≤i≤n in x1

example ::Defs f ⇒ Int → DefM f (f a)
example n = fmap (!!0) (go n [])

where
go 0 xs = pure xs
go i xs = letr1 $ λxi → do
-- xsfinal is a list of bound variables x1, . . . , xn .
xsfinal ← go (i − 1) (xi : xs)
pure (xsfinal !! ((i ‘mod ‘ n) + 1), xsfinal)

Fig. 1: Example of generation of recursive bindings

some programming difficult, especially when ∆ is determined only dynamically.
For example, in grammar transformations where grammars are expressed as
EDSL programs, we want to generate nonterminals in a resulting grammar on
demand, even though there is a known upper bound. Since we cannot know how
many nonterminals will be generated prior to a transformation (otherwise, the
generation is not on-demand), it is difficult or at least nontrivial to realize the
transformation via letrec-like combinators. Thus, we aim to provide a more fine-
grained construction of mutually recursive definitions, enabling one to work with
a single binding at a time without referring to the global binding information.

In this paper, we propose an approach called mutually recursive definition
builders (MRD builders, for short) to construct mutually recursive definitions
from single bindings without knowing the whole bindings (the ∆ above). A core
idea is to have an additional syntactic category d that has a type of the form
τ1, . . . , τn ▷ τ representing a partially constructed letrec expression of type τ
together with a work list of expressions of types τ1, . . . , τn to be named and put
in the letrec bindings. With our proposed constructs, a monolithic expression
let rec x = e in e′ is broken down into the following compound form

freeze
(
letr x1. . . . letr xn.push en (. . . (push e1 (ret e′)) . . .)

)
enabling us to construct mutually recursive definitions one-by-one. Another
strength of this approach is that, leveraging the power of tagless-final representa-
tion [6], MRD builders can be implemented as an “extension kit” for an existing
non-recursive EDSL, without invading EDSL types. Specifically, our approach
works for any EDSL whose expression type constructor Exp has kind k → Type
for arbitrary k , which covers both parametric HOAS [8] and the tagless final
style [6]. This design also enables us to derive EDSL-independent combinators,
which eases generation of EDSL expressions. As a demonstration of its expressive
power, Fig. 1 demonstrates a construction of mutually recursive definitions with
a derived combinator letr1 , where the type of recursively bound variables (∆)

4 Kazutaka Matsuda

is determined dynamically; this example appears to be contrived, but serves
as a miniature of the practical use we will demonstrate later (Section 5.3). Al-
though the code in Fig. 1 relies on the partial operation (!!), letr1 guarantees
well-scopedness and well-typedness of the resulting program for successful runs;
for this particular program, actually (!!) does not fail if n > 0.

In summary, our contributions are.

– We propose combinators for mutually recursive definitions that enable the
“local” construction of each object to be defined mutually (Section 2.1). We
also provide several derived combinators to make programming with the
proposed combinators easier (Section 2.2).

– We discuss the relationship between the proposed constructs and letrec
(Section 3). As a standalone DSL syntax, they are straightforwardly inter-
convertible. As an EDSL syntax, although the conversion from letrec (i.e.,
letrec on top of MRD builders) remains easy (Section 3.1), we need addi-
tional effort [1,2,20] to support the opposite direction (MRD builders on top
of letrec) due to the implicit nature of the whole binding type (Section 3.2).

– We discuss the theoretical background of the proposed combinators, which
also demonstrates the feasibility of the proposed approach towards certain
semantics (Section 4). More specifically, our design of the proposed constructs
is inspired by the trace operator in category theory [16]. This further highlights
that traced monoidal categories can be used as the semantic domain for EDSLs
that use our combinators.

– We report our implementation of the proposed idea in the embedded ver-
sion [22] of FliPpr [21, 23], a language for invertible pretty-printers, and
discuss non-trivial use cases (Section 5).

2 Our Proposal: Mutually Recursive Definition Builders

In this section, we propose MRD builders. We first show their core constructs
(Section 2.1) and then discuss a derived interface (Section 2.2).

2.1 Core Constructs

As explained in Section 1, our idea is to have an additional syntactic category repre-
senting MRD builders, which intuitively denotes a partially constructed letrec. Al-
though our focus is on embedded DSLs, we first illustrate our proposed constructs
in the context of a standalone DSL, as presented in Fig. 2. As we have seen in
Section 1, with them, we can break letrec x1 = e1, . . . , xn = en in e′ down to com-
pound form freeze

(
letr x1. . . . letr xn.push en (. . . (push e1 (ret e′)) . . .)

)
. A

builder d of type τ1, . . . , τn ▷ τ represents a pair of a partially constructed letrec
of type τ and a work list (more precisely, a stack) of expressions e1, . . . , en where
each ei has type τi to be named and put in the letrec bindings. The operator
ret e produces a letrec with the empty body, i.e., letrec in e, together with the
empty work list, push e d pushes e into the work list part of d, letr x.d names

Mutually Recursive Definition Builders 5

Syntax

e ::= · · · | freeze d (DSL expressions)
d ::= ret e | push e d | letr x.d (mutually recursive definition builders)
σ, τ ::= . . . (DSL types)
A ::= τ1, . . . , τn ▷ τ (builder types)

(Additional) typing rules: Γ ⊢ e : τ and Γ ⊢ d : τ ▷ τ

Γ ⊢ d : ▷τ
Γ ⊢ freeze d : τ

Γ ⊢ e : τ

Γ ⊢ ret e : ▷τ
Γ ⊢ e : σ Γ ⊢ d : σ ▷ τ

Γ ⊢ push e d : σ, σ ▷ τ

Γ, x : σ ⊢ d : σ, σ ▷ τ

Γ ⊢ letr x.d : σ ▷ τ

Fig. 2: Proposed constructs and their typing rules (as a standalone DSL)

the head e of the work list in d and moves x = e to the binding part, and freeze d
finally converts it to the standard letrec, provided that the work list is empty.
The crucial point is that the type of already constructed bindings is hidden in
the definitions, while the work list expressions can refer to hidden bindings. Of
course, these fine-grained constructs for mutually recursive definitions have no
clear benefits in a standalone DSL. Instead, their usefulness becomes evident in
EDSLs, where we can programmatically construct EDSL expressions.

One might notice that the above intuition (the work list and partially-
constructed letrec) of the MRD builders suggests the following identity, provided
that x does not occur free in e.

push e (letr x.push ex d) ≡ letr x.push ex (push e d)

Thus, there will be more than one way to construct mutually recursive definitions
in general, when some definition bodies do not refer to some bound variables.
We could avoid redundancy in representation by removing push and making ret
take expressions to be pushed, as ret e1, . . . , en e. We, however, regard this as
providing flexibility in programming when we represent our idea as an EDSL,
demonstrated by the derived combinators discussed in Section 2.2.

If we use the tagless final [6] representation of HOAS [9, 15, 26, 27], these
constructs can be expressed as the following methods in a type class Defs.

class Defs (f :: k → Type) where
-- D f [τ1, . . . , τn] τ represents d : τ1, ..., τn ▷ τ
data D f :: [k]→ k → Type

retD :: f τ → D f ′[] τ
freezeD ::D f ′[] τ → f τ
pushD :: f α→ D f αs τ → D f (α : αs) τ
letrD :: (f α→ D f (α : αs) τ)→ D f αs τ

Thanks to the extensibility of the tagless-final style, the definition of the type
class Defs f is given independently of any concrete EDSL expression type f α.

6 Kazutaka Matsuda

By using them, we can construct mutually recursive definitions letrec x1 =
e1, . . . , xn = en in e as

freezeD $ letrD $ λx1 → · · · → letrD $ λxn → pushD en $. . . $ pushD e1 $ retD e

while no single construct refers to the whole binding information.

2.2 Surface and Derived Interface

We can program directly with the proposed constructs as above, but programming
becomes much easier with the following derived interface.

letr1 ::Defs f ⇒ (f α→ DefM f (f α, r))→ DefM f r
local ::Defs f ⇒ DefM f (f α)→ f α

Here, DefM f is a monad defined on top of our primitives, equipped with the
two operations above. We shall postpone their definitions until the end of this
subsection. The signature letr1 resembles a HOAS representation of the single
recursive definition letrec x = e1 in e2, which has type (f α→ (f α, f β))→ f β.
Thus, the standard use of letr1 is similar.

-- let ones = one : ones in . . .
letr1 $ λones → do
-- assuming one :: Exp Int and cons :: Exp a → Exp [a]→ Exp [a]
pure (cons one ones, . . . {- computation using ones -} . . .)

However, the crucial difference between letr1 and the standard single recursive
definition lies in the type parameter r that ranges over ordinary Haskell types
instead of EDSL types. Thanks to this flexibility, one can use letr1 to define
mutual recursion operators such as letr2 and letr3 below.

letr2 ::Defs f ⇒ ((f α, f β)→ DefM f ((f α, f β), r))→ DefM f r
letr2 h = letr1 $ λa → letr1 $ λb → do
-- the outer function (λa → . . .) has type f α→ DefM f (f α, r)
-- the inner function (λb → . . .) has type f β → DefM f (f β, (f α, r))
((a ′, b′), r)← h (a, b)
pure (b′, (a ′, r)) -- Notice the inversion of the order

letr3 ::Defs f ⇒ ((f α, f β, f γ)→ DefM f ((f α, f β, f γ), r))→ DefM f r
letr3 h = letr1 $ λa → letr1 $ λb → letr1 $ λc → do
((a ′, b′, c′), r)← h (a, b, c)
pure (c′, (b′, (a ′, r)))

This flexibility is also beneficial to define multiple variables recursively, where
the number of variables is given at runtime. For example, letr1 can be used to
produce n-many copies of bindings, by using the following derived combinator
letr1s.

Mutually Recursive Definition Builders 7

letr1s :: (Defs f ,Eq k)⇒
[k]→ ((k → f α)→ DefM f (k → f α, r))→ DefM f r

letr1s [] h = snd <$> h (const $ error "out of bounds")
letr1s (k : ks) h = letr1 $ λfk → letr1s ks $ λf → do
-- f is supposed to be valid for ks
-- f ′ is valid for k : ks
(f ′, r)← h $ λx → if x k then fk else f x
return (f ′, (f ′ k , r))

One may think of letr1 as a form of name generation, coming together with
the obligation to provide its definition, with a guarantee of well-typedness and
well-scopedness.

It is worth noting that, since DefM f is built on top of the Defs f interface,
despite such flexibility, it does not violate the abstraction provided by an EDSL.
That is, EDSL types are separated from Haskell types.

We can generalize the construction presented by letr2 and letr3 to any tuples
of EDSL expressions. To make this possible, we first prepare the following type
class to bundle the definitions.

class Monad m ⇒ LetRecArg m t where
-- both t and r range over Haskell types (i.e., t , r :: Type)
letr :: (t → m (t , r))→ m r

Then, we define several instances.

-- Identity is defined as newtype Identity a = Identity a
instance Defs f ⇒ LetRecArg (DefM f) (Identity (f a)) where . . .
instance (LetRecArg m a,LetRecArg m b)

⇒ LetRecArg m (a, b) where . . .
instance (LetRecArg m a,LetRecArg m b,LetRecArg m c)

⇒ LetRecArg m (a, b, c) where . . .
. . .
-- In the following instances, letr is defined similarly to
-- letr1s [minBound . .maxBound].
instance (LetRecArg m a)⇒ LetRecArg m (Bool → a) where
instance (LetRecArg m a)⇒ LetRecArg m (Word8 → a) where . . .
instance (LetRecArg m a)⇒ LetRecArg m (Int8 → a) where . . .

A subtlety is that, if we were to declare an instance of LetRecArg (DefM f) (f a),
it would overlap with other instance declarations to confuse Haskell instance
resolution, reducing the usability. Thus, for this type class to be useful, we require
users to define the base case for their specific expression type, say Exp, by using
DerivingVia.

deriving via Identity (Exp a) instance LetRecArg (DefM Exp) (Exp a)

An advantage of the type class LetRecArg is that we can have a variant of
mfix so that we can use Haskell-level recursive definitions to achieve EDSL-level

8 Kazutaka Matsuda

recursive definitions. Specifically, with LetRecArg , we can define the following
mfix -like operator.

mfix ′ :: LetRecArg m t ⇒ (t → m t)→ m t
mfix ′ h = letr $ λt → h t >>= λt ′ → pure (t ′, t)

We cannot make DefM f a MonadFix instance due to the type mismatch (t
is unconstrained in mfix), which is legitimate as not all Haskell-level recursive
definitions correspond to EDSL recursive definitions. However, we still can use
mfix ′ to rebind RecursiveDo by using QualifiedDo or RebindableSyntax.

-- F exports mfix = mfix ′ together with the standard monad operations.
F .do rec f ← . . .

g ← . . .
. . .

Thus, we can use Haskell’s recursive definition syntax for EDSL’s recursive
definitions.

The local enables us to use a term that depends on recursive definitions in
other terms. For example, we can write:

-- We assume some Defs instance Exp with appropriate
-- zero :: Exp Int , one :: Exp Int , and cons :: Exp a → Exp [a]→ Exp [a]
onesM ::DefM Exp (Exp Int)
onesM = F .do rec ones ← cons one ones

pure ones

zeroThenOnes :: Exp [Int]
zeroThenOnes = cons zero (local onesM)

However, the combinator must be used with great care as it copies recursive
bindings inside.

-- We assume zip :: Exp [a]→ Exp [b]→ Exp [(a, b)]
oneones :: Exp [(Int , Int)]
oneones =
-- The following expression corresponds to:
-- zip (letrec ones = one : ones in ones)
-- (letrec ones = one : ones in ones)
zip (local onesM) (local onesM)

It is generally better to write:

-- The following corresponds to:
-- letrec ones = one : ones in zip ones ones.
oneones ′ :: Exp [(Int , Int)]
oneones ′ = local $ do ones ← onesM

pure $ zip ones ones

Mutually Recursive Definition Builders 9

Thus, in practice, the users would want to use it only in the last step.
We conclude the section by showing the definition of the monad DefM and

its operations letr1 and local . First, the definition of DefM is analogous to the
codensity monad [19,30].4

newtype DefM f a = DefM (∀αs τ. (a → D f αs τ)→ D f αs τ)

unDefM ::DefM f a → (a → D f αs τ)→ D f αs τ
unDefM (DefM h) = h

We omit its Functor , Applicative, and Monad instance declarations, as they are
straightforward. We are now ready to show the definitions of letr1 and local .

letr1 ::Defs f ⇒ (f α→ DefM f (f α, r))→ DefM f r
letr1 h = DefM $ λk → letrD $ λa → unDefM (h a) $ λ(b, r)→ pushD b (k r)

local ::Defs f ⇒ DefM f (f α)→ f α
local m = freezeD $ unDefM m retD

3 Relationship to letrec

In this section, we discuss the relationship between our proposed constructs and
letrec x = e in e′. That is, we can interconvert the two syntaxes. While the
conversion from letrec can be performed on HOAS representations, the opposite
direction is performed on the DSL syntax given in Fig. 2 rather than on their
HOAS representations. This effectively means that we need a conversion from
HOAS to de Bruijn-indexed terms [1, 2, 20] for the conversion to letrec.

3.1 Conversions from letrec: letrec on Top of Our Constructs

The conversion from letrec is straightforward. We just follow the intuition
presented in Section 2.1. Specifically, we define the conversion by giving letrec a
derived construct on top of our ones. With our surface interface Section 2.2, we
can implement it easily.

data Env (f :: k → Type) (as :: [k]) where
ENil :: Env f ′[]
(:.) :: f α→ Env f αs → Env f (α : αs)

letrec :: (Defs f)⇒ Env Proxy αs → (Env f αs → (Env f αs, f τ))→ f τ
letrec sh h = local $ letrecM sh (pure ◦ h)
letrecM :: (Defs f)⇒ Env Proxy αs

→ (Env f αs → DefM f (Env f αs, r))→ DefM f r
letrecM ENil h = snd <$> h ENil

4 We said “analogous” here as we did not confirm the functoriality of D f . There are
no constructs to transform αs and τ in D f αs τ . However, they conceptually appear
positively in d as defined in Fig. 2. Thus, we conjecture potential functoriality.

10 Kazutaka Matsuda

letrecM (:. sh) h = letr1 $ λx → letrecM sh $ λxs → do
(vvs, r)← h (x :. xs)
case vvs of -- trick to tell GHC that this matching is exhaustive.
v :. vs → pure (vs, (v , r))

3.2 Conversion to letrec: Our Constructs on Top of letrec

On the other hand, the opposite direction requires more effort when the HOAS
representation is used. We first show a type-directed translation relation, which fol-
lows the intuition given in Section 2.1—d : σ ▷ τ represents a partially-constructed
letrec of type τ and a work list of expressions of type σ. Then, we discuss why
this is not straightforward on the HOAS representation.

Let us write µ for bindings of the form x = e. Then, we can present its typing
rule as follows.

{Γ ⊢ µ(x) : ∆(x)}x∈dom(µ)

Γ ⊢ µ : ∆

Note that recursive bindings will be typed as Γ,∆ ⊢ µ : ∆.
Recall that, in Section 2.1, we explained that d intuitively represents a partially

constructed letrec with a work list. To perform the type-preserving translation,
let us consider typing such intermediate objects. A caveat is that the work-list
expressions can use the letrec-bound variables, and thus we instead them instead
as triples ⟨µ | e | e⟩ of bindings µ, a work list e, and a continuation expression e,
with the following typing rule, where ∆ is treated existentially in the conversion.

Γ,∆ ⊢ µ : ∆ {Γ,∆ ⊢ ei : σi} Γ,∆ ⊢ e : τ

∆;Γ ⊢ ⟨µ | e1, . . . , en | e⟩ : σ1, . . . , σn ▷ τ

In particular, when the work list part is empty, we have

Γ,∆ ⊢ µ : ∆ Γ,∆ ⊢ e : τ

∆;Γ ⊢ ⟨µ | | e⟩ : ▷τ

which is ready to convert to Γ ⊢ letrec µ in e : τ . This is how freeze is processed.
Now, we are ready to define our conversion Γ ⊢ d : σ ▷ τ ⇝ ∆;Γ ⊢ ⟨µ | e | e⟩ :

σ ▷ τ , which is read as Γ ⊢ d : σ ▷ τ is converted to ∆;Γ ⊢ ⟨µ | e | e⟩ : σ ▷ τ
for some ∆. We present our conversion in a type-directed style to highlight the
treatment of typing environments and its type-preservation nature, whereas the
conversion itself is syntax-directed.

Γ ⊢ ret e : ▷τ ⇝ ∅;Γ ⊢ ⟨ | | e⟩ : ▷τ
Γ ⊢ e : σ Γ ⊢ d : σ ▷ τ ⇝ ∆;Γ ⊢ ⟨µ | e | e′⟩ : σ ▷ τ

Γ ⊢ push e d : σ, σ ▷ τ ⇝ ∆;Γ ⊢ ⟨µ | e, e | e′⟩ : σ, σ ▷ τ

Γ, x : σ ⊢ d : σ, σ ▷ τ ⇝ ∆;Γ, x : σ ⊢ ⟨µ | e, e | e′⟩ : σ, σ ▷ τ

Γ ⊢ letrx.d : σ ▷ τ ⇝ ∆,x : σ;Γ ⊢ ⟨µ, x = e | e | e′⟩ : σ ▷ τ

Mutually Recursive Definition Builders 11

The existential nature of ∆ makes the conversion with the HOAS represen-
tation difficult; if we represent binders as functions, the timing of the choice
changes. To explain this, suppose that the existential ∆ were explicit. In this
case, the right-hand side of the conversion could be represented in the following
HOAS representation.

type Dexplicit f ∆ αs τ = Env f ∆→ (Env f ∆,Env f αs, f τ)

With this type, the implementation of letrD would be easy:

letrDexplicit :: (f a → Dexplicit f ∆ (α : αs) τ)→ Dexplicit f (α :∆) αs τ
letrDexplicit h (fa :. µ) = let (µ′, f ′a :. wl , e ′) = h fa µ in (f ′a :. µ′,wl , e ′)

However, the same construction is not possible if ∃∆.Dexplicit f ∆ αs τ is
used. To bind the existential ∆, we need to apply h to some argument, but to
prepare the argument, we need to choose the existential in the letrDexplicit’s
return value to be α :∆—there is a cyclic dependency regarding the existential
type ∆. Of course, there would be no issue if the existential quantification
would appear outside the function as ∃∆. f a → Dexplicit f ∆ (α : αs) τ . Note
that (P ⇒ ∃x.Qx) ⇒ (∃x.P ⇒ Qx) is not an intuitionistic theorem (but a
classical theorem), intuitively because the choice of x can depend on P for the
antecedent formula. Actually, such dependency is not possible in the tagless final
representation, provided that f is abstract, but the information is not immediately
available to language implementors.

Nevertheless, we have workarounds. A straightforward approach is to use
Dynamic to perform dynamic type checking, which, however, requires us to scatter
Typeable constraints in every construct. This is not ideal as it changes the EDSL
that are otherwise irrelevant to mutually recursive definitions. Another, slightly
heavy-weight approach is to use unembedding [1, 2, 20] to convert tagless final
representations to de Bruijn indexed terms, so that we can implement the above
conversion (⇝). Although the original approaches do not handle multiple syntactic
categories literally, we believe that it would be straightforwardly extended to
the case. Actually, the implementation5 of embedding-by-unembedding [20]
experimentally supports such multiple syntactic categories as of version 0.4.
We can see that the conversion essentially ensures that the above-mentioned
dependency is not possible.

This gap might be intrinsic to our proposed constructs: they enable a local,
step-by-step construction of mutually recursive definitions without referring to the
global information (i.e., mutually bound variables), but this convenience comes
at the nontrivial cost of recovering the hidden information during conversion.

4 Theoretical Background: Trace Operator

In this section, we discuss a theoretical background of the proposed constructs,
namely, the trace operator [16]. This suggests that, for a semantic domain with the
5 https://github.com/kztk-m/EbU

https://github.com/kztk-m/EbU

12 Kazutaka Matsuda

trace operator, this syntactic representation can be used without any non-trivial
conversions [1, 2, 20] (see Section 3.1).

4.1 Trace Operator

Very roughly speaking, the trace operator can model the knot-tying in functional
programming. Formally, given a morphism f ∈ C(A⊗X,B ⊗X) in a monoidal
category C, the trace operator TrXA,B “traces out” X to produce a morphism
TrXA,Bf ∈ C(A,B). Intuitively, the trace TrXA,B feeds back X, which is charac-
terized by certain laws. Among these laws, the vanishing law is interesting as it
enables us to build a “bigger” trace operator from smaller trace operators (in
terms of objects to be traced out)

TrIA,Bf = f

TrX⊗Y
A,B f = TrXA,B(Tr

Y
A⊗X,B⊗Xf)

suggesting that, if we base ourselves on the trace operators, we are able to define
combinators for mutual recursive definitions that can compose single definitions
one-by-one. From the second equation, one might recall letr2 defined in terms of
letr1 in Section 2.2. This equation is indeed where the idea comes from.

4.2 Design Principles

A common approach to view Γ ⊢ e : τ as a morphism in a certain category
C is to model it as a morphism from JΓ K to JτK in C, where JΓ K is defined as
Jx1 : σ1, . . . , xn : σnK = Jσ1K ⊗ · · · ⊗ JσnK. In this view, a trace operator can
naturally be modeled as:

Γ, x1 : σ1, . . . , xn : σn ⊢ e : τ × σ1 × · · · × σn

Γ ⊢ trx1 . . . xn.e : τ

Here, × is a type operator to be interpreted by the tensor product ⊗ in a monoidal
category C.

This straightforward approach, however, has some issues when we use it in
EDSL design. First, since the tr can be decomposed into a smaller trace by the
vanishing law, the core syntax must provide the simplest form, like the one with
n = 1 in the above form, to reduce the implementation effort of its semantics.
Second, for a certain EDSL to which we want to apply this technique, there
is already a product type in the EDSL that interferes with this interpretation.
For example, consider a parser combinator EDSL. Naturally, an expression type
P a in the EDSL represents “a parser whose result is a”. This a of P a is a
Haskell type, and thus P (a, b) represents a parser whose parsing result is a pair
(a, b). However, for recursive definitions with tr, we require an EDSL type that
represents a product of parsers. It is unrealistic to redesign the whole EDSL
types to add tr; such surgery is not necessary for letrec.

Accordingly, we prepare a variant letr (portmanteau word of let and tr) of tr
that focuses only on a single variable, and we introduce a special syntactic category

Mutually Recursive Definition Builders 13

HOAS Grammar

Flat Grammar [3]

FliPpr with Explicit Recursion

(Selective) unembedding [1, 2, 20,22]

Unembedding [1, 2, 20]
Flattening

grammar-to-grammar
transformation

Fig. 3: Architecture of FliPpr: thick-boxed part using the proposed technique

d , as shown in Fig. 2. The intuition underlying d is that Γ ⊢ d : σ1, . . . , σn ▷ τ
permits an interpretation in C(JΓ K, JτK⊗ JσnK⊗· · ·⊗ Jσ1K) so that σ1, . . . , σn will
be traced out. We guard the last τ element from being traced out so that we finally
get C(JΓ K, JτK), guaranteeing that we can return to the original interpretation
domain of EDSL expressions. Note that adding a new syntactic category is
straightforward in the tagless final style [6], as demonstrated by the Defs type
class in Section 2.1.

As a result, by design, our proposed constructs can be interpreted straight-
forwardly in a traced monoidal category C, as follows, assuming diagonal maps
δ ∈ C(A,A⊗A).

JΓ ⊢ ret e : ▷τK = JΓ ⊢ e : τK
JΓ ⊢ push e d : σ, σ ▷ τK = (JΓ ⊢ d : σ ▷ τK⊗ JΓ ⊢ e : σK) ◦ δ

JΓ ⊢ letrx.d : σ ▷ τK = TrJσKJΓ, x : σ ⊢ d : σ, σ ▷ τK
JΓ ⊢ freeze d : τK = JΓ ⊢ d : ▷τK

4.3 Superposing Law

A traced monoidal category comes with other laws besides the vanishing law.
Among them, the superposing law below is worth mentioning, as it is related to
the identity discussed in Section 2.1.

g ⊗ TrXA,Bf = TrXC⊗A,D⊗B(g ⊗ f)

This, combined with other laws, yields the above-mentioned identity.

push e (letrx.push ex d) ≡ letrx.push ex (push e d)

5 Implementation and Experience

In this section, we report our implementation of the proposed constructs used in
the embedded version [22] of FliPpr [21], an invertible pretty-printing system. In
FliPpr, users write pretty-printers using tailored pretty-printing combinators [31]

14 Kazutaka Matsuda

rec a ← do a ← b
putStrLn "Hello"
pure a

b ← do pure (pure a) :: IO (IO ())
pure a

(a) Code that fails (throws Exception:
cyclic evaluation in fixIO)

rec b ← do pure (pure a) :: IO (IO ())
a ← do a ← b

putStrLn "Hello"
pure a

pure a

(b) Code that works (prints "Hello")

Fig. 4: MonadFix instances for IO (and ST s) is error-prone

with a certain restriction, so that it can generate context-free grammars for the
printer, with the guarantee that pretty-printed strings must always be correctly
parsed.6 FliPpr uses the MRD builders in two places: as a surface language that
users write, and as a target grammar of grammar transformations (Fig. 3).

5.1 Motivation in FliPpr

The motivation of MRD builders in FliPpr is twofold: one is for surface represen-
tation and the other is for its internal use. Regarding the surface language, MRD
builders are used to define pretty-printers indexed by precedence levels, which are
to be converted to mutually recursive definitions indexed by precedence levels;
such construction is laborious with a letrec-like combinator, which directly trans-
lates the letrec construct, as we need type-level programming to determine the
type of whole bindings to be σn for some σ, where n is the maximum precedence.
Regarding the internal processing, MRD builders are used to represent target
grammars for grammar-to-grammar transformations that happen in the internal
processing in FliPpr. An advantage of using MRD builders is that it guarantees
the type- and scope-safe treatment of grammars, preventing mistakes.

However, there has been some historical evolution towards it. In the origi-
nal standalone FliPpr, a pretty-printing function can have static inputs (e.g.,
precedence level) that are removed via partial evaluation during grammar gen-
eration [21]. In the embedded version, such processing of static parameters is
implemented as Haskell-level programming with core constructs—that is, Haskell
evaluates them away [22]. Originally, the embedded FliPpr marks with a des-
ignated primitive the places where recursive calls happen, to be used with an
appropriate MonadFix instance that gives different names for each occurrence
of a mark, which will then be replaced with references that hold recursion bod-
ies. However, we soon found that this approach was error-prone in the internal
processing; the behavior of some code depends on the order of bindings in rec
(see Fig. 4). Thus, we sought a more robust and theoretically-backed way that

6 When multiple parsing results exist, the system guarantees that one of the results
corresponds to the AST that is pretty-printed.

Mutually Recursive Definition Builders 15

supports RecursiveDo and provides a similar usability with marked recursions.
This is where the idea of MRD builders originates.

We note that there is a crucial discrepancy between MRD builders and
marked recursions. In the marked recursion, the expansion of the defined names
(represented as references) is done dynamically in the processing of syntax trees,
and thus, there is no issue with having a pretty-printing function with a static
parameter of type Int . Thanks to Haskell’s lazy semantics, only the relevant
parts will be used and evaluated. However, following the letr definition that
uses letr1s-like implementation, having a pretty-printing function indexed by
Int will yield nonterminals with the number of possible Int values. Although we
prune unused nonterminals afterwards, letr constructs an AST of at least that
size, which is clearly infeasible. Fortunately, for precedence, using Int8 , Word8 ,
or custom smaller integer types suffices, where the constructed AST sizes will
be feasible. We could avoid the issue by having further intermediate structures,
which is left for our future directions.

5.2 Programming in FliPpr

The programming in FliPpr is not that different from the ones presented in
Section 2.2. We define EDSL’s recursive functions mainly via RecursiveDo. For
illustration, Fig. 5 shows a snippet of a FliPpr program that uses our combinators.
It also uses share defined as share e = letr $ λx → pure (e, x), which represents
a non-recursive let.

It is worth mentioning that there is a limitation intrinsic to RecursiveDo,
which can only be used in do blocks and cannot be defined at the top level.
We can use the metaphor that a Haskell function f σ1 → · · · → f σn →
DefM f (f τ1, . . . , f τm) can be interpreted as an EDSL-level module that
imports EDSL objects of types f σ1, . . . , f σn and exports objects of types
f τ1, . . . , f τm . However, this requires a shift in programming style. Actually,
a recent version of FliPpr is moving towards supporting a surface syntax with
implicit recursions, which can be made explicit by observing graph structures
in memory [7] using StableName. Still, we need a careful treatment for static
parameters, as a StableName of an application result may differ for each appli-
cation. We need to perform tabulation of such functions, as performed in the
memoize7 package.

5.3 Internal Use in FliPpr

A more crucial use appears in the internals of FliPpr for its grammar-to-grammar
transformations (Fig. 3). We note that we do not use the representation for
source grammars, i.e., grammars to be traversed; one reason is that HOAS
does not support intensional analysis, and the information of the whole mutual
bindings is not available for the proposed constructs. Thus, before traversal,
we convert ASTs into flat grammars (as used in [3]), namely, Env (RHS Γ) Γ ,
7 https://hackage.haskell.org/package/memoize

https://hackage.haskell.org/package/memoize

16 Kazutaka Matsuda

pprExp :: (Phased s)⇒ FliPprM s v (In v Exp → F .Exp s v D)

pprExp = F .do

pprName ← share $ λx → case_ x [unName $ λs → textAs s ident]

pprInt ← share $ λn → convertInput itoaBij n $ λs → textAs s numbers

pprBool ← share $ λb → case_ b [unTrue $ text "true", unFalse $ text "false"]
. . .

rec pExp ← share $ λ(prec ::Word8) (b :: IsRightMost) x →
if | prec 4→ case_ x

[$(pat ’Op) $(pat ’ Add) varP varP ‘br ‘ λe1 e2
→ pprOp pExp b (Fixity AssocL 4) "+" e1 e2

, $(pat ’Op) $(pat ’ Sub) varP varP ‘br ‘ λe1 e2
→ pprOp pExp b (Fixity AssocL 4) "-" e1 e2

, otherwiseP $ pExp (prec + 1) b]

| prec 6→ . . .

| prec 10→ . . .

| prec ⩾ 11→ pSimpleExp b x

| otherwise → pExp (prec + 1) b x

pSimpleExp ← share $ λb e0 →
let br0 = [unLet $ λx e1 e2 → pprLet pExp x e1 e2

, unIf $ λe e1 e2 → pprIf pExp e e1 e2
, unAbs $ λx e → pprAbs pExp x e]

br1 = [unVar pprName

, unLiteral pprLit

, otherwiseP $ parens ◦ pExp 0 (IsRightMost True)]

in case_ e0 (if isRightMost b then br0 ++ br1 else br1)

pure $ pExp 0 (IsRightMost True)

Fig. 5: Snippet of a FliPpr program: taken from https://github.com/kztk-m/
flippre/blob/new-syntax/flippre-examples/SimpleFL.hs

where RHS Γ σ denotes right-hand sides of production rules of type σ that can
use nonterminals of type Γ . To do so, we first transform HOAS grammars to
the equivalent de Bruijn-indexed representation by unembedding [1,2,20], and
then perform flattening, which is a variant of A-normalization [12], using MRD
builders.

Specifically, the proposed combinator is used in processing whitespaces. FliPpr
interprets some pretty-printing combinators such as linebreak , which may be
rendered as the empty string or a newline with indentation depending on width
available, as zero-or-more spaces. Since the interpretation happens behind the
scenes, FliPpr transforms grammars so that the spaces introduced by the process
cannot lead to ambiguity [23]. For example, linebreak will be replaced with a
grammar that corresponds to a regex \s*, but the concatenated \s*\s* causes
the ambiguity, for example, about how a single space character is produced (by the
first \s* or the second \s*). Of course, it might be rare to concatenate linebreaks,
but a similar ambiguous grammar is yielded from . . . <> linebreak <> . . . , where

https://github.com/kztk-m/flippre/blob/new-syntax/flippre-examples/SimpleFL.hs
https://github.com/kztk-m/flippre/blob/new-syntax/flippre-examples/SimpleFL.hs

Mutually Recursive Definition Builders 17

-- IxN env a: a nonterminal in a flat grammar (de Bruijn index)
-- env : types of nonterminals in a flat grammar
-- Qsp: a transducer state
-- lookupMemo ::Memo env g → Qsp → Qsp → IxN env a → Maybe (g a)

-- updateMemo ::Memo env g → Qsp → Qsp → IxN env a → g a → Memo env g

procVar :: · · · ⇒ Qsp → Qsp → IxN env a → StateT (Memo env g) (DefM g) (g a)

procVar q1 q2 x = StateT $ λmemo →
case lookupMemo memo q1 q2 x of

Just r → return (r ,memo)

Nothing → do

let rhs = lookIxMap defsMap x

letr1 $ λa → do

(r ,memo′)← runStateT (procRHS q1 q2 rhs) (updateMemo memo q1 q2 x a)

return (r , (a,memo′))

Fig. 6: Use of letr1 in internal whitespace processing in FliPpr

s <> t allows zero-or-more spaces between s and t in parsing. This transformation
is implemented as a three-state transducer, and a transducer can be fused into a
grammar; the resulting grammar has nonterminals of the form Nqiqj where N
is a nonterminal in the original grammar, and qi and qj are transducer states
before and after processing N . However, generating all the combinations is time-
and space-consuming, and thus we generate such nonterminals on demand.

Fig. 6 extracts the key use of letr1 in space processing.8 The function procVar
handles nonterminals in a given flat grammar. Here, DefM is used together
with the State monad that passes around memos. This function first checks a
memo to see whether a nonterminal x with a given pair of states q1 and q2 has
already been processed. If an entry is found in the memo, it returns the entry.
If there is no corresponding entry in the memo, it first generates a nonterminal
corresponding to q1 , q2 and x , adds the nonterminal to the entry, and processes
the right-hand side of x by procRHS q1 q2 rhs. The processing result (r) will
be the right-hand side of the generated nonterminal a. The return expression in
the last line ensures this by return (r , (a,memo′)), which also returns a as the
result of procVar . The use of letr1 is surprisingly simple as only type variables a
and g are involved—we need not care directly about the already defined symbols
(hidden in memo). One may think that letr1 is a type- and scope-safe version of
gensym, coupled with the obligation to provide its body.

We note that letr1 is also used with simple inlining of grammars, where
the number of nonterminals in the resulting grammar depends on the concrete
structure of the input grammar. We shall not show the code in the paper, as the
use of letr1 is similar.

8 https://github.com/kztk-m/flippre/blob/new-syntax/flippre-backend-grammar/
src/Text/FliPpr/Grammar/ExChar.hs

https://github.com/kztk-m/flippre/blob/new-syntax/flippre-backend-grammar/src/Text/FliPpr/Grammar/ExChar.hs
https://github.com/kztk-m/flippre/blob/new-syntax/flippre-backend-grammar/src/Text/FliPpr/Grammar/ExChar.hs

18 Kazutaka Matsuda

5.4 Performance Note

The nonterminal type IxN env a in a flat grammar mentioned in Fig. 6 is indeed
a phantom type; it is actually implemented as a Word instead of an actual de
Bruijn index for performance purposes. With the standard definition of the de
Bruijn indices, functions like lookupMemo in Fig. 6 took around 90% of the
execution time for a fairly large grammar. Another source of the significant
slowdown is flattening, which works on de Bruijn-indexed terms. The version
used in FliPpr passes around compositions of shifting functions to avoid shifting
constructed terms, where such compositions of shifting functions are applied
to variables in a given de Bruijn-indexed term. For a fairly large grammar, the
shifting amount can be large—it is as large as the number of nonterminals in the
resulting flat grammar—and so is the number of compositions. The application of a
composed function takes at least time proportional to the number of compositions—
even though composed functions are lightweight like a mere increment function
λx → x + 1. We need to pay this cost every time a composed function is applied.
We observe that our flattening (a variant of A-normalization) tends to compose
simple shifting functions such as the one that just unconditionally increments
indices to the left. Thus, we use a designated datatype so that we can only
remember the total increment amount of such unconditional shifting composed
to the left. Although a profiling showed that the flattening after unembedding
took around 35% of the execution time, adopting the optimization made the code
run around 7 times faster.9

Overall, the code runs nearly 100 times faster combined with other opti-
mizations. Although the flattening is an extreme case—processing of first-order
expressions such as e <*> e ′ requires shifting as each processing result comes
with lifted bindings—we would expect that a similar implementation technique
would be useful for implementing the conversion in Section 3.2. Notice that the
conversion of push e d requires shifting (weakening) to put e typed under the
context Γ into the work list, which is typed under the context Γ,∆.

6 Discussion and Related Work

We first discuss the representation of mutually recursive definitions. As a bench-
mark representation, we considered the straightforward HOAS representation of
letrec x = e in e′, given as

letrec :: Env Proxy ∆
→ (Env Exp ∆→ Env Exp ∆)→ (Env Exp ∆→ Exp a)→ Exp a

and its tupled variant:

letrec′ :: Env Proxy ∆→ (Env Exp ∆→ (Env Exp ∆,Exp a))→ Exp a

A similar representation is used by Oliveira and Löh [29]. Notice that this letrec
takes the shape information as the first argument, which is crucial for some
9 This compares single runs in the profiling mode.

Mutually Recursive Definition Builders 19

interpretations such as those that use initial values to compute a fixed point.
Otherwise, since we can know the shape of ∆ only by pattern matching Env f ∆,
what we can do would be limited to tying the knot. That is, EDSL recursion will
be implemented by Haskell’s recursion. For such cases, there is no strong reason
to have EDSL-level mutually recursive definitions. Kiselyov shows that we can
avoid passing the shape information with the following variation [17].

letrec′′ :: Env ((Compose (→) (Env Exp ∆)) Exp) ∆→ (Env Exp ∆→ Exp a)
→ Exp a

Observe that we have (Compose ((→) (Env Exp ∆)) Exp) x ≃ Env Exp ∆ →
Exp x . In this representation, the shape information can be obtained by applying
fmap (const Proxy) to its first argument. An inconvenience in this variant is that
the size of the recursive bindings will be quadratic in the number of recursive
bindings.

Baars et al. [3] use a type like Env (RHS ∆) ∆ for recursive grammars without
start symbols, where RHS ∆ a is a type for right-hand sides of production rules
of type a that may refer to nonterminals of type ∆. That is, RHS ∆ a represents
de Bruijn-indexed terms. Thus, writing and generating programs is laborious in
this representation, while some interpretations are known to be difficult when we
use the HOAS representation [1, 2, 20] instead.

Devriese and Piessens [10] and Brink et al. [4] use the fixed-point combinator
like the following kfix .

kfix :: ((∀a.Key a → Exp a)→ (∀a.Key a → Exp a))→ Key a → Exp a

By choosing an appropriate GADT for the Key type, where each constructor
C τ indicates a binding of type τ , we can define mutually recursive bindings. For
example, for rose trees data RTree = RNode [RTree], the size counting functions
can be defined as:

kfix $ λh → λcase
NodeK → lam $ λx → case_ x [unRNode $ λts → add one (h ListK ts)]
ListK → lam $ λx → case_ x
[unNil $ zero,
unCons $ λy ys → add (h NodeK y) (h ListK ys)

assuming some appropriate EDSL constructs such as add , where NodeK and
ListK are the constructors of the following GADT.

data Key a where
NodeK ::Key (RTree → Int)
ListK ::Key ([RTree]→ Int)

That is, instead of tuples (Env Exp ∆), this representation uses branches. This
representation requires us to prepare appropriate data types in advance, and the
interpretation needs to know the constructors of the Key type. Thus, it would
be inconvenient for an EDSL interface.

20 Kazutaka Matsuda

Benedikt et al. [28] use the combinator def ::Def a f ⇒ (a → (a, f b))→ f b
for recursive definitions. Although its type resembles our letr ::LetRecArg m t ⇒
(t → m (t , r))→ m r , there is a critical difference. Our letr is a derived instance
while their def is a core primitive. Being a core primitive, the type of def is too
general without restricting a; as a ranges over the host’s types, the only possible
interpretation would be the tying-the-knot, i.e., def f = let (a, r) = f a in r .
Thus, we need appropriate restriction of a to have non-trivial interpretations,
whereas they address this in an ad-hoc manner for each interpretation (e.g.,
printing). Another crucial difference is that the return type of def is restricted
to a single EDSL expression type f b, while letr ’s return is an arbitrary Haskell
type r . As we demonstrated in Section 2.2, this generality is crucial for defining
mutually recursive definitions one-by-one.

The EDSL accelerate adopts the reification of implicit sharing into EDSL’s
let [25], relying on a specific behavior of GHC that cyclic first-order data are
evaluated into cyclic structures in memory. For example, by let ones = 1 :
ones in ones, after the evaluation, we will get a cons cell whose cdr part points
to itself. GHC provides a way to compare such pointers via StableName, and
thus, by leveraging StableName, one can detect graph structures in memory to
obtain letrecs in an EDSL. Although the original method targets non-recursive
let instead of letrec, the method can be extended to recursive let. An advantage
of this approach is the extreme simplicity in EDSL programming: especially, it
allows top-level recursive definitions. While this representation is good for manual
programming by users, it is error-prone if we programmatically generate EDSL
expressions.

Unembedding [1] provides an interconversion between (parametric/tagless-
final) HOAS representation and de Bruijn-indexed representation of simply-typed
ASTs, which is provably correct based on Kripke parametricity. An advantage of
the conversion to de Bruijn-indexed representation is its support for intensional
analysis of ASTs, for example, for optimization [2], while keeping the programma-
bility coming from the HOAS representation. Another advantage is its support
for interpretation of open terms [20], which is crucial for incremental compu-
tation [5, 14] and bidirectional transformations [13, 24]. Section 3.1 highlights
another use case: supporting existentially-quantified semantic domains, for which
the HOAS representation changes the timing of choice of existentials.

7 Conclusion

In this paper, we proposed mutually recursive definition builder constructs, whose
usefulness lies especially in EDSL program generation. The idea of the constructs
comes from the trace operator in category theory. We presented their syntax and
typing rules in a simply-typed system and showed their HOAS representations.
The proposed constructs are interconvertible with letrec, although converting
to letrec requires an additional conversion to de Bruijn-indexed representation.
We reported our experience using the proposed constructs in the invertible
pretty-printing system FliPpr, especially for their utility in grammar generation.

Mutually Recursive Definition Builders 21

References

1. Atkey, R.: Syntax for free: Representing syntax with binding using parametricity.
In: Curien, P. (ed.) Typed Lambda Calculi and Applications, 9th International
Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5608, pp. 35–49. Springer (2009). https://doi.org/
10.1007/978-3-642-02273-9_5, https://doi.org/10.1007/978-3-642-02273-9_5

2. Atkey, R., Lindley, S., Yallop, J.: Unembedding domain-specific languages. In:
Weirich, S. (ed.) Haskell. pp. 37–48. ACM (2009). https://doi.org/10.1145/1596638.
1596644, http://doi.acm.org/10.1145/1596638.1596644

3. Baars, A.I., Swierstra, S.D., Viera, M.: Typed transformations of typed grammars:
The left corner transform. Electron. Notes Theor. Comput. Sci. 253(7), 51–64
(2010). https://doi.org/10.1016/j.entcs.2010.08.031, https://doi.org/10.1016/j.entcs.
2010.08.031

4. Brink, K., Holdermans, S., Löh, A.: Dependently typed grammars. In: Bolduc,
C., Desharnais, J., Ktari, B. (eds.) Mathematics of Program Construction, 10th
International Conference, MPC 2010, Québec City, Canada, June 21-23, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6120, pp. 58–79. Springer
(2010). https://doi.org/10.1007/978-3-642-13321-3_6, https://doi.org/10.1007/
978-3-642-13321-3_6

5. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. In: O’Boyle,
M.F.P., Pingali, K. (eds.) ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014. pp. 145–155. ACM (2014). https://doi.org/10.1145/2594291.2594304,
https://doi.org/10.1145/2594291.2594304

6. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205, https://doi.org/10.1017/
S0956796809007205

7. Chakravarty, M.M.T., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
haskell array codes with multicore gpus. In: Carro, M., Reppy, J.H. (eds.) Proceed-
ings of the POPL 2011 Workshop on Declarative Aspects of Multicore Programming,
DAMP 2011, Austin, TX, USA, January 23, 2011. pp. 3–14. ACM (2011). https:
//doi.org/10.1145/1926354.1926358, http://doi.acm.org/10.1145/1926354.1926358

8. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics. In:
Hook, J., Thiemann, P. (eds.) ICFP. pp. 143–156. ACM (2008). https://doi.org/10.
1145/1411204.1411226, http://doi.acm.org/10.1145/1411204.1411226

9. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68
(1940). https://doi.org/10.2307/2266170, http://dx.doi.org/10.2307/2266170

10. Devriese, D., Piessens, F.: Finally tagless observable recursion for an abstract
grammar model. J. Funct. Program. 22(6), 757–796 (2012). https://doi.org/10.
1017/S0956796812000226, https://doi.org/10.1017/S0956796812000226

11. Fegaras, L., Sheard, T.: Revisiting catamorphisms over datatypes with embedded
functions (or, programs from outer space). In: Boehm, H., Jr., G.L.S. (eds.) Con-
ference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Papers Presented at the Symposium, St. Pe-
tersburg Beach, Florida, USA, January 21-24, 1996. pp. 284–294. ACM Press (1996).
https://doi.org/10.1145/237721.237792, https://doi.org/10.1145/237721.237792

https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1007/978-3-642-02273-9_5
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
http://doi.acm.org/10.1145/1596638.1596644
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1016/j.entcs.2010.08.031
https://doi.org/10.1007/978-3-642-13321-3_6
https://doi.org/10.1007/978-3-642-13321-3_6
https://doi.org/10.1007/978-3-642-13321-3_6
https://doi.org/10.1007/978-3-642-13321-3_6
https://doi.org/10.1145/2594291.2594304
https://doi.org/10.1145/2594291.2594304
https://doi.org/10.1145/2594291.2594304
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/1926354.1926358
http://doi.acm.org/10.1145/1926354.1926358
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/1411204.1411226
http://doi.acm.org/10.1145/1411204.1411226
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
http://dx.doi.org/10.2307/2266170
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1017/S0956796812000226
https://doi.org/10.1145/237721.237792
https://doi.org/10.1145/237721.237792
https://doi.org/10.1145/237721.237792

22 Kazutaka Matsuda

12. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Cartwright, R. (ed.) Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation (PLDI), Al-
buquerque, New Mexico, USA, June 23-25, 1993. pp. 237–247. ACM (1993).
https://doi.org/10.1145/155090.155113, https://doi.org/10.1145/155090.155113

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3) (2007)

14. Giarrusso, P.G., Régis-Gianas, Y., Schuster, P.: Incremental λ-calculus in cache-
transfer style - static memoization by program transformation. In: Caires, L. (ed.)
Programming Languages and Systems - 28th European Symposium on Programming,
ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings. Lecture Notes in Computer Science, vol. 11423, pp. 553–580. Springer
(2019). https://doi.org/10.1007/978-3-030-17184-1_20, https://doi.org/10.1007/
978-3-030-17184-1_20

15. Huet, G.P., Lang, B.: Proving and applying program transformations expressed
with second-order patterns. Acta Inf. 11, 31–55 (1978). https://doi.org/10.1007/
BF00264598, http://dx.doi.org/10.1007/BF00264598

16. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 119(3), 447–468 (Apr 1996)

17. Kiselyov, O.: Simplest poly-variadic fixpoint combinators for mutual recursion. https:
//okmij.org/ftp/Computation/fixed-point-combinators.html#Poly-variadic (2002),
last visit: 2025-12-10

18. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections. In:
Nilsson, H. (ed.) Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, Snowbird, UT, USA, September 22-22, 2004. pp. 96–107. ACM (2004). https:
//doi.org/10.1145/1017472.1017488, https://doi.org/10.1145/1017472.1017488

19. Kock, A.: Continuous yoneda representations of a small category. Preprint (1966),
available on http://tildeweb.au.dk/au76680/CYRSC.pdf

20. Matsuda, K., Frohlich, S., Wang, M., Wu, N.: Embedding by unembedding. Proc.
ACM Program. Lang. 7(ICFP), 1–47 (2023). https://doi.org/10.1145/3607830,
https://doi.org/10.1145/3607830

21. Matsuda, K., Wang, M.: FliPpr: A prettier invertible printing system. In: Felleisen,
M., Gardner, P. (eds.) ESOP. Lecture Notes in Computer Science, vol. 7792, pp.
101–120. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6_6, https:
//doi.org/10.1007/978-3-642-37036-6_6

22. Matsuda, K., Wang, M.: Embedding invertible languages with binders: a case of
the FliPpr language. In: Wu, N. (ed.) Proceedings of the 11th ACM SIGPLAN
International Symposium on Haskell, Haskell@ICFP 2018, St. Louis, MO, USA,
September 27-17, 2018. pp. 158–171. ACM (2018). https://doi.org/10.1145/3242744.
3242758, https://doi.org/10.1145/3242744.3242758

23. Matsuda, K., Wang, M.: Flippr: A system for deriving parsers from pretty-
printers. New Gener. Comput. 36(3), 173–202 (2018). https://doi.org/10.1007/
S00354-018-0033-7, https://doi.org/10.1007/s00354-018-0033-7

24. Matsuda, K., Wang, M.: HOBiT: Programming lenses without using lens com-
binators. In: Ahmed, A. (ed.) ESOP. Lecture Notes in Computer Science, vol.
10801, pp. 31–59. Springer (2018). https://doi.org/10.1007/978-3-319-89884-1_2,
https://doi.org/10.1007/978-3-319-89884-1_2

https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-030-17184-1_20
https://doi.org/10.1007/978-3-030-17184-1_20
https://doi.org/10.1007/978-3-030-17184-1_20
https://doi.org/10.1007/978-3-030-17184-1_20
https://doi.org/10.1007/BF00264598
https://doi.org/10.1007/BF00264598
https://doi.org/10.1007/BF00264598
https://doi.org/10.1007/BF00264598
http://dx.doi.org/10.1007/BF00264598
https://okmij.org/ftp/Computation/fixed-point-combinators.html#Poly-variadic
https://okmij.org/ftp/Computation/fixed-point-combinators.html#Poly-variadic
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
http://tildeweb.au.dk/au76680/CYRSC.pdf
https://doi.org/10.1145/3607830
https://doi.org/10.1145/3607830
https://doi.org/10.1145/3607830
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1007/978-3-642-37036-6_6
https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1145/3242744.3242758
https://doi.org/10.1007/S00354-018-0033-7
https://doi.org/10.1007/S00354-018-0033-7
https://doi.org/10.1007/S00354-018-0033-7
https://doi.org/10.1007/S00354-018-0033-7
https://doi.org/10.1007/s00354-018-0033-7
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2
https://doi.org/10.1007/978-3-319-89884-1_2

Mutually Recursive Definition Builders 23

25. McDonell, T.L., Chakravarty, M.M.T., Keller, G., Lippmeier, B.: Optimising purely
functional GPU programs. In: Morrisett, G., Uustalu, T. (eds.) ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. pp. 49–60. ACM (2013). https://doi.org/10.1145/2500365.
2500595, https://doi.org/10.1145/2500365.2500595

26. Miller, D., Nadathur, G.: A logic programming approach to manipulating formulas
and programs. In: Proceedings of the 1987 Symposium on Logic Programming, San
Francisco, California, USA, August 31 - September 4, 1987. pp. 379–388. IEEE-CS
(1987)

27. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Wexelblat, R.L. (ed.)
Proceedings of the ACM SIGPLAN’88 Conference on Programming Language
Design and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988. pp.
199–208. ACM (1988). https://doi.org/10.1145/53990.54010, http://doi.acm.org/
10.1145/53990.54010

28. Rips, B.M., Janssen, N., Lubbers, M., Koopman, P.: Shallowly embedded functions.
In: Proceedings of the 27th International Symposium on Principles and Practice of
Declarative Programming. PPDP ’25, Association for Computing Machinery, New
York, NY, USA (2025). https://doi.org/10.1145/3756907.3756923, https://doi.org/
10.1145/3756907.3756923

29. d. S. Oliveira, B.C., Löh, A.: Abstract syntax graphs for domain specific languages.
In: Albert, E., Mu, S. (eds.) Proceedings of the ACM SIGPLAN 2013 Workshop on
Partial Evaluation and Program Manipulation, PEPM 2013, Rome, Italy, January
21-22, 2013. pp. 87–96. ACM (2013). https://doi.org/10.1145/2426890.2426909,
https://doi.org/10.1145/2426890.2426909

30. Voigtländer, J.: Asymptotic improvement of computations over free monads. In:
Audebaud, P., Paulin-Mohring, C. (eds.) Mathematics of Program Construction,
9th International Conference, MPC 2008, Marseille, France, July 15-18, 2008.
Proceedings. Lecture Notes in Computer Science, vol. 5133, pp. 388–403. Springer
(2008). https://doi.org/10.1007/978-3-540-70594-9_20, https://doi.org/10.1007/
978-3-540-70594-9_20

31. Wadler, P.: A prettier printer. In: Gibbons, J., de Moor, O. (eds.) The Fun of
Programming, chap. 11. Palgrave Macmillan (2003)

https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/2500365.2500595
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
http://doi.acm.org/10.1145/53990.54010
http://doi.acm.org/10.1145/53990.54010
https://doi.org/10.1145/3756907.3756923
https://doi.org/10.1145/3756907.3756923
https://doi.org/10.1145/3756907.3756923
https://doi.org/10.1145/3756907.3756923
https://doi.org/10.1145/2426890.2426909
https://doi.org/10.1145/2426890.2426909
https://doi.org/10.1145/2426890.2426909
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-540-70594-9_20
https://doi.org/10.1007/978-3-540-70594-9_20

	Mutually Recursive Definition Builders

